VW WL CHA Y VLSO

Day la ban ghi lai 10 gidng clia gido s Erik Demaine and Charles Leiserson trén 1Gp. D€ xem toan bd
bai giang nay ban c6 thé dén http://www.mientayvn.com > Hoc liéu m& > Hoc vién cong nghé Massachusetts >

Toan hoc > Nhap mon gidi thuat> chuwong 1.

MIT OpenCourseWare
http://ocw.mit.edu

6.046] Introduction to Algorithms, Fall 2005

Please use the following citation format:

Erik Demaine and Charles Leiserson, 6.046J Introduction to
Algorithms, Fall 2005. (Massachusetts Institute of Technology: MIT
OpenCourseWare). http://ocw.mit.edu (accessed MM DD, YYYY).
License: Creative Commons Attribution-Noncommercial-Share Alike.

Note: Please use the actual date you accessed this material in your citation.

For more information about citing these materials or our Terms of Use, visit:
http://ocw.mit.edu/terms



http://ocw.mit.edu
http://ocw.mit.edu

MIT OpenCourseWare
http://ocw.mit.edu

6.046] Introduction to Algorithms, Fall 2005
Transcript — Lecture 1

We're going to get started. Handouts are the by the door if anybody didn't pick one
up. My name is Charles Leiserson. I will be lecturing this course this term,
Introduction to Algorithms, with Erik Demaine. In addition, this is an SMA course, a
Singapore MIT Alliance course which will be run in Singapore by David Hsu. And so

all the lectures will be videotaped and made available on the Web for the Singapore
students, as well as for MIT students who choose to watch them on the Web. If you
have an issue of not wanting to be on the videotape, you should sit in the back row.
OK? Otherwise, you will be on it.

There is a video recording policy, but it seems like they ran out. If anybody wants to
see it, people, if they could just sort of pass them around maybe a little bit, once
you're done reading it, or you can come up. I did secure one copy. Before we get

into the content of the course, let's briefly go over the course information because
there are some administrative things that we sort of have to do.

As you can see, this term we have a big staff. Take a look at the handout here.
Including this term six TAs, which is two more TAs than we normally get for this
course. That means recitations will be particularly small. There is a World Wide Web
page, and you should bookmark that and go there regularly because that is where
everything will be distributed. Email. You should not be emailing directly to, even
though we give you our email addresses, to the individual members of the staff. You
should email us generally. And the reason is you will get much faster response. And
also, for any communications, generally we like to monitor what the communications
are so it's helpful to have emails coming to everybody on the course staff. As I
mentioned, we will be doing distance learning this term. And so you can watch
lectures online if you choose to do that.

I would recommend, for people who have the opportunity to watch, to come live. It's
better live. You get to interact. There's an intangible that comes with having it live.

In fact, in addition to the videos, I meet weekly with the Singapore students so that
they have a live session as well. Prerequisites. The prerequisites for this course are
6.042, which is Math for Computer Science, and 6.001. You basically need discrete
mathematics and probability, as well as programming experience to take this course
successfully. People do not have that background should not be in the class. We will

be checking prerequisites. If you have any questions, please come to talk to us after
class.

Let's see. Lectures are here. For SMA students, they have the videotapes and they

will also have a weekly meeting. Students must attend a one-hour recitation session
each week. There will be new material presented in the recitation. Unlike the

lectures, they will not be online. Unlike the lectures, there will not be lecture notes
distributed for the recitations in general. And, yet, there will be material there that is
directly on the exams. And so every term we say oh, when did you cover that? That
was in recitation. You missed that one. So, recitations are mandatory. And, in
particular, also let me just mention your recitation instructor is the one who assigns


http://ocw.mit.edu/terms
http://ocw.mit.edu

your final grade. So we have a grade meeting and keep everybody normal, but your
recitation has the final say on your grade.

Handouts. Handouts are available on the course Web page. We will not generally,
except for this one, first handout, be bringing handouts to class. Textbook is this

book, Introduction to Algorithms. MIT students can get it any of the local bookstores,
including the MIT Coop. There is also a new online service that provides textbooks.
You can also get a discount if you buy it at the MIT Press Bookstore. There is a
coupon in the MIT Student Telephone Directory for a discount on MIT Press books.

And you can use that to purchase this book at a discount. Course website. This is the
course website. It links to the Stellar website, which is where, actually, everything

will be kept.

And SMA students have their own website. Some students find this course

particularly challenges so we will have extra help. We will post weekly office hours on
the course website for the TAs. And then as an experiment this term, we are going to
offer homework labs for this class. What a homework lab is, is it's a place and a time
you can go where other people in the course will go to do homework.

And there will be typically two TAs who staff the lab. And so, as you're working on
your homework, you can get help from the TAs if you need it. And it's generally a
place, we're going to schedule those, and they will be on the course calendar for
where it is and when it is that they will be held, but usually Sundays 2:00 to 4:00
pm, or else it will be some evening. I think the first one is an evening, right?

Near to when the homework is due. Your best bet is try to do the homework in
advance of the homework lab. But then, if you want extra help, if you want to talk
over your solutions with people because as we will talk about problem sets you can
solve in collaboration with other people in the class. In addition, there are several
peer assistance programs. Also the office of Minority Education has an assistance
program, and those usually get booked up pretty quickly. If you're interested in
those, good idea to make an appointment to get there and get help soon. The
homework labs, I hope a lot of people will try that out. We've never done this. I don't
know of any other course. Do other people know of courses at MIT that have done
this? 6.011 did it, OK.

Good. And was it successful in that class? It never went, OK. Good. [LAUGHTER] We
will see. If it's not paying off then we will just return to ordinary office hours for

those TAs, but I think for some students that is a good opportunity. If you wish to be
registered in this course, you must sign up on the course Web page. So, that is
requirement one. It must be done today. You will find it difficult to pass the course if
you are not in the class. And you should notify your TA if you decide to drop so that

we can get you off and stop the mailings, stop the spam. And you should register
today before 7:00 PM.

And then we're going to email your recitation assignment to you before Noon
tomorrow. And if you don't receive this information by Thursday Noon, please send

us an email to the course staff generally, not to me individually, saying that you
didn't receive your recitation assignment. And so if you haven't received it by
Thursday Noon you want to. I think generally they are going to send them out
tonight or at least by tomorrow morning.



Yeah. OK. SMA students don't have to worry about this. Problem sets. We have nine
problem sets that we project will be assighed during the semester. A couple things
about problem sets. Homeworks won't generally be accepted, if you have

extenuating circumstances you should make prior arrangements with your recitation
instructor. In fact, almost all of the administrative stuff, you shouldn't come to me to
ask and say can I hand in something late? You should be talking to your recitation
instructor.

You can read the other things about the form, but let me just mention that there are
exercises that should be solved but not handed in as well to give you drill on the
material. I highly recommend you doing the exercises. They both test your
understanding of the material, and exercises have this way of finding themselves on
quizzes. You're often asked to describe algorithms. And here is a little outline of what
you can use to describe an algorithm. The grading policy is something that somehow

I cover. And always every term there are at least a couple of students who pretend
like I never showed them this. If you skip problems it has a nonlinear effect on your
grade. Nonlinear, OK?

If you don't skip any problems, no effect on your grade. If you skip one problem, a
hundredth of a letter grade, we can handle that. But two problems it's a tenth. And,

as you see, by the time you have skipped like five letter grades, it is already five
problems. This is not problem sets, by the way. This is problems, OK? You're down a
third of a letter grade. And if you don't do nine or more, so that's typically about

three to four problem sets, you don't pass the class. I always have some students
coming at the end of the year saying oh, I didn't do any of my problems. Can you
just pass me because I did OK on the exams? Answer no, a very simple answer
because we've said it upfront. So, the problem sets are an integral part of the
course. Collaboration policy.

This is extremely important so everybody pay attention. If you are asleep now wake up.

Like that's going to wake anybody up, right? [LAUGHTER] The goal of homework.
Professor Demaine and my philosophy is that the goal of homework is to help you
learn the material. And one way of helping to learn is not to just be stuck and unable
to solve something because then you're in no better shape when the exam roles
around, which is where we're actually evaluating you.

So, you're encouraged to collaborate. But there are some commonsense things about
collaboration. If you go and you collaborate to the extent that all you're doing is
getting the information from somebody else, you're not learning the material and
you're not going to do well on the exams. In our experience, students who
collaborate generally do better than students who work alone. But you owe it to
yourself, if you're going to work in a study group, to be prepared for your study
group meeting. And specifically you should spend a half an hour to 45 minutes on
each problem before you go to group so you're up to speed and you've tried out your
ideas. And you may have solutions to some, you may be stuck on some other ones,
but at least you applied yourself to it. After 30 to 45 minutes, if you cannot get the
problem, just sitting there and banging your head against it makes no sense.

It's not a productive use of your time. And I know most of you have issues with

having time on your hands, right? Like it's not there. So, don't go banging your head
against problems that are too hard or where you don't understand what's going on or
whatever. That's when the study group can help out. And, as I mentioned, we'll have



homework labs which will give you an opportunity to go and do that and coordinate
with other students rather than necessarily having to form your own group.

And the TAs will be there. If your group is unable to solve the problem then talk to
other groups or ask your recitation instruction. And, that's how you go about solving
them. Writing up the problem sets, however, is your individual responsibility and

should be done alone. You don't write up your problem solutions with other students,
you write them up on your own. And you should on your problem sets, because this

is an academic place, we understand that the source of academic information is very
important, if you collaborated on solutions you should write a list of the

collaborators. Say I worked with so and so on this solution. It does not affect your
grade. It's just a question of being scholarly.

It is a violation of this policy to submit a problem solution that you cannot orally
explain to a member of the course staff. You say oh, well, my write-up is similar to
that other person's. I didn't copy them. We may ask you to orally explain your
solution. If you are unable, according to this policy, the presumption is that you
cheated. So, do not write up stuff that you don't understand. You should be able to
write up the stuff that you understand. Understand why you're putting down what
you're putting down. If it isn't obvious, no collaboration whatsoever is permitted on
exams. Exams is when we evaluate you. And now we're not interested in evaluating
other people, we're interested in evaluating you. So, no collaboration on exams. We
will have a take-home exam for the second quiz.

You should look at the schedule. If there are problems with the schedule of that, we
want to know early. And we will give you more details about the collaboration in the
lecture on Monday, November 28th. Now, generally, the lectures here, they're
mandatory and you have to know them, but I know that some people say gee, 9:30
is kind of early, especially on a Monday or whatever. It can be kind of early to get

up.

However, on Monday, November 28th, you fail the exam if you do not show up to
lecture on time. That one day you must show up. Any questions about that? That
one day you must show up here, even if you've been watching them on the Web.

And generally, if you think you have transgressed, the best is to come to us to talk
about it. We can usually work something out. It's when we find somebody has
transgressed from a third-party or from obvious analyses that we do with
homeworks, that's when things get messy. So, if you think, for some reason or
other, oh, I may have done something wrong, please come and talk to us. We
actually were students once, too, albeit many years ago. Any questions? So, this
class has great material.

Fabulous material. And it's really fun, but you do have to work hard. Let's talk
content. This is the topic of the first part of the course. The first part of the course is
focused on analysis. The second part of the course is focused on design. Before you
can do desigh, you have to master a bunch of techniques for analyzing algorithms.
And then you'll be in a position to design algorithms that you can analyze and that
which are efficient. The analysis of algorithm is the theoretical study -

Chung ta hay ndi vé néi dung. Bay la chld dé cua phan dau cta khda hoc. Phan dau
cla khda hoc tap trung vao viéc phan tich. Phan th hai cia khoéa hoc tap trung vao
viéc thiét k&. Trudc khi ban cé thé thiét k&, ban phai ndm vitng mét loat cac ki thuét
dé phan tich giai thudt. Va sau dé ban sé& & vi tri thiét k& giai thuat lic dé ban can
phai phan tich giai thuat nao c6 hiéu qua han. Phan tich giai thuat la nghién clu li
thuyét--

-- of computer program performance -- -- and resource usage. And a particular focus
on performance. We're studying how to make things fast. In particular, computer
programs. We also will discover and talk about other resources such as



communication, such as memory, whether RAM memory or disk memory. There are



other resources that we may care about, but predominantly we focus on
performance. Because this is a course about performance, I like to put things in
perspective a little bit by starting out and asking, in programming, what is more
important than performance?

--cla hiéu sudt chudng trinh may tinh - - va cach st dung ngudn tai nguyén. Va tap
trung déc biét vao hiéu suét. Ching ta sé& hoc cach dé lam cho ching chay nhanh.
Noi riéng, chudng trinh may tinh. Chang ta cling sé kham pha va ndéi vé nhirng tai
nguyén khac nhu truyén thdng, nhu bd nhd, bat k€ bd nhd RAM hay bd nhd dia. C6
nhirng tai nguyén khac ma ching ta cé thé quan tdm, nhung chu yéu ching ta tap
trung vao hiéu suat. Béi vi day la khoa hoc vé hiéu suat, té6i mudén dat moi th& dung
b6i canh mot chit bang cach khdi day va hoi, trong 1ap trinh, y&u té nao la quan
trong hon hiéu suat?

If you're in an engineering situation and writing code, writing software, what's more
important than performance? Correctness. Good. OK. What else? Simplicity can be.
Very good. Yeah. Maintainability often much more important than performance. Cost.
And what type of cost are you thinking? No, I mean cost of what? We're talking
software here, right? What type of cost do you have in mind?

Néu ban & vi tri ki su hoac viét ma, viét phan mém, diéu gi quan trong hon hiéu
sudt? Su chinh xac. Tét. Vang. Cai gi nita? Co thé la sy dan gian. Rat tét. Vang. Co6

thé diéu chinh dugc thudng quan trong hon nhiéu so véi hiéu suit. Gid thanh. Va

loai gia nao ma ban sé nghi téi? Khong, t6i mudn ndi gid cla cai gi? Chung ta dang

noi vé phan mém & day, duang khéng? Loai gid nao ma ban cé trong dau.

There are some costs that are involved when programming like programmer time.
So, programmer time is another thing also that might be. Stability. Robustness of

the software. Does it break all the time? What else? Come on. We've got a bunch of
engineers here. A lot of things. How about features? Features can be more

important. Having a wider collection of features than your competitors. Functionality.
Modularity. Is it designed in a way where you can make changes in a local part of the
code and you don't have to make changes across the code in order to affect a simple
change in the functionality? There is one big one which definitely, especially in the
*90s, was like the big thing in computers.

Co6 moét s6 gia thanh phai dudc gop vao khi lap trinh nhu la thdi gian Iap trinh. Vay, thai
gian 1ap trinh cling 1a mot th& cdn phai k€. D6 8n dinh. Slc chiu dung cua phan mém.
N6 cé bi 16i theo thai gian khéng? Con gi nita? Théi ndo. Ching ta cé mot Ii ki su' & day.
Nhiéu th(&. Con vé tinh ndng thi sao? Tinh ndng cé thé quan trong han. Phai cé tap hop
cac tinh nang nhiéu han do6i tha cua ban. Chirc nang. Tinh c6 modun. N6 dugc thiét ké
sao cho ban cé thé thay ddi tirng phan cia ma ma khdéng thay déi toan bd ma dé dat
dugc mét su thay d6i nhoé trong chic ndng? Cé mot van dé I18n ma rd rang, thudc loai
van dé I8n trong may tinh, dac biét vao nhirng nam 90.

The big thing. Well, security actually. Good. I don't even have that one down.
Security is excellent. That's actually been more in the 2000. Security has been far
more important often than performance. Scalability has been important, although
scalability, in some sense, is performance related. But, yes, scalability is good. What
was the big breakthrough and why do people use Macintosh rather than Windows,
those people who are of that religion?

Van dé I16n. Vang, vdn dé& bao mat. Tét. Thadm chi tdi khéng dam néi téi nam viing
diéu d6. Bao mat that xudt sic. Diéu d6é that su cdn hon vao ndm 2000. Bado mét
quan trong han nhiéu so véi hiéu suat. Kha nang ma rong ciing quan trong, mac du
kha nang mé& rong, va theo nghia nao do, cé quan hé vdi hiéu suat. Nhung, vang, kha
nang md rong la tét. Cai gi la budc nhay vot I6n va tai sao ngudi ta dung Macintosh
nhiéu han Windows, nhitng ngugGi nay thudc vé ton gido dé phai khéng?

User-friendliness. Wow. If you look at the number of cycles of computers that went
into user-friendliness in the " 90s, it grew from almost nothing to where it's now the
vast part of the computation goes into user-friendly. So, all those things are more



important than performance. This is a course on performance. Then you can say OK,
well, why do we bother and why study algorithms and performance if it's at the

bottom of the heap? Almost always people would rather have these other things than
performance. You go off and you say to somebody, would I rather have performance
or more user-friendliness?

Su than thién v&i ngudi dung. Wow. NE&u ban xét s6 chu ki may tinh & khia canh than
thién véi ngudi dung vao nhitng ndm 90, né phat trién tir chd hdu nhu khdng cé gi dén
ché bay gid phan 16n cac thao tac dién todn déu than thién vdi ngudi dung. Vi vay, tét
ca nhitng th nay quan trong haon hiéu suit. Bay la khdéa hoc vé hiéu suat. Do dé ban cé
thé ndi OK, vang, tai sao ching ta bi qudy rdy va tai sao nghién cltu thuét giai va hiéu
sudt néu né & dudi déng nay? Hau nhu luén luén ngudi ta mubén nhirng th nay chl
khong phai hiéu suat. Ban di ra va ban ndéi v@i ai do, t6i nén uu tién cho hiéu suat han
hay la than thién v&i ngudi dung han?

It's almost always more important than performance. Why do we care then? Yeah?
That wasn't user-friendly. Sometimes performance is correlated with user-

friendliness, absolutely. Nothing is more frustrating than sitting there waiting, right?
So, that's a good reason. What are some other reasons why? Sometimes they have
real-time constraints so they don't actually work unless they perform adequately.
Yeah? Hard to get, well, we don't usually quantify user-friendliness so I'm not sure,

but I understand what you're saying. He said we don't get exponential performance
improvements in user-friendliness.

N6 hdu nhu ludn lubn quan trong hon hiéu suat. Do do6 tai sao ching ta quan tam dén
hiéu suat? Vang? Ma khéng phai la su than thién véi ngudi dung. Do6i khi hiéu suat co su
tuong quan vdi su than thién ngudi dung, chinh xac. Khéng cé gi lam ta buc minh han
ngo6i chd, dang khéng? Vi vay, dé la li do t6t. MOt s6 li do khac la gi tai sao? Thinh
thodng chung co su rang budc thgi gian thuc vi vay ching khoéng thuc su hoat déng néu
ching khdng thuc hién thda dang. Vang? Khoé dé biét, vang, thudng khé dé dinh Iugng
su' than thién vdi ngudi dung vi vay téi khéng chdc nhung téi hi€u nhitng gi ban ndi. Anh
ta néi ching ta khdng thé vira nhan dudgc su cai tién hiéu sudt theo ludt ham mii va su
than thién véi ngudi dung cung mot ldc.

We often don't get that in performance either, by the way. [LAUGHTER] Sometimes we
do, but that's good. There are several reasons that I think are important. Once is
that often performance measures the line between the feasible and the infeasible.
We have heard some of these things. For example, when there are real-time
requirements, if it's not fast enough it's simply not functional. Or, if it uses too much
memory it's simply not going to work for you. And, as a consequence, what you find
is algorithms are on the cutting edge of entrepreneurship. If you're talking about just



re-implementing stuff that people did ten years ago, performance isn't that
important at some level. But, if you're talking about doing stuff that nobody has
done before, one of the reasons often that they haven't done it is because it's too
time-consuming.

Nhan tién, ching ta thudng khong nhan dugc diéu dé trong hiéu suat. Thinh thoang
ching ta lam, nhung diéu dé tét. Co6 mét vai li do ma toi nghi la quan trong. Th& nhét
la hiéu suat thudng do ranh gidi gilta su thich dang va khong thich dang. Ching ta da
nghe mot s6 trong nhitng th nay. Chang han, khi c6 mét yéu cau thgi gian thuc, néu
né khéng du nhanh, dan gian la ndé sé khong lam viéc. Hodc néu né dung qua nhiéu
bo nhd, ndé don gidn sé khong lam viéc cho ban. Va, vi vay, nhitng gi ching ta tim
dugc trong giai thuat vugt xa tinh than doanh nhan. Néu ban ndi vé mot mén thuc thi
lai ma ngudi ta da lam 10 nam trudc, hiéu suat khong quan trong ¢ mic nao dé.
Nhung, néu ban ndi vé viéc lam moén ma khong ai lam trudc day, mot trong nhirng |i
do ma ho da khéng lam no bdi vi nd tiéu tdn qua nhiéu thdi gian.

Things don't scale and so forth. So, that's one reason, is the feasible versus
infeasible. Another thing is that algorithms give you a language for talking about
program behavior, and that turns out to be a language that has been pervasive
through computer science, is that the theoretical language is what gets adopted by

all the practitioners because it's a clean way of thinking about things. A good way 1
think about performance, and the reason it's on the bottom of the heap, is sort of

like performance is like money, it's like currency. You say what good does a stack of
hundred dollar bills do for you? Would you rather have food or water or shelter or
whatever? And you're willing to pay those hundred dollar bills, if you have hundred
dollar bills, for that commodity.

Nhitng th&r nay khéng so sanh dugc va vang vang. Vi vay, do la mot |i do, |a thich dang véi
khong thich dang. Mot thr khac 13 gidi thudt cho ban mot ngdn ngit dé néi vé su dién bién
chuong trinh, va hda ra la mot ngdén ngir da lan truyén khap ngci trong khoa hoc may tinh,
la ngén ngit Ii thuyét la nhitng gi da dugc thong qua bdi tat ca nhitng ngudi dang hanh
nghé vi nd la cach nghi sang sua vé cac thir. Mot cach tét ma téi nghi vé hiéu suat, va li do
né & dudi cac tiéu chi khac, la phan nao hiéu suit nao tién ndy, khi ban c6 mét sdp tién
mét tram do la ban s& mua gi? Ban thich cdi nao, thuc phdm hodc nudc hodc chd & hay béat
cU thlr gi dé ? Va ban vui ldong tra nhitng t& mot tram dola nay cho tién nghi do.

Even though water is far more important to your living. Well, similarly, performance

is what you use to pay for user-friendliness. It's what you pay for security. And you
hear people say, for example, that I want greater functionality, so people will

program in Java, even though it's much slower than C, because they'll say it costs
me maybe a factor of three or something in performance to program in Java.

Cho du nudc quan trong haon nhiéu do6i v@i cudc séng cua ban. Vang, tudng tu, hiéu
suét 1a nhitng gi ban dung dé tra gia cho su than thién véi ngudi dung. N6 1a nhitng gi
ban phai tra giad cho sy bdo mat. Va ban nghe ngugi ta ndi, chdng han, rdng téi mudén
nhiéu chlc nang hon, vi vy ngudi ta sé& 1ap trinh bang Java, cho du né cham hon
nhiéu so vGi C, bai vi ho ndi khi I&p trinh bdng Java hiéu suét s& giam di gan ba lan.

But Java is worth it because it's got all these object-oriented features and so forth,
exception mechanisms and so on. And so people are willing to pay a factor of three
in performance. So, that's why you want performance because you can use it to pay
for these other things that you want. And that's why, in some sense, it's on the
bottom of the heap, because it's the universal thing that you quantify.

Nhung Java dang dé€ bo thdi gian vi né cé tat ca nhitng tinh nang hudng déi tugng
va v.v.., nhitng cc ché€ loai trir va v.v..Va vi vay ngudi ta sé vui long tra gia cho su
giam hiéu sudt gap 3 lan. Vi vay, do la li do tai sao ban mudén hiéu suat vi ban cé
thé dung né dé thanh todn cho nhitng thr khac 8 ddy ma ban mudn. Va dé la li do
tai sao, theo mot quan diém nao dd, nd & dudi cua céc tiéu chi khac, vi né la tha
phd bién ma ban dinh lugng.



Do you want to spend a factor of two on this or spend a factor of three on security,

et cetera? And, in addition, the lessons generalize to other resource measures like
communication, like memory and so forth. And the last reason we study algorithm
performance is it's tons of fun. Speed is always fun, right? Why do people drive fast
cars, race horses, whatever? Rockets, et cetera, why do we do that? Because speed

is fun. Ski. Who likes to ski? I love to ski. I like going fast on those skis. It's fun.
Hockey, fast sports, right? We all like the fast sports. Not all of us, I mean. Some
people say he's not talking to me. OK, let's move on. That's sort of a little bit of a
notion as to why we study this, is that it does, in some sense, form a common basis
for all these other things we care about.

Ban cé mudn tén 2 Ian trén cai nay hoac tén gédp 3 lan cho bao mat, v.v..? Va, thém vao
dd, nhitng diéu nay cé thé téng quat hda cho su do cac tai nguyén khac nhu truyén
théng, bé nhdé va v.v...Va li do cudi cung chung téi nghién clru hiéu suat thuat toan la né
rat vui. T6éc d6 luén luén vui, dang khéng? Tai sao ngudi ta lay xe nhanh, dua ngua, hay
bat c& thr gi khac? Tén lura, v.v.., tai sao ching ta lam diéu d6? Bgi vi t6c d6 vui. Trugt
tuyét. Ai thich trugt tuyét? To6i thich trugt tuyét. Toi thich Iudt nhanh trén nhitng van
trugt nay. N6 vui. Mon khic cén ciu, nhitng mén thé thao nhanh, ding khdng? T4t ca
chling ta dé&u thich nhitng mén thé thao nhanh. Y tdi 1a, khong phai t&t ca chling ta. Mot
s6 ngudi ndi rdng thay dirng ndi vé tbi. Vang, ching ta h&y ti€p tuc. D4 l1a mbt it y niém
vé viéc tai sao chling ta nghién clru cai nay, la vi theo mdt quan diém nao d6, né hinh
thanh nén co s& chung cho tat ca nhirng th&r ma chdng ta quan tam nay.

And so we want to understand how can we generate money for ourselves in
computation? We're going to start out with a very simple problem. It's one of the
oldest problems that has been studied in algorithms, is the problem of sorting. We're
going to actually study this for several lectures because sorting contains many
algorithmic techniques. The sorting problem is the following. We have a sequence
a_1, a_2 up to a_n of numbers as input. And our output is a permutation of those
numbers.

Va vi vy chiing ta mudn tim hiéu cdch ma ching ta cé thé tao ra tién cho chinh minh
trong tinh toan? Chung ta sé khdi dau véi moét van dé daon giadn. N6 la mot trong
nhitng van dé& cd nhat da tirng dudc nghién clu trong giai thuét, la van dé sap xé&p.
Chulng ta sé& thuc su hoc vé vdn dé nay trong vai bai giang vi sdp x&p chlra nhiéu ki
thuat giai thudt. Bai toan sdp x€p la nhu sau. Ching ta c6 mot ddy cac s6 dau vao
a_1, a_2 tdi a_n. Va dau ra clia ching ta la hoan vi cia nhithg s6 nay.

A permutation is a rearrangement of the numbers. Every number appears exactly
once in the rearrangement such that, I sometimes use a dollar sign to mean "such
that," a_1 is less than or equal to a_2 prime. Such that they are monotonically
increasing in size. Take a bunch of numbers, put them in order. Here's an algorithm
to do it. It's called insertion sort. And we will write this algorithm in what we call



pseudocode. It's sort of a programming language, except it's got English in there
often. And it's just a shorthand for writing for being precise.

Hodn vi la su sdp x&p lai cac s6. Mbi s6 xuat hién ding mot [An trong su sdp x&p lai
sao cho, tbi thinh thoang dung d&u dé la dé ki hiéu cho “sao cho” a_1 nhd hon hoéc
b&ng a_2 phdy. Sao cho ching t8ng dan don diéu vé dd I6n. LAy mot chudi s6, dit
chlng theo th( tu. DAy la mét giai thuat d&€ lam. N6 dudc goi la chén truc tiép. Va
ching ta sé viét giai thuat nay dudi dang gid ma. N6 la phan nao cta ngdén ngir lap
trinh, ngoai trir thudng cé tiéng Anh trong dé. Va né chi 1a su viét téc ki dé viét
chinh xac.

So this sorts A from 1 to n. And here is the code for it. This is what we call
pseudocode. And if you don't understand the pseudocode then you should ask
questions about any of the notations. You will start to get used to it as we go on.
One thing is that in the pseudocode we use indentation, where in most languages

they have some kind of begin-end delimiters like curly braces or something in Java

or C, for example.

Vi vay, day la su sdp x€p A tir 1 dén n. Va day la m& cho né. Pay la nhitng gi ma ching
ta goi la gia ma. Va néu ban khdéng hiéu gid ma thi ban s& hai vé bat c chd thich nao.
Ban sé& bat ddu quen vdi nd khi ching ta ti€p tuc. Mot diéu la trong gid ma ching ta
dung thut dau dong, trong khi trong da sé cac ngén ngir ching ta cé mét vai loai dau
phan cach dau-cudi nhu ddu ngodc nhon hodc thr gi d6 trong Java hodc C chang han.
We just use indentation. The whole idea of the pseudocode is to try to get the
algorithms as short as possible while still understanding what the individual steps

are. In practice, there actually have been languages that use indentation as a means
of showing the nesting of things. It's generally a bad idea, because if things go over
one page to another, for example, you cannot tell what level of nesting it is.

Chung ta chi dung thut dau dong. Toan bd y tudng cua gid ma la c6 nhan dudc giai thuat
ngdn nhat trong khi van con hiéu dugc titng budc 1a gi. Trong thuc t&, da cé nhitng ngdn
ngir dung d&u thut dau dong nhu mot phudng tién dé biéu dién su [6ng vao nhau cla cac
thir. N6i chung, dé la mot y tudng khong hay, vi néu ching ta viét chuong trinh trén nhiéu
trang thi ching ta khong thé biét né la cdp 16ng gi.

Whereas, with explicit braces it's much easier to tell. So, there are reasons why this

is a bad notation if you were doing software engineering. But it's a good one for us
because it just keeps things short and makes fewer things to write down. So, this is
insertion sort. Let's try to figure out a little bit what this does. It basically takes an
array A and at any point the thing to understand is, we're setting basically, we're
running the outer loop from j is 2 to n, and the inner loop that starts at j minus 1

and then goes down until it's zero.

Ngudc lai, véi nhitng ddu méc r& rang né dé dang han dé néi. Vi vay, dé 1a nhitng Ii do
tai sao day la y tuédng khong hay néu ban dang lam cong nghé phan mém. Nhung né la
mot th(r tét cho chdng ta vi né lam cho moi th& ngén va lam cho it th dugc viét ra. Vi
vy, day la chén truc tiép. Hay th tim hi€u mdt chit xem cai nay lam gi. Vé cd ban, né
I&y mdt mang A va tai bat ki diém nao diéu can hiéu 13, vé co ban ching ta thiét 1ap,
chiing ta sé& chay & vong bén ngoai tir j bang 2 dén n, va vong bén trong bat dau tai j-1
va sau dé gidm xudng cho dén khi n6é béng 0.

Basically, if we look at any point in the algorithm, we essentially are looking at some
element here j. A of j, the jth element. And what we do essentially is we pull a value
out here that we call the key. And at this point the important thing to understand,

and we'll talk more about this in recitation on Friday, is that there is an invariant that
is being maintained by this loop each time through.

Vé cd ban, néu chidng ta nhin vao bt cr di€m nao trong giai thuat, vé cd ban ching ta
sé xét mot yéu té nao do & day j. A (j), yéu tb th j. Va vé ca ban nhitng gi chidng ta
lam 13 chidng ta kéo mét gid tri ra ngoai ddy ma ching ta goi la khéa. Va tai diém nay
diéu quan trong can hiéu 13, va ching ta sé& ndi vé diéu nay trong bai hoc vao ngay th(
sau, la co6 mot su bat bién da dudc gilr lai bdi vong 18p nay mdi 1an di qua.

And the invariant is that this part of the array is sorted. And the goal each time



through the loop is to increase, is to add one to the length of the things that are
sorted. And the way we do that is we pull out the key and we just copy values up

like this. And keep copying up until we find the place where this key goes, and then
we insert it in that place. And that's why it's called insertion sort. We just sort of

move the things, copy the things up until we find where it goes, and then we put it
into place. And now we have it from A from one to j is sorted, and now we can work
on j plus one.

Va su bat bién 1a phan nay clia mang dudc sép x&p. Va muc tiéu mdi [An qua vong 13p
la dé€ tang, |a d& cdng mot vao dd dai cua phan da dudc sdp x&p. Va cach ma ching ta
lam diéu dé la ching ta kéo khoda ra va ching ta copy gia tri Ién gidng nhu thé nay. Va
ti€p tuc copy Ién cho dén khi nao chung ta tim dugc nagi khdéa nay dén, va sau doé chung
ta chén nd vao chd dé. Va dé la li do tai sao né dudc goi la chén truc ti€p. Chang ta chi
phan nao di chuyén cac th(, copy cac th |én cho dén khi ching ta tim dudc ngi né dén,
va sau dé ching ta ddt né vao dung chd. Va bay gid ching ta c6 né A tir 1 dén j dugc
sap x&p, va by gid ching ta c6 thé lam viéc trén j céng 1.

Let's give an example of that. Imagine we are doing 8, 2, 4, 9, 3, 6. We start out

with j equals 2. And we figure out that we want to insert it there. Now we have 2, 8,
4,9, 3, 6. Then we look at the four and say oh, well, that goes over here. We get 2,

4, 8, 9, 3, 6 after the second iteration of the outer loop. Then we look at 9 and
discover immediately it just goes right there. Very little work to do on that step. So,
we have exactly the same output after that iteration. Then we look at the 3 and

that's going to be inserted over there.

H&3y xét moét vi du vé diéu d6. Hay tudng tugng chidng ta sé sap xép 8, 2, 4, 9, 3, 6.
Chulng ta khdi dau vdi j bang 2. Va chiang ta dodn ra rdng chidng ta muén chén né & do.
Bay gid chung ta dugc 2, 8, 4, 9, 3, 6. Sau do ching ta xét 4 va ndi oh, vang, cai dé di
Ién dén day. Chung ta c6 2, 4, 8, 9, 3, 6 sau khi 1ap lai Ian hai vong |ap ngoai. Sau dé
ching ta xét 9 va ngay lap t’c kham pha ra né chinh xac dén ngay d6. Rat it cong viéc
dé l1am & budc do. Vi vdy chlng ta cd chinh xac dau ra tudng tu sau Ian I3p lai d6. Roi
chiing ta xét 3 va cai dé sé& dudc chén vao dang kia.

2, 3,4,8,9, 6. And finally we look at the 6 and that goes in there. 2, 3, 4, 6, 8, 9.
And at that point we are done. Question? The array initially starts at one, yes.
A[1...n], OK? So, this is the insertion sort algorithm. And it's the first algorithm that
we're going to analyze. And we're going to pull out some tools that we have from our
math background to help to analyze it. First of all, let's take a look at the issue of
running time.

2, 3,4, 8,9, 6. Va cubi cung chung ta xét 6 va n6 di dén do. . 2, 3, 4, 6, 8, 9. Va tai
diém nay chlng ta da hoan thanh. Cé ciu hdi nao khdng? Mang ban dau bat dau tai mot,
vang. A[1...n], ddng khéng? Vi vay, day la thuat toan chen truc ti€p. Va né la thuat toan
dau tién ma ching ta sé phan tich. Va ching ta sé kéo ra mot s6 cong cu ma chung ta cé
tir nén tang todn hoc cla ching ta dé€ gitp phan tich né. Trudc hét, ching ta hdy xét van
dé thai gian chay.



The running time depends, of this algorithm depends on a lot of things. One thing it
depends on is the input itself. For example, if the input is already sorted -- -- then
insertion sort has very little work to do. Because every time through it's going to be
like this case. It doesn't have to shuffle too many guys over because they're already

in place. Whereas, in some sense, what's the worst case for insertion sort? If it is
reverse sorted then it's going to have to do a lot of work because it's going to have

to shuffle everything over on each step of the outer loop.

Thdi gian chay, cla thuat toan nay phu thudc vao nhiéu th&. M6t thir trong s6 dé chinh
la dau vao. Chang han, néu dau vao dudc sdp x&p rdi - - thi chén truc tiép cd it cdng
viéc dé lam. B&i vi mdi 1an di qua nd s& gibng nhu trudng hdp nay. N6 khdong phai 1&
budc qua qud nhiéu ga bdi vi ching d& ddng chd rdi. Ngudc lai, trén quan diém nao do,
diéu gi la xdu nhét cho su cheén truc ti€p? NEu nd bi sap xEp ngudc thi nd sé& phai lam
nhidu céng viéc bdi vi né phai I& budc qua moi thr 8 mdi budc clia vong I8p ngoai.

In addition to the actual input it depends, of course, on the input size. Here, for
example, we did six elements. It's going to take longer if we, for example, do six
times ten to the ninth elements. If we were sorting a lot more stuff, it's going to take
us a lot longer. Typically, the way we handle that is we are going to parameterize
things in the input size. We are going to talk about time as a function of the size of
things that we are sorting so we can look at what is the behavior of that. And the

last thing I want to say about running time is generally we want upper bonds on the
running time.

T4t nhién 1a né con phu thudc kich thudt dau vao. O day, chdng han, ching ta xét 6 yéu
t8. N6 s& mét thdi gian dai néu chdng han ching ta thuc hién véi 6 nhan 10 mi 19 yéu
t6. Néu chung ta phan loai nhiéu nguyén liéu hon, né sé lam mat thdi gian cua chung ta
lau hon. Thong thudng, cach ma chidng ta xur |i diéu doé la ching ta sé tham s6 héa kich
thudt dau vao. Chung ta sé€ ndi vé thgi gian nhu la mot ham cua kich thuét cac thir ma
chiing ta sdp x&p vi vay chiing ta cé thé xét dién bién cua cai dé. Va diéu cudi cing ma
t6i mudn ndi vé thgi gian chay la ndi chung chidng ta mudn nhitng rang bu6c cao hon vé
thdgi gian chay.

We want to know that the time is no more than a certain amount. And the reason is
because that represents a guarantee to the user. If I say it's not going to run, for
example, if I tell you here's a program and it won't run more than three seconds,

that gives you real information about how you could use it, for example, in a real-
time setting. Whereas, if I said here's a program and it goes at least three seconds,
you don't know if it's going to go for three years. It doesn't give you that much
guarantee if you are a user of it. Generally we want upper bonds because it
represents a guarantee to the user.

Chang ta mudn biét rang thdi gian khdéng nhiéu hon mot lugng nao dé. Va li do la vi céi
dé thé hién moét sy dam bao véi ngudi dung. Né&u téi ndi né s& khdng chay, chidng han,
néu toi bdo ban day la chuadng trinh va né sé khong chay qua 3 giay, diéu dé cho ban
mot théng tin thuc vé cach ban cé thé dung nd, chdng han, trong thiét I3p thdi gian
thuc. Trong khi d6, néu t6i néi day la chudng trinh va né chay it nhat sau 3 gidy, ban
khdng biét rang c6 khi nao sau ba nam né mdi chay hay khbéng. N6 khdng cho ban
nhiéu sy dam bao néu ban la ngudi dung né. Néi chung, ching ta mudn cé nhitng rang
budc cao han bdi vi né bi€u hién mot su dam bao véi ngudi dung.

There are different kinds of analyses that people do. The one we're mostly going to
focus on is what's called worst-case analysis. And this is what we do usually where

we define T of n to be the maximum time on any input of size n. So, it's the
maximum input, the maximum it could possibly cost us on an input of size n. What
that does is, if you look at the fact that sometimes the inputs are better and
sometimes they're worse, we're looking at the worst case of those because that's the
way we're going to be able to make a guarantee.

C6 nhiéu loai phép phan tich khac ma ngudi ta dung. Cai ma chung ta chu yéu sé tap
trung vao la phan tich trudng hgp xau nhat. Va day la nhitng gi ching ta lam, théng



thudng & dé chung ta dinh nghia T (n) la thaGi gian cuc dai trén bat c dau vao kich
thudt n nao. Vi vay, né la dau vao cuc dai, cuc dai ma né doi hoi chung ta trén dau vao
kich thust n. Nhitng gi ma cai do lam la, néu ban xét su kién la thinh thodng dau vao
tét han hodc thinh thodng ching té hon, ching ta sé xét trudng hgp xau nhat cua
nhirng cai nay bdi vi d6 la cdch ma ching ta cé thé tao ra su bao dam.

It always does something rather than just sometimes does something. So, we're
looking at the maximum. Notice that if I didn't have maximum then T(n) in some
sense is a relation, not a function, because the time on an input of size n depends on
which input of size n. I could have many different times, but by putting the

maximum at it, it turns that relation into a function because there's only one
maximum time that it will take.

Ludn luén lam th& gi dé thay vi chi thinh thoang lam. Vi vay, chidng ta sé xét cuc dai.
Chu y rang néu tdi khéng cb cuc dai thi T(n) theo mét quan diém nao dé la mét hé
thic, khong phai ham, vi thdi gian trén dau vao kich thuét n phu thudc vao dau vao
kich thudt n. T6i cb thé c6 nhiéu thdi gian khac nhau, nhung béng cach dat cuc dai tai
nd, né chuyén hé thic dé thanh ham vi chi cd mét thdi gian cuc dai ma né sé |ay.

Sometimes we will talk about average case. Sometimes we will do this. Here T of n is
then the expected time over all inputs of size n. It's the expected time. Now, if I talk
about expected time, what else do I need to say here? What does that mean,

expected time? I'm sorry. Raise your hand. Expected inputs. What does that mean,
expected inputs? I need more math. What do I need by expected time here, math?
You have to take the time of every input and then average them, OK. That's kind of
what we mean by expected time. Good. Not quite. I mean, what you say is

completely correct, except is not quite enough.

Thinh thoang ching ta sé nodi vé trudng hgp trung binh. Thinh thoang ching ta sé lam
diéu nay. Do do, & day T(n) la thai gian du kién trén tat ca dau vao kich thudt n. N6 la
thai gian dy ki€n. Bay gid, néu tdi noi vé thoi gian du kién, t6i can phai néi ¢ day cai gi
nira? Diéu dé cé nghia la gi, thdi gian du kié€n? Toi xin l0i. Gid tay 1én nao. Cac dau vao
du kién. DBiéu d6 c6 nghia la gi, cac dau vao du kién? Toi can thém toan hoc. Toi can gi
vao khoang thdi gian du kién & day, toan hoc? Ban phai lay thd&i gian cia moi dau vao
va sau do tinh trung binh ching, OK. D6 phan nao la nhitng gi ma ching ta mudn noi
qua thdi gian du kién. T6t. Khéng hoan toan. Y t6i la, nhitng gi ban néi Ia hoan toan
chinh xac, ngoai trir la chua du.

Yeah? It's the time of every input times the probability that it will be that input. It's a
way of taking a weighted average, exactly right. How do I know what the probability



of every input is? How do I know what the probability a particular input occurs is in a
given situation? I don't. I have to make an assumption. What's that assumption

called? What kind of assumption do I have to meet? I need an assumption -

bPung khong? No6 la thaGi gian cia moi dadu vao nhan vai xac suat ma né sé ¢ dau vao dé.

Do la cach I8y trung binh co trong s, dung chinh xac. Lam sao ma téi biét xac suat &

moi dau vao la gi? Lam sao ma toi biét xac suat ma mot dau vao xuat hién la gi trong

mot trudng hgp nhat dinh? Téi khong biét. T6i phai gia thuyét. Gia thuyét dé dudc goi la

gi? Loai gia thuyét nao ma t6i phai dung? T6i can mét gia thuyét-

-- of the statistical distribution of inputs. Otherwise, expected time doesn't mean
anything because I don't know what the probability of something is. In order to do
probability, you need some assumptions and you've got to state those assumptions
clearly. One of the most common assumptions is that all inputs are equally likely.
That's called the uniform distribution. Every input of size n is equally likely, that kind

of thing. But there are other ways that you could make that assumption, and they

may not all be true. This is much more complicated, as you can see. Fortunately, all

of you have a strong probability background. And so we will not have any trouble
addressing these probabilistic issues of dealing with expectations and such.

--clia phan bd théng ké clia cac dau vao. Ngudgc lai, thgi gian du ki€n sé khong cé y
nghia bdi vi tdi khéng biét xac sudt cua cac th(r l1a bao nhiéu. D€ tinh xac sudt, ban
can mot sb gid thuyét va ban phai phat biéu nhitng gia thuyét nay rd rang. Mét trong
nhitng gia thuyét téng quat nhat 13 tt cd cdc dau vao cé kha ndng bdng nhau. D6
dugc goi 1a phan bd déu. Mdi dau vao kich thudt n cé kha ndng nhu nhau, tuong tu
nhu nhau. Nhung ban cé thé gia thuyét theo nhitng cach khac, va cé thé khdng phai

tat ca ching déu didng. Cai nay phuc tap han nhiéu, nhu ban cé thé thdy. May thay,

tat ca cac ban déu cé kién thirc vé xac sudt virng. Va vi vay ching ta sé khong gap
khé khan gi trong viéc xac dinh cadc vdn dé xac suat dé giai quyét ki vong va cac thl
tudng tu thé.

If you don't, time to go and say gee, maybe I should take that Probability class that

is a prerequisite for this class. The last one I am going to mention is best-case
analysis. And this I claim is bogus. Bogus. No good. Why is best-case analysis

bogus? Yeah? The best-case probably doesn't ever happen. Actually, it's interesting
because for the sorting problem, the most common things that get sorted are things
that are already sorted interestingly, or at least almost sorted. For example, one of

the most common things that are sorted is check numbers by banks. They tend to
come in, in the same order that they are written.

Néu ban khéng ranh, day la lic dé€ di va ndi, dugc, cé 18 tdi nén hoc I8p xac suét vi
mon dé la tién quyét cho mdn nay. Luc trudc téi dang dé cap dén phan tich trudng
hop x8u nhét. Va diéu nay téi khdng dinh 1a khéng cé that. Khdng cé that. Khdng tét.
Tai sao phan tich trudng hgp xau nhat khéng c6 that? Vang? Cé 1€ trudng hgp xau
nhét chua bao gid xay ra. Thuc su, né |i tha vi d6i v3i bai todn sdp x&p, nhitng thr
phd bién nhat dudc sdp x&p la nhitng th& da dugc sdp x&p thu vi rdi, hodc it nhat 1a
gan nhu dugc sép x€p. Ching han, mdt trong nhitng th& dudc sap x&p thdng thudng
nhat 1a ma s6 kiém tra & cac ngdn hang. Chang cé khuynh hudng di vao theo th( tu
giéng nhu chung dudc viét.

They're sorting things that are almost always sorted. I mean, it's good. When upper
bond, not lower bound? Yeah, you want to make a guarantee. And so why is this not

a guarantee? You're onto something there, but we need a little more precision here.
How can I cheat? Yeah? Yeah, you can cheat. You cheat. You take any slow

algorithm that you want and just check for some particular input, and if it's that

input, then you say immediately yeah, OK, here is the answer. And then it's got a
good best-case.

Ho s& s&p x&p nhiing th( hau nhu ludn ludn d& dudc sép x&p. Y tdi 1a didu dé tét. Khi
rang budéc I6n hdn, khong phéai rang budc nho hon? Vang, ban mudn tao ra su bao
dam. Va vi vay tai sao diéu nay khong phai la mot sy bdo ddm? Ban dang & trén th(r
gi d6, nhung ching ta can mét it su chinh xac haon & day. Tdi c6 thé Iira nhu thé nao?
Vang? Vang, ban cé thé bj Ira. Ban bj Iira. Ban nhan bat ki mot thudt todn chdm ma



ban muén va chi kiém tra mot s6 ddu vao nao dd, va néu nd la ddu vao do, thi ngay
lap tdc ban ndéi vang, dugc, day la cau tra IGi. Va do vay dé la mot trudng hgp tot
nhat.

But I didn't tell you anything about the vast majority of what is going on. So, you

can cheat with a slow algorithm that works fast on some input. It doesn't really do
much for you so we normally don't worry about that. Let's see. What is insertion
sorts worst-case time? Now we get into some sort of funny issues. First of all, it sort
of depends on the computer you're running on. Whose computer, right? Is it a big
supercomputer or is it your wristwatch? They have different computational abilities.
Nhung t6i khong bao ban bat cl diéu gi vé phan déng nhat nhitng gi sé xay ra. Vi vay,
ban cé thé bi Iira v3i giai thudt chdm lam viéc nhanh trén dau vao nao dé. N6 thuc su
khéng lam nhiéu cho ban vi vy théng thudng ching ta khéng lo I&ng vé diéu dé. Hay
xét. Thdi gian trudng hgp xau nhat chen truc tiép la gi? Bay gid ching ta nhan vao moét
vai loai van dé vui. Trudc hét, né phan nao phu thudéc vao may tinh ma ban dang chay.
May tinh cta ai, ding khong? N6 la mét siéu may tinh hay la dong ho deo tay cua to6i?
Chung c6 kha nang tinh toan khac nhau.

And when we compare algorithms, we compare them typically for relative speed.

This is if you compared two algorithms on the same machine. You could argue, well,

it doesn't really matter what the machine is because I will just look at their relative
speed. But, of course, I may also be interested in absolute speed. Is one algorithm
actually better no matter what machine it's run on? And so this kind of gets sort of
confusing as to how I can talk about the worst-case time of an algorithm of a piece

of software when I am not talking about the hardware because, clearly, if I had run

on a faster machine, my algorithms are going to go faster. So, this is where you get
the big idea of algorithms.

Va khi ching ta so sanh cac giai thuat, ching ta so sanh ching thong thudng la vé téc
do tuong doi. Trong trudng hgp nay, ban so sanh hai thuat todn trén cung moét may.
Ban c6 thé tranh ludn, vang, may gi khdng quan trong vi téi s& chi xét téc dd tuong doi
cla chung. Nhung, tat nhién, toi co Ié cling quan tam dén t6c do tuyét dbi. Co phai mot
thuat toan thuc su tét hon khéng phu thudc vao viéc né chay trén may nao? Va thé
diéu nay phan nao gay bdi rdi badi vi Iam sao tdi cé thé ndi vé thdi gian trudng hdp xdu
nhat cia moét thuat todn cia moét phan mém ma lai khong dé cap dén phan citng bdi vi,
ro rang, néu né da dudc chay trén may tét hon, thi tat nhién né sé chay nhanh hagn. Vi
vay, day la lic ma ban nhan dudc y tudng I&n vé thuat toan.

Which is why algorithm is such a huge field, why it spawns companies like Google,
like Akamai, like Amazon. Why algorithmic analysis, throughout the history of
computing, has been such a huge success, is our ability to master and to be able to
take what is apparently a really messy, complicated situation and reduce it to being
able to do some mathematics. And that idea is called asymptotic analysis.

D6 la li do tai sao thuat toan la mot linh vuc I8n nhu thé, tai sao nd sinh ra nhitng
cong ti nhu Google, nhu Akamai, nhu Amazon. Tai sao phan tich giai thuat, qua lich
s’ may tinh, d& dat dudc thanh céng I6n nhu thé&, 1a kha ndng cla chdng ta ndm
vifng va c6 thé 18y nhitng gi nhin vé bé ngoai cé vé la mét tinh hudng 16n x6n, phic
tap va don gian hdéa ndé dé€ cé thé Iam mot s6 tinh todn. Va y tudng d6 dudc goi la
phan tich tiém can.



And the basic idea of asymptotic analysis is to ignore machine-dependent constants -

- -- and, instead of the actual running time, look at the growth of the running time.
So, we don't look at the actual running time. We look at the growth. Let's see what
we mean by that. This is a huge idea. It's not a hard idea, otherwise I wouldn't be
able to teach it in the first lecture, but it's a huge idea. We are going to spend a

couple of lectures understanding the implications of that and will basically be doing it
throughout the term.

Va y tudng co ban cua phén tich tiém cén la bo qua céc hang sé phu thudc vao may - -
va thay vi thdgi gian chay thuc su, hay xét su gia tang cua thdi gian chay. Vi vay, ching
ta khong xét thdi gian chay thuc su. Chlng ta xét su tang. Hay xem nhitng gi ma chung
ta mudn noi qua diéu dé. bay la mét y tudng I6n. Ching ta sé sir dung mot vai bai giang
tim hi€u ham y cla diéu dé va vé cd ban sé& lam nd trong suét hoc ki.

And if you go on to be practicing engineers, you will be doing it all the time. In order
to do that, we adopt some notations that are going to help us. In particular, we will
adopt asymptotic notation. Most of you have seen some kind of asymptotic notation.
Maybe a few of you haven't, but mostly you should have seen a little bit. The one
we're going to be using in this class predominantly is theta notation.

Va trong vai trd ctia mét ki su thuc hanh, ban s& lam né moi lic. D& lam diéu d4,
ching ta chdp nhan mot s6 y niém sé gilp chung ta. Dac biét, ching ta sé thong qua
khai niém tiém can. Pa sb cac ban da hi€u mdt sé loai khai niém tiém cén. Co 18 vai ban
khong biét, nhung vé co ban ban nén biét moét chdt. Cai ma ching ta sé dung trong I&p
nay chu yéu la khai niém theta.

And theta notation is pretty easy notation to master because all you do is, from a
formula, just drop low order terms and ignore leading constants. For example, if I

have a formula like 3n~"3 = 90n~2 - 5n + 6046, I say, well, what low-order terms do

I drop? Well, n*3 is a bigger term n”~2 than. I am going to drop all these terms and
ignore the leading constant, so I say that's Theta(n”~3). That's pretty easy. So, that's
theta notation. Now, this is an engineering way of manipulating theta notation. There

is actually a mathematical definition for this, which we are going to talk about next
time, which is a definition in terms of sets of functions. And, you are going to be
responsible, this is both a math and a computer science engineering class.

Va khai niém theta I3 khai niém kha dé dé ndm vitng bdi vi tat ca nhitng gi ban Iam

1a, tlir cbng thic, chi bo qua nhitng s6 hang bac thdp va bdé qua cac hang s6 dau.
Chang han, néu téi c6 mét céng thic 1a 3n~3 = 90n~2 - 5n + 6046, tdi gia su,
vang, toi bo s6 hang bac thap nao? Vang, n~3 la mot s6 hang Ién hgn nN 2. Toi sé

bd tat ca nhitng s6 hang nay va bo qua hang s6 dau, vi vay tbi ndi dé la theta
(n~3). Bidu d6 kha dé. Vi vdy dé 1a khai niém theta. Bay gid, day 1a mot tha thuat

thao tac khai niém theta. D6 thuc su la mot dinh nghia toan hoc cla cai nay, cai

ma chuing ta sé dé cap trong lan téi, né la dinh nghia theo tdp hgp cac ham. Vva,

ban sé co trach nhiém, day la mét I&p vé ca toan hoc va khoa hoc may tinh.

Throughout the course you are going to be responsible both for mathematical rigor as
if it were a math course and engineering commonsense because it's an engineering
course. We are going to be doing both. This is the engineering way of understanding
what you do, so you're responsible for being able to do these manipulations. You're
also going to be responsible for understanding the mathematical definition of theta
notion and of its related O notation and omega notation.

Qua khda hoc ban s& chiju trdch nhiém cho ca tinh chinh xac todn hoc nhu thé né la
mot khda hoc toan hoc va kién thdc can ban vé ki thuat bdi vi noé la mot khoa hoc ki
thudt. Chang ta s& lam ca hai. DAy la cach tiép can chuyén mén dé hiéu nhitng gi ban
lam, vi vy ban cé trdch nhiém dé cé thé lam nhitng tha thudt nay. Ban cling phai ¢
nhiém vu hi€u dinh nghia todn hoc cua khai niém theta va khai niém O lién quan cua
no va ki hiéu omega.

If I take a look as n approached infinity, a Theta(n”2) algorithm always beats,



eventually, a Theta(n”~3) algorithm. As n gets bigger, it doesn't matter what these
other terms were if I were describing the absolute precise behavior in terms of a
formula. If I had a Theta(n”~2) algorithm, it would always be faster for sufficiently
large n than a Theta(n”3) algorithm. It wouldn't matter what those low-order terms
were. It wouldn't matter what the leading constant was. This one will always be

faster.

Néu t6i xem nhu n ti€n dén vo6 cung, thuat todn Theta (n~2) luén ludn dao déng, cudi
cung, thuat toan Theta (n~3). Khi n cang I6n han, nhitng s6 hang nay la gi khéng quan
trong néu t6i dang mo ta hanh vi chinh xac tuyét déi theo cong thic. Néu toi céd thuét
toan Theta (n~2), né sé nhanh han khi n da I6n hon thuat todn Theta(n”~3). Nhitng s6
hang b&c thdp nay khéng quan trong. Hang s6 dau la gi cling khéng quan trong. Cai nay
s€ ludn luén nhanh han.

Even if you ran the Theta(n”2) algorithm on a slow computer and the Theta(n”3)
algorithm on a fast computer. The great thing about asymptotic notation is it
satisfies our issue of being able to compare both relative and absolute speed,

because we are able to do this no matter what the computer platform. On different
platforms we may get different constants here, machine-dependent constants for the
actual running time, but if I look at the growth as the size of the input gets larger,

the asymptotics generally won't change. For example, I will just draw that as a
picture. If I have n on this axis and T(n) on this axis.

Cho du ban chay thuat toan Theta(n”2) trén may tinh cham va thuat toan
Theta(n~3) trén may tinh nhanh. Diéu tuyét nhat vé phudng phap tiém cén la no

thda man tiéu chi cla ching ta vé viéc cé thé so sadnh ca van téc tuong ddi va van

tdc tuyét ddi, bdi vi ching ta c6 thé lam diéu nay bat k& nén clia may tinh. Trén
nhirng nén khac nhau, ching ta cé thé nhadn dugc nhitng hdng s6 khac nhau &

day, cac hang s phu thudéc may dg6i vdi thdi gian chay thuc su, nhung néu ching

ta xét su gia tang khi kich thudt cua dau vao ngay cang Idn hon, ndi chung tiém

can s& khdng thay ddi. Chdng han, dé tdi phac hoa diéu d6 dudi dang sd dd. Néu

t6i cd n trén truc nay va T(n) trén truc nay.

This may be, for example, a Theta(n”3) algorithm and this may be a Theta(n”™2)
algorithm. There is always going to be some point n_o where for everything larger
the Theta(n”2) algorithm is going to be cheaper than the Theta(n”3) algorithm not



matter how much advantage you give it at the beginning in terms of the speed of the
computer you are running on. Now, from an engineering point of view, there are
some issues we have to deal with because sometimes it could be that that n_o is so
large that the computers aren't big enough to run the problem. That's why we,
nevertheless, are interested in some of the slower algorithms, because some of the
slower algorithms, even though they may not asymptotically be slower, I mean
asymptotically they will be slower.

DPiéu nay cé thé 13, chdng han, thuét todn Theta (n~3) va day cé 1& 1a thudt toan
Theta(n”~2). Ludn ludn sé& cé mét diém n_0 nao dé ma & d6 moi thr I8n hon thuét todn
Theta(n”~2) s& ré haon thudt todn Theta(n”3) bat k& su thuén Igi ban dau ban cho né
la bao nhiéu theo t6c dd clia mdy tinh ma ban dang chay. Bay gid, tir quan diém ki
thuat, cé mot s6 tiéu chi ma chdng ta phai gidi quyét bdi vi thinh thoang cé thé n_0 qua
I6n dén ndi cdc may tinh khéng dd I6n dé chay b ai todn. Tuy thé&, dé 1a Ii do tai sao
ching ta quan tam dén mot s6 thuat todn chdm hgn, vi moét sé thuat toan cham han,
cho du chidng gan nhu khong chdm han, y téi la gan nhu ching sé cham han.

They may still be faster on reasonable sizes of things. And so we have to both

balance our mathematical understanding with our engineering commonsense in order
to do good programming. So, just having done analysis of algorithms doesn't
automatically make you a good programmer. You also need to learn how to program
and use these tools in practice to understand when they are relevant and when they
are not relevant. There is a saying.

Chlng c6 18 van con nhanh hon trén kich thudt hgp Ii ctia cac thir. Va vi vAy ching ta
phai cdn bang ca kién thirc todn hoc cla ching ta vdi kién thirc nén tang ki thuét cua
chlng ta dé lam cdng viéc 1ap trinh t6t han. Vi vy, chi phan tich cac thuét todn khéng
tu dong lam cho ban trd thanh nha I4p trinh gidi. Ban cling can phai hoc cach dé lap
trinh va dung nhitng cdng cu nay trong thuc t& d& hi€u khi ndo chiing thich dang va khi
nao ching khéng thich dang. Ngudi ta ndi réng.

If you want to be a good program, you just program ever day for two years, you will
be an excellent programmer. If you want to be a world-class programmer, you can
program every day for ten years, or you can program every day for two years and
take an algorithms class. Let's get back to what we were doing, which is analyzing
insertion sort. We are going to look at the worse-case. Which, as we mentioned
before, is when the input is reverse sorted. The biggest element comes first and the
smallest last because now every time you do the insertion you've got to shuffle
everything over.

Néu ban mudn trd thanh moét nha |ap trinh gidi, ban chi can lap trinh thudng xuyén
trong vong hai nam, ban sé& trd thanh mdt nha 14p trinh xuét sdc. Né&u ban mudn tré
thanh mot nha I8p trinh ddng c8p thé gidi, ban cé thé |1ap trinh hang ngay trong khoang
10 ndm, hodc ban cé thé Iap trinh hang ngay trong khoang 2 ndm va hoc qua mét 18p
gidi thuat. Chung ta hdy quay trg lai nhitng gi chidng ta dang lam, d6 la phan tich su
chén truc ti€p. Ching ta sé xét trudng hgp xau nhat. N6, nhu chidng ta da dé cap tu
trudc, la khi dau vao bi sdp x€p ngudc. Nhiing s6 I16n nhat ndam & phia trudc va nhiing
s6 nhd ndm & phia sau vi bay gid mdi Ian ban sip x&p ban phai I& budc trén timng cai.

You can write down the running time by looking at the nesting of loops. What we do

is we sum up. What we assume is that every operation, every elemental operation is
going to take some constant amount of time. But we don't have to worry about what
that constant is because we're going to be doing asymptotic analysis. As I say, the
beautify of the method is that it causes all these things that are real distinctions to

sort of vanish.

Ban c6 thé viét ra thdi gian chay bang cach xét su 16ng nhau cua cac vong lap. Nerng gi
chling ta 1am 13 ching ta cdng lai. Nhitng gi ching ta gia s 1a mdi hoat dong, moi hoat
déng cd ban s& mat mot lugng thdi gian khéng d6i. Nhung ching ta khéng can phai lo
lang vé viéc hdng s6 do bang bao nhiéu vi ching ta sé& lam phén tich tiém can. Nhu toi
noi, su dep dé cla phudng phap la né lam cho tat ca nhitng th nay khac biét thuc su
v3i su sap x&p triét tiéu.



We sort of look at them from 30,000 feet rather than from three millimeters or
something. Each of these operations is going to sort of be a basic operation. One
way to think about this, in terms of counting operations, is counting memory
references. How many times do you actually access some variable? That's another
way of sort of thinking about this model. When we do that, well, we're going to go
through this loop, j is going from 2 to n, and then we're going to add up the work
that we do within the loop. We can sort of write that in math as summation of j
equals 2 to n. And then what is the work that is going on in this loop? Well, the work
that is going on in this loop varies, but in the worst case how many operations are
going on here for each value of j?

Chlng ta phan nao xét ching tr 30 nghin bd con han tir 3 milimet hodc thir gi dé. Moi
hoat ddng nay sé& phan nao & cac hoat ddng cc ban. Mot cach dé€ nghi vé diéu nay,
theo su dém cac hoat dong, dém tham chi€u bd nhd. Ban thuc su truy cap bién nao
dé bao nhién lan? D6 la cach nghi khac vé md hinh nay. Khi chidng ta lam diéu do,
vang, ching ta sé xét ki vong 1ap nay, j chay tlr 2 dén n, va sau dé ching ta sé coéng
thém cdng viéc ma ching ta lam trong vong l&p. Chidng ta cé thé phan nao viét ra
diéu dé trong todn hoc nhu téng cua j bédng 2 dén n. Va sau dé cdng viéc sé tiép tuc
trong vong 13p nay la gi? Vang, cdng viéc ti€p tuc trong vong I&p nay bién déi, nhung
trong trudng hop xdu nhat cé bao nhiéu hoat ddng sé dién ra & day cho mdi gid tri
cua j?

For a given value of j, how much work goes on in this loop? Can somebody tell me?
Asymptotically. It's j times some constant, so it's theta j. So, there is theta j work
going on here because this loop starts out with i being j minus 1, and then it's doing
just a constant amount of stuff for each step of the value of i, and i is running from j
minus one down to zero. So, we can say that is theta j work that is going on. Do
people follow that? B

D6i véi gia tri cho trudc cla j, cé bao nhiéu cong viéc dien ra trong vong lap nay? Ai dé
ndi cho toi biét xem nao? Tiém cén. N6 bdng j nhan mét hang s6 nao do, vi vay né bang
theta j. Vi vay c6 theta j cong viéc dieén ra & day bgi vi vong 13p nay khai dau véi i béng
jtrir 1, va do d6 nod sé lam dding moét lugng cong viéc cho moi budc cua gid tricuai, va i
dang chay tlr j tror 1 xuéng 0. Vi vy, ching ta cé thé ndi dé 1a theta j céng viéc dang
dién ra. Cac ban theo kip khong?

OK. And now we have a formula we can evaluate. What is the evaluation? If I want
to simplify this formula, what is that equal to? Sorry. In the back there. Yeah. OK.
That's just Theta(n”~2), good. Because when you're saying is the sum of consecutive
numbers, you mean what? What's the mathematic term we have for that so we can



communicate? You've got to know these things so you can communicate. It's called
what type of sequence? It's actually a series, but that's OK. What type of series is

this called? Arithmetic series, good. Wow, we've got some sharp people who can
communicate.

Vang. Va ching ta cé céng th'c ma ching ta cé thé udc lugng. Su udc lugng la gi? Néu
t6i mudn daon gidn hda cdng thic ndy, né sé& bang cdi gi? Xin 16i. Nhic lai ndo. Vang.
Pudgc. D6 chi 1a Theta (n~2), tét. Vi khi ban nédi tdng cua cac sé lién tiép, ban mudn ndi
gi? S6 hang todn hoc ma ching ta cé cho cai d6 la gi d&€ ching ta cé thé truyén? Ban
phai biét nhitng thir nay dé€ ban c6 thé truyén. N6 dudc goi la ddy gi? N6 thuc sy 1a mot
chuoi, nhung diéu dé duang. Loai chudi nay dudc goi la gi? Chuoi s6 hoc, tot. Wow,
ching ta c6 mét s6 ngudi nhay bén co thé truyén.

This is an arithmetic series. You're basically summing 1 + 2 + 3 + 4, some constants
in there, but basically it's 1 + 2 + 3+ 4 + 5 + 6 up to n. That's Theta(n”2). If you
don't know this math, there is a chapter in the book, or you could have taken the
prerequisite. Erythematic series. People have this vague recollection. Oh, yeah.

Good. Now, you have to learn these manipulations. We will talk about a bit next

time, but you have to learn your theta manipulations for what works with theta. And
you have to be very careful because theta is a weak notation. A strong notation is
something like Leibniz notation from calculus where the chain rule is just canceling

two things.

DPay 1a chudi sd hoc. Vé cd ban ban cong 1 + 2 + 3 + 4, mdt vai hdng sé & d6, nhung
vecdbannélal + 2+ 3+ 4+ 5+ 61I&n dén n. D6 la Theta(n”2). Néu ban khong
biét toan hoc nay, c6 moét chuong trong sach, hoac cé thé ban da hoc ré6i. Chuoi
Erythematic. Moi nguGi c6 sy hoi tudng mo hd nay. Oh, vang. Tot. Ban phai hoc nhitng
tha thuat nay. Chung ta sé néi vé ching moét it trong lan tgi, nhung ban phai hoc nhitng
tha thudt theta nay cho nhitng gi 1am viéc véi theta. Va ban phai rat can thén vi theta la
mot ki hiéu yéu. M6t ki hiéu manh la cai giéng nhu cac ki hiéu Leibniz tir phép tinh ma &
dd quy tac day chuyén chi hay bo hai th.

It's just fabulous that you can cancel in the chain rule. And Leibniz notation just
expresses that so directly you can manipulate. Theta notation is not like that. If you
think it is like that you are in trouble. You really have to think of what is going on
under the theta notation. And it is more of a descriptive notation than it is a
manipulative notation. There are manipulations you can do with it, but unless you
understand what is really going on under the theta notation you will find yourself in
trouble.

That hoang tudng néu ban nghi ban cé thé triét tiéu theo quy tdc day chuyén. Va ki hiéu
Leibniz chi biéu dién didu d6 dé cho ban cé thé thao tac. Ki hiéu Theta khéng giéng nhu
thé. Néu ban nghi né la nhu thé ban sé gap khdé khan. Ban can phai nghi nhitng gi dang
dién ra theo ki hiéu Theta. Va né 1a mot ki hiéu mé ta hon 1a 1d mot ki hiéu thoa tac. Co
nhirng tha thudt ma ban cé thé thuc hién véi nd, nhung néu ban khéng hi€éu nhitng gi
dang thuc su dién ra trong ki hiéu theta ban sé& tu dua minh vao khé khén.

And next time we will talk a little bit more about theta notation. Is insertion sort
fast? Well, it turns out for small n it is moderately fast. But it is not at all for large n.
So, I am going to give you an algorithm that is faster. It's called merge sort. I
wonder if I should leave insertion sort up. Why not. I am going to write on this later,
so if you are taking notes, leave some space on the left. Here is merge sort of an
array A from 1 up to n.

Va lan téi ching ta sé no6i thém mot it vé ki hiéu theta. Cheén truc ti€p nhanh phai
khéng? Vang, héa ra la d6i v8i n nhd né nhanh vira phai. Nhung néu n Ién thi né
khéng nhanh gi ca. Vi vay, t6i sé cho ban mot thuat todan nhanh haon. N6 dudc goi la
sép xép ki€u tron. Téi tu hoi c6 nén bo phudng phap chén truc tiép hay khéng. Tai
sao khdng. Tdi s& viét vé diéu nay sau, vi vdy néu ban dang chép, hdy dé lai mot
khoang tréng bén trdi. Day la sdp x&p kiéu trén clia mot mang A tir 1 dén n.

And it is basically three steps. If n equals 1 we are done. Sorting one element, it is



already sorted. All right. Recursive algorithm. Otherwise, what we do is we

recursively sort A from 1 up to the ceiling of n over 2. And the array A of the ceiling

of n over 2 plus one up to n. So, we sort two halves of the input. And then, three, we
take those two lists that we have done and we merge them.

Va vé& cd ban n6 gébm ba budc. NEu n bang 1 ching ta hoan thanh. Sap x&p mot yéu té,
nd da dugc sép x€p roi. Dugc roi. Thuat toan dé quy. Ngudc lai, nhitng gi chdng ta lam la
ching ta sap x€p dé quy A tir 1 dén ceiling cta n trén 2. Va mang A cla ceiling n trén 2
cong 1 dén n. Vi vay, chlng ta sap x&p hai nira clia dau vao. Va sau dé, ba, chidng ta 18y
hai list da lam xong va trén chuing lai.

And, to do that, we use a merge subroutine which I will show you. The key
subroutine here is merge, and it works like this. I have two lists. Let's say one of

them is 20. I am doing this in reverse order. I have sorted this like this. And then I
sort another one. I don't know why I do it this order, but anyway. Here is my other
list. I have my two lists that I have sorted. So, this is A[1] to A[|n/2]|] and

A[|n/2]|+1] to A[n] for the way it will be called in this program. And now to merge
these two, what I want to do is produce a sorted list out of both of them.

Va dé lam diéu dd, ching ta dung thu tuc con trén ma tdi sé chi cho ban. Thd tuc con
then chG6t 6 day la trén, va né lam viéc nhu thé nay. Toi c6 hai list. Gid s moét trong s6
ching la 20. T6i s& lam diéu nay theo th( tu ngudc. Toi d& sdp x&p cai nay gidng nhu
thé& nay. Va sau do toi sdp x€p moét cdi khac. Nhung du sao di nifa, toi khéng biét tai sao
toi lam né theo th( ty nay. Day la list khac cla tbi. Toi cd hai list ma toi d& sdp x€p. Vi
vay day la A[1] dén A[|n/2]] va A[|n/2|+1] d&n A[n] theo cach ma ndé s& dugc goi
trong chuang trinh nay. Va bay gid dé tron hai cai ndy, nhitng gi tdi can Iam Ia tao ra
mot list dudc s&p x€p ngoai ca hai ching.

What I do is first observe where is the smallest element of any two lists that are
already sorted? It's in one of two places, the head of the first list or the head of the
second list. I look at those two elements and say which one is smaller? This one is
smaller. Then what I do is output into my output array the smaller of the two. And I
cross it off. And now where is the next smallest element? And the answer is it's going
to be the head of one of these two lists. Then I cross out this guy and put him here
and circle this one. Now I look at these two guys. This one is smaller so I output that
and circle that one. Now I look at these two guys, output 9. So, every step here is



some fixed number of operations that is independent of the size of the arrays at each
step.

Nhitng gi t6i lam la dau tién quan sat yéu t6 nho nhat trong bat ki hai list d& dugc phan
loai rdi nam & dau? N6 & mot trong hai noi nay, & dau list thr nhat hodc dau list thr hai.
T6i nhin hai yéu t6 dé va ndi cdi nao nhé hon? Cai nay nhé hon. Sau dé nhirng gi t6i lam
la xuat vao trong mang dau ra cua tbéi cai nho han trong hai cdi. Va toi x6a nd. Va bay
giG s6 nho nhat ti€p theo & dau? Va cau tra IGi la nd sé d dau cua mot trong hai list nay.
Sau dé tdi x6a thdng nay va dat né & day va khoanh tron cdi nay. Bay gid tdi xét hai
thdng nay. Cai nay nho han vi vay toi xudt cai dé va khoanh tron cai d6. Bay gid toi xét
hai thdng nay, xudt 9. Vi vdy mdi budc & day 1a mot sd lugng céc hoat ddong ¢ dinh
khong phu thudc vao kich thudt ctia mang tai mdi budc.

Each individual step is just me looking at two elements and picking out the smallest

and advancing some pointers into the array so that I know where the current head of
that list is. And so, therefore, the time is order n on n total elements. The time to
actually go through this and merge two lists is order n. We sometimes call this linear
time because it's not quadratic or whatever. It is proportional to n, proportional to

the input size. It's linear time. I go through and just do this simple operation, just
working up these lists, and in the end I have done essentially n operations, order n
operations each of which cost constant time.

Mdi budc riéng biét chi 1a t6i nhin hai y&u t6 va chon ra cai nho nhat va ddy mot s6
con tro vao trong mang dé cho tbi biét dugc dau hién tai cua list d6 dang & dau. Va vi
vay, do do, thdi gian |a bac n trén n yéu t6. Thdi gian d€ hoan thanh cdi nay va tron
hai list la bac n. Do6i khi ching ta goi cai nay la thdi gian tuyén tinh vi né khong phai la
bac hai hodc bat c& th&r gi khac. Né ti Ié véi n, ti Ié véi kich thudt dau vao. N6 la thdi
gian tuyén tinh. N6 Iuét qua va chi lam hoat doéng don gidn nay, chi ti€n dan trén
nhifng list nay, va cudi cung vé cd ban téi da hoan thanh n hoat déng, hoat déng th n
mdi cai trong chiing mat mot khoang thdi gian khéng déi.

That's a total of order n time. Everybody with me? OK. So, this is a recursive

program. We can actually now write what is called a recurrence for this program. The
way we do that is say let's let the time to sort n elements to be T(n). Then how long
does it take to do step one? That's just constant time. We just check to seeifnis 1,

and if it is we return. That's independent of the size of anything that we are doing. It
just takes a certain number of machine instructions on whatever machine and we

say it is constant time. We call that theta one. This is actually a little bit of an abuse

if you get into it.

D6 1a téng cua thdi gian bac n. Moi ngudi c6 dong y khéng? Vang. Vi vy, day la mot
chuang trinh dé quy. Bay gid ching ta thuc su cé thé viét ra nhitng gi dudc goi la dé
quy cho chuong trinh nay. Cach ma chidng ta lam diéu dd la gia s thdi gian dé sdp xép
n yéu td la T(n). VAy mé&t bao lau dé& lam budc 1? D6 chi 1a mdt thdi gian khdng déi.
Chung ta chi kiém tra xem n cé baéng 1 hay khdéng, va néu né béng 1 ching ta quay lai.
biéu do khéng phu thudc vao kich thudt ctia bat cf th&r gi ma ching ta dang lam. NG chi
ldy mo6t s6 chuadng trinh mdy nao dé trén may nao dé va chung ta ndéi né la thai gian
khéng ddi. Ching ta goi cai dé la theta mot. DAy thuc su la mét it lam dung néu ban
dinh vao noé.

And the reason is because typically in order to say it you need to say what it is
growing with. Nevertheless, we use this as an abuse of the notation just to mean it is
a constant. So, that's an abuse just so people know. But it simplifies things if I can
just write theta one. And it basically means the same thing. Now we recursively sort
these two things. How can I describe that? The time to do this, I can describe
recursively as T of ceiling of n over 2 plus T of n minus ceiling of n over 2. That is
actually kind of messy, so what we will do is just be sloppy and write 2T(n/2). So,

this is just us being sloppy.

Va li do 1a béi vi théng thudng d& ndi né ban cén ndi nhitng gi né dang tédng cung. Tuy
thé&, ching ta dung cai nay nhu mdt su lam dung cla ki hiéu chi d&€ néi né |a hdng sé. Vi



vay d6 1a su lam dung chi d€ ngudi ta biét. Nhung nd don gian hda su viéc néu tdi chi
viét theta mot. Va vé cd ban nd ndi vé cung mot thir. Bay gid ching ta sap x€p dé quy
hai cai nay. T6i cé thé mo ta diéu dd nhu thé nao? Thdi gian dé€ lam diéu nay, toi cé thé
mo tad dé quy la T cla ceiling n trén 2 cong T clda n tru ceiling cda n trén 2. Bé thuc sy
la phan nao su trén, vi vay nhitng gi ching ta sé lam la tuy tién va viét 2T(n/2). Diéu
nay chi la su tuy tién cua chung ta.

And we will see on Friday in recitation that it is OK to be sloppy. That's the great
thing about algorithms. As long as you are rigorous and precise, you can be as
sloppy as you want. [LAUGHTER] This is sloppy because I didn't worry about what

was going on, because it turns out it doesn't make any difference. And we are going

to actually see that that is the case. And, finally, I have to merge the two sorted lists
which have a total of n elements. And we just analyze that using the merge
subroutine. And that takes us to theta n time.

Va vao th 6 ching ta sé& thdy trong phan tra I8i miéng rédng nd la dang dé tuy tién. D6
la th( tuyét vai vé gidi thuat. Mién 1a ban nghiém khé&c va chinh xac, ban cé thé tuy tién
nhu ban mudn. Diéu nay tuy tién bdi vi tdi khéng lo 1&dng vé nhitng gi xay ra, vi héa ra
la né khoéng tao ra su khac biét. Va chung ta sé thuc su thay diéu dé dung. Va, cudi
cling, téi phai tron hai list da dudc sdp xép c6 téng cdng n yéu td. Va chidng ta chi phén
tich cai d6 dung thu tuc con tron. Va diéu dé lam ching ta mat thai gian theta n.

That allows us now to write a recurrence for the performance of merge sort. Which is
to say that T of n is equal to theta 1 if n equals 1 and 2T of n over 2 plus theta of n if
n is bigger than 1. Because either I am doing step one or I am doing all steps one,
two and three. Here I am doing step one and I return and I am done. Or else I am
doing step one, I don't return, and then I also do steps two and three. So, I add

those together. I could say theta n plus theta 1, but theta n plus theta 1 is just theta
n because theta 1 is a lower order term than theta n and I can throw it away. It is
either theta 1 or it is 2T of n over 2 plus theta n. Now, typically we won't be writing
this.

Bay gid diéu dd cho phép ching ta viét hdi quy dé thuc hién sdp x&p tron. No ndi réng
Tn bdng Theta 1 n€u n bang 1 va 2T n trén 2 cdng Theta n néu n I8n han 1. BG&i vi hodc
la téi s& 1am budc 1 hodc 13 tdi s& lam tat ca cac budc 1, 2 va 3. O day tdi sé lam budc
1 va t6i quay lai va téi hoan thanh. Hodc néu khong toi sé lam budc 1, téi khong trd lai,
va sau dé t6i cling lam budc hai va ba. Vi vay, t6i cong nhitng cai nay va@i nhau. To6i cé
thé ndi Theta n cdng theta 1, nhung theta n cdng theta 1 cling chi |a theta n vi theta 1
la s8 hang bac nhé hon theta n va tdi cé thé bé qua nd. N6 hodc bang theta 1 hodc
bang 2T n trén 2 cdng theta n. Bay giG, thdng thudng chidng ta sé khoéng viét cai nay.

Usually we omit this. If it makes no difference to the solution of the recurrence, we
will usually omit constant base cases. In algorithms, it's not true generally in
mathematics, but in algorithms if you are running something on a constant size input
it takes constant time always. So, we don't worry about what this value is. And it
turns out it has no real impact on the asymptotic solution of the recurrence.

Thong thudng chidng ta bo qua nd. Néu nd khéng tao ra su khac biét cho nghiém hoi
quy, ching ta s& thudng bd qua nhiing trudng hdp nén khdng ddi. Trong giai thuét,
noéi chung ndé khéng giéng chinh xac nhu trong toan hoc, nhung trong giai thuat néu
ban chay th( gi d6 trén dau vao kich thudt khéng ddi né luén ludn mat mot khoang
thdi gian khdng déi. Vi vy ching ta khdng phai lo 1dng vé viéc gid tri nay bang bao
nhiéu. Va hda ra la né thuc su khong anh hudng dén nghiém dé quy tiém can.



How do we solve a recurrence like this? I now have T of n expressed in terms of T of

n over 2. That's in the book and it is also in Lecture 2. We are going to do Lecture 2

to solve that, but in the meantime what I am going to do is give you a visual way of
understanding what this costs, which is one of the techniques we will elaborate on
next time. It is called a recursion tree technique. And I will use it for the actual
recurrence that is almost the same 2T(n/2), but I am going to actually explicitly,
because I want you to see where it occurs, plus some constant times n where c is a
constant greater than zero. So, we are going to look at this recurrence with a base
case of order one.

Cach ching ta gidi mét hoi quy gidng nhu thé nay nhu thé nao? Bay giG toi c6 Tn dugc
biéu dién theo T n trén 2. Pidu dé & trong sach va né cling & trong chuong 2. Ching ta
s& hoc chuong 2 dé giai cai do, nhung vao lic d6 nhitng gi téi s& lam la cho ban moét
phuong phap truc quan dé hi€u cai nay quan trong nhu thé nao, né 1a mét trong nhitng
ki thuat ma ching ta sé ndéi chi tiét trong Ian téi. N6 dugc goi la ki thuat ki thuat cay dé
quy. Va téi sé dung né cho dé quy thuc gan nhu giéng 2T(n/2), nhung tdi s& dién dat
that su rd rang, bdi vi téi mubn ban thdy nd xudt hién & dau, cdng hdng s6 nao do
nhén n & day c la hang s6 16n hon 0. Vi vay, ching ta s& xét dé quy nay vdi trudng
hgp cd ban bac 1.

I am just making the constant in here, the upper bound on the constant be explicit
rather than implicit. And the way you do a recursion tree is the following. You start
out by writing down the left-hand side of the recurrence. And then what you do is
you say well, that is equal to, and now let's write it as a tree. I do c of n work plus
now I am going to have to do work on each of my two children.

T6i s& chi tao ra mdt hang s6 & day, rang budc I6n hon trén hdng s6 |a rd rang hon 1a
ngdm ngam. Va céch ban lam cdy dé quy |a nhu sau. Ban bat ddu béng céch viét ra &
vé€ trai clia hoi quy. Va sau dé nhitng gi ban lam la ban néi, a, cai dé tueng ducng, va
bay gid hdy viét né nhu mot cay. T6i lam cn cong viéc cong bay gid toi sé phai lam
cong viéc trén mdi hai dra con cua toi.

T of n over 2 and T of n over 2. If I sum up what is in here, I get this because that is
what the recurrence says, T(n)=2T(n/2)+cn. I have 2T(n/2)+cn. Then I do it again. I
have cn here. I now have here cn/2. And here is cn/2. And each of these now has a
T(n/4). And these each have a T(n/4). And this has a T(n/4). And I keep doing that,

the dangerous dot, dot, dots. And, if I keep doing that, I end up with it looking like

this.

Tntrén 2 vaTn trén 2. Néu téi cdng nhitng gi & day, téi nhan dudc cai nay vi do la
nhing gi héi guy néi, T(n)=2T(n/2)+cn. T6i c6 2T(n/2)+cn. Sau dé téi lam lai diéu do
mot lan nira. T6i c6 cn ¢ day. Bay giG téi cd cn/2 & day. Va bay gid moi cai nay co
T(n/4). Va moi cai nay cé T(n/4). Va cdi nay cé T(n/4). Va toi ti€p tuc lam diéu do,
ch&m nguy hiém, chdm, chdm. Va, néu tdi ti€p tuc lam diéu dd, toéi sé két thic vdi két
qua giong nhu thé nay.

And I keep going down until I get to a leaf. And a leaf, I have essentially a T(1). That

is T(1). And so the first question I ask here is, what is the height of this tree? Yeah.

It's log n. It's actually very close to exactly log n because I am starting out at the top
with n and then I go to n/2 and n/4 and all the way down until I get to 1. The

number of halvings of n until I get to 1 is log n so the height here is log n. It's OK if

it is constant times log n. It doesn't matter. How many leaves are in this tree, by the
way?
Va toi tiép tuc di xudng cho dén khi toi dén moét 1a. Va mot 134, vé cd ban t6i cé T(1). bo
1& T(1). Va vi vay cdu hoi dau tién t6i dat ra & day 13, chiéu cao cla cdy nay bang bao
nhiéu? Vang. N6 bang logn. N6 thuc su rat gan vdi logn bdi vi toi khgi dau tai ngon vdi n
va sau doé t6i di dén n/2 va n/4 va tat ca dudng di xuéng cho dén khi t6i gap 1. S6 phan
nra cua n cho dén khi toi gap 1 la log n vi vay & day do cao la log n. N6 ddng néu né la
hang s6 nhan log n. Khdng sao ca. Tién thé, cé bao nhiéu 14 trong cdy nay?

How many leaves does this tree have? Yeah. The number of leaves, once again, is



actually pretty close. It's actually n. If you took it all the way down. Let's make some
simplifying assumption. n is a perfect power of 2, so it is an integer power of 2. Then
this is exactly log n to get down to T(1). And then there are exactly n leaves,

because the number of leaves here, the number of nodes at this level is 1, 2, 4, 8.

C6 bao nhiéu la ma cady nay cé? Vang. SO 1a, mét [an nita, thuc su kha gan, N6 thuc su
bang n. Néu ban dem no tat ca dudng di xudng. Ching ta hdy lam mot s gia thuyét
ddn gian. n la Iliy thira hoan toan cua 2, vi vay noé la Iy thtra nguyén cta 2. Do do cai
nay ding bang log n dé di xuéng T(1). Va sau d6 cé ding n 13, vi s6 1& & day, s& nhanh
dmlacnaylal, 2, 4, 8.

And if I go down height h, I have 2 to the h leaves, 2 to the log n, that is just n. We
are doing math here, right? Now let's figure out how much work, if I look at adding

up everything in this tree I am going to get T(n), so let's add that up. Well, let's add

it up level by level. How much do we have in the first level? Just cn. If I add up the
second level, how much do I have? cn. How about if I add up the third level? cn.

How about if I add up all the leaves? Theta n.

Va néu téi di xudng dd cao h, tdi c6 2 tdi h 14, 2 dén log n, né ding bang n. Ching ta
lam todn & ddy, ding khdng? By gid chung ta hdy tim hiéu xem c6 bao nhiéu céng
viéc, néu tbi xét codng moi thr trong cdy nay toi sé dugc T(n), vi vay ching ta hay cong
cai do. Vang, chung ta hay cong theo tirng mdc. Chung ta cé bao nhiéu cai & mic dau
tién? Dung bdng cn. Néu tbéi cdng muc 2, téi c6 bao nhiéu? Cn. Con néu tdi cdng muc
th(r ba thi sao? Cn. Con néu t6i cong tat ca cac |1d? Theta n.

It is not necessarily cn because the boundary case may have a different constant. It

is actually theta n, but cn all the way here. If I add up the total amount, that is equal
to cn times log n, because that's the height, that is how many cn's I have here, plus
theta n. And this is a higher order term than this, so this goes away, get rid of the
constants, that is equal to theta(n Ig n). And theta(n Ig n) is asymptotically faster

than theta(n~2). So, merge sort, on a large enough input size, is going to beat
insertion sort.

Khéng nhét thiét la cn vi trudng hgp bién c6 mot hdng s6 khac. N6 thuc su bdng
theta n, nhung cn moi dudng & day. Néu t6i cong lugng téng, n6é bang cn nhan log n,
badi vi do la chiéu cao, d6 la bao nhién cn ma t6i cé & day, cong theta n. Va cai nay la
s6 hang bac I6n haon cai nay, vi vdy cé thé cai nay, bd hadng s6, né bang theta (n
Ign). Va theta (n Ig n) tiém can nhanh hon Theta (n~2). Vi vay, sdp x&p kiéu trén,
trén mot kich thuét dadu vao da 1I6n, sé thanh chén truc tiép.



Merge sort is going to be a faster algorithm. Sorry, you guys, I didn't realize you
couldn't see over there. You should speak up if you cannot see. So, this is a faster
algorithm because theta(n Ig n) grows more slowly than theta(n”~2). And merge sort
asymptotically beats insertion sort. Even if you ran insertion sort on a
supercomputer, somebody running on a PC with merge sort for sufficient large input
will clobber them because actually n~2 is way bigger than n log n once you get the n's
to be large. And, in practice, merge sort tends to win here for n bigger than, say,
30 or so. -
Sap xép kiéu tron la moét thuat toan nhanh hon. Xin 16i, cac ban, té6i khong nhan ra ban
khéng thdy cho dd. Ban phai ndi thdng néu ban khdéng thdy. Vi vdy day la thuét toan
nhanh hon bdi vi theta(n Ig n) tdng chdm haon theta(n”~2). Va sap x&p kiéu tron tién
tiém can vai chen truc ti€p. Cho du ban chay chen truc ti€p trén siéu may tinh, ai dé
chay sdp x&p ki€u tron trén may tinh cd nhan vdi ddu vao du I18n s& danh bai hoan toan
chidng bdéi vi thuc s n~2 luén 16n han n log n moét khi ban nhan dugc nhitng n I18n. Va,
trong thuc té, sdp xé&p kiéu tron cé khuynh hudng thdng & day dgi véi n 16n hon, gia s,
30 hoac v.v...

If you have a very small input like 30 elements, insertion sort is a perfectly decent

sort to use. But merge sort is going to be a lot faster even for something that is only

a few dozen elements. It is going to actually be a faster algorithm. That's sort of the
lessons, OK? Remember that to get your recitation assignments and attend recitation
on Friday. Because we are going to be going through a bunch of the things that I

have left on the table here. And see you next Monday.

Néu ban cé dau vao rat nhé vi du cd 30 yéu td, chen truc ti€p la loai thuat todan dldng
ddn dé€ dung. Nhung sdp x&p kiéu tron s& nhanh hon nhiéu thdm chi d6i véi nhitng
trudng hgp ma chi cé vai ta yéu t6. N6 thuc su la moét thuat toan nhanh han. Bé la cach
sdp x&p bai hoc, ding khdng? H3y nhé nhén bai tdp kiém tra miéng cua ban va tép
trung vao bai ki€m tra miéng vao th( sau. Vi ching ta sé& nghién clru chi tiét nhiéu th(
ma tdi d€ lai trén bang & day. Va hen gdp lai cac ban vao th( hai tuan tdi.



