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oversimplification that is never
realized in practice. Given sufficient
energy, a particle can escape the
confines of any well. The potential
energy for a more realistic situation—
the finite square well—is shown in
Figure 6.15, and essentially is that
depicted in Figure 6.6b before taking
the limit V: <» . A classical particle
with energy E greater than the well
height U can penetrate the gaps at x =
0 and x = L to enter the outer region.
Here it moves freely, but with
reduced speed corresponding to a
diminished kinetic energy E — U.

A classical particle with energy E less
than U is permanently bound to the
region 0 < x < L. Quantum mechanics
asserts, however, that there is some
probability that the particle can be
found outside this region! That is, the
wavefunction generally is nonzero
outside the well, and so the
probability of finding the particle
here also is nonzero. For stationary
states, the wavefunction p(x) is found
from the time-  independent
Schrodinger equation. Outside the
well where U(x) = U, this is

with a2 = 2m(U — E )/h2 a constant.
Because U > E, a2 necessarily is
positive and the independent
solutions to this equation are the real
exponentials e+ax and e—ax. The
positive exponential must be rejected
in region 111 where x > L to keep p(x)
finite as x : <»; likewise, the negative
exponential must be rejected in
region | where x < 0 to keep p(x)
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finite as X : —<». Thus, the exterior
wave takes the form

Figure 6.15 Potential-energy diagram
for a well of finite height U and width
L. The energy E of the particle is less
than U.

The coefficients A and B are
determined by matching this wave
smoothly onto the wavefunction in
the well interior. Specifically, we
require p(x) and its first derivative dp/
dx to be continuous at x = 0 and again
at x = L. This can be done only for
certain values of E, corresponding to
the allowed energies for the bound
particle. For these energies, the
matching conditions specify the entire
wavefunction except for a
multiplicative constant, which then is
determined by normalization. Figure
6.16 shows the wavefunctions and
probability densities that result for the
three  lowest allowed particle
energies. Note that in each case the
waveforms join smoothly at the
boundaries of the potential well.

The fact that p is nonzero at the walls
increases the de Broglie wavelength
in the well (compared with that in the
infinite well), and this in turn lowers
the energy and momentum of the
particle. This observation can be used
to approximate the

Figure 6.16 (a) Wavefunctions for the
lowest three energy states for a
particle in a potential well of finite
height. (b) Probability densities for
the lowest three energy states for a




particle in a potential well of finite
height.

allowed energies for the bound
particle. The wavefunction penetrates
the exterior region on a scale of
length set by the penetration depth S,
given by

(6.21)

Specifically, at a distance S beyond
the well edge, the wave amplitude has
fallen to 1/e of its value at the edge
and approaches zero exponentially in
the exterior region. That is, the
exterior wave is essentially zero
beyond a distance S on either side of
the potential well. If it were truly zero
beyond this distance, the allowed
energies would be those for an
infinite well of length L + 2S
(compare Equation 6.17), or

The allowed energies for a particle
bound to the finite well are given
approximately by Equation 6.22 so
long as S is small compared with L.
But S itself is energy dependent
according to Equation 6.21. Thus,
Equation 6.22 becomes an implicit
relation for E that must be solved
numerically for a given value of n.
The approximation is best for the
lowest-lying states and breaks down
completely as E approaches U, where
S becomes infinite. From this we
infer (correctly) that the number of
bound states is limited by the height
U of our potential well. Particles with
energies E exceeding U are not bound
to the well, that is, they may be found
with comparable probability in the




exterior regions. The case of unbound
states will be taken up in the
following chapter.

EXAMPLE 6.8 A Bound Electron
Estimate the ground-state energy for
an electron confined to a potential
well of width 0.200 nm and height
100 eV.

Solution We solve Equations 6.21
and 6.22 together, using an iterative
procedure. Because we expect E <<
U(= 100 eV), we estimate the decay
length S by first neglecting E to get
Thus, the effective width of the
(infinite) well is L + 2S = 0.239 nm,
for which we calculate the ground-
state energy:

From this Ewe calculate U- E= 93.42
eV and a new decay length

This, in turn, increases the effective
well width to 0.240 nm and lowers
the ground- state energy to E= 6.53
eV. The iterative process is repeated
until the desired accuracy is achieved.
Another iteration gives the same
result to the accuracy reported. This is
in excellent agreement with the exact
value, about 6.52 eV for this case.
Exercise 3 Bound-state waveforms
and allowed energies for the finite
square well also can be found using
purely numerical methods. Go to our
companion Web site
(http://info.brookscole.com/mp3e)




and select QMTools Simulations
Exercise 6.3. The applet shows the
potential energy for an electron
confined to a finite well of width
0.200 nm and height 100 eV. Follow
the on-site instructions to add a
stationary wave and determine the
energy of the ground state. Repeat the
procedure for the first excited state.
Compare the symmetry and the
number of nodes for these two
wavefunctions. Find the highest-lying
bound state for this finite well. Count
nodes to determine which excited
state this is, and thus deduce the total
number of bound states this well
supports.

EXAMPLE 6.9 Energy of a Finite
Well: Exact Treatment

Impose matching conditions on the
interior and exterior wavefunctions
and show how these lead to energy
quantization for the finite square well.

Solution The exterior wavefunctions
are the decaying exponential
functions given by Equation 6.20
with decay constant a = [2m(U — E
)/h2]1/2. The interior wave is an
oscillation with wavenumber k =
(2mE/h2)1/2 having the same form as
that for the infinite well, Equation
6.15; here we write it as

rf/(x) = C sin kx + D cos kx for 0 < x
<L

To join this smoothly onto the
exterior wave, we insist that the
wavefunction and its slope be




continuous at the well edges x = 0
and x = L. At x = 0 the conditions for
smooth joining require

Dividing the second equation by the
first eliminates A, leaving
Ca~D=-~k

In the same way, smooth joining at x
= L requires

Again dividing the second equation
by the first eliminates B. Then
replacing C/D with a/k gives

For a specified well height U and
width L, this last relation can only be
satisfied for special values of E (E is
contained in both k and a). For any
other energies, the waveform will not
match smoothly at the well edges,
leaving a wavefunction that is
physically inadmissable. (Note that
the equation cannot be solved
explicitly for E; rather, solutions must
be obtained using numerical or
graphical methods.)

Exercise 4 Use the result of Example
6.9 to verify that the ground-state
energy for an electron confined to a
square well of width 0.200 nm and
height 100 eV is about 6.52 eV.

6.6 THE QUANTUM
OSCILLATOR

Figure 6.17 A general potential
function U(x). The points labeled a
and c are positions of stable
equilibrium, for which

dU/dx = 0 and d2U/dx2 > 0. Point b




IS a position of unstable equilibrium,
for which

dU/dx = 0 and d2U/dx2 < 0.

As a final example of a potential well
for which exact results can be
obtained, let us examine the problem
of a particle subject to a linear
restoring force F = —KXx. Here x is
the displacement of the particle from
equilibrium (x = 0) and K is the force
constant. The corresponding potential
energy is given by U(X) = jKx2. The
prototype physical system fitting this
description is a mass on a spring, but
the mathematical description actually
applies to any object limited to small
excursions about a point of stable
equilibrium.

Consider the general potential
function sketched in Figure 6.17. The
positions a, b, and c all label
equilibrium points where the force F
= —dU/dx is zero. Further, positions
a and c are examples of stable
equilibria, but b is unstable. The
stability of equilibrium is decided by
examining the forces in the
immediate neighborhood of the
equilibrium point. Just to the left of a,
for example, F = —dU/dx is positive,
that is, the force is directed to the
right; conversely, to the right of a the
force is directed to the left. Therefore,
a particle displaced slightly from
equilibrium at a encounters a force
driving it back to the equilibrium
point  (restoring force). Similar
arguments show that the equi-librium
at c also is stable. On the other hand,
a particle displaced in either direction




from point b experiences a force that
drives it  further away from
equilibrium—an unstable condition.
In general, stable and unstable
equilibria are marked by potential
curves that are concave or convex,
respectively, at the equilibrium point.
To put it another way, the curvature
of U(x) is positive (d2Uldx2 > 0) at a
point of stable equilibrium, and
negative (d2Uldx2 < 0) at a point of
unstable equilibrium.

Near a point of stable equilibrium
such as a (or ¢), U(x) can be fit quite
well by a parabola:
UX)=U()+|k(x—a)2 (6.23)
Of course, the curvature of this
parabola ( = K) must match that of
U(x) at the equilibrium point x = a:
Further, U(a), the potential energy at
equilibrium, may be taken as zero if
we agree to make this our energy
reference, that is, if we subsequently
measure all energies from this level.
In the same spirit, the coordinate
origin may be placed at x = a, in
effect allowing us to set a = 0. With
U(a) = 0 and a = 0, Equation 6.23
becomes the spring potential once
again; in other words, a particle
limited to small excursions about any
stable equilibrium point behaves as if
it were attached to a spring with a
force constant K prescribed by the
curvature of the true potential at
equilibrium. In this way the oscillator
becomes a first approximation to the
vibrations occurring in many real
systems.

The motion of a classical oscillator




with mass m is simple harmonic
vibration at the angular frequency w
= VK/to. If the particle is removed
from equilibrium a distance A and
released, it oscillates between the
points x = — A and x = +A (A is the
amplitude of vibration), with total
energy E = "KA2. By changing the
initial point of release A, the classical
particle can in principle be given any
(nonnegative) energy whatsoever,
including zero.

The quantum oscillator is described
by the potential energy U (x) = \Kx2
= 2mw2x2 in the Schrodinger
equation. After a little rearrangement
we get

as the equation for the stationary
states of the oscillator. The
mathematical technique for solving
this equation is beyond the level of
this text. (The exponential and
trigonometric forms for ~ employed
previously will not work here because
of the presence of x2 in the potential.)
It is instructive, however, to make
some intelligent guesses and verify
their accuracy by direct substitution.
The  ground-state  wavefunction
should possess the  following
attributes:

1. A should be symmetric about
the midpoint of the potential well x =
0.

2. <{J should be nodeless, but
approaching zero for | x| large.

Both expectations are derived from
our experience with the lowest energy
states of the infinite and finite square




wells, which you might want to
review at this time. The symmetry
condition (1) requires ™ to be some
function of x2; further, the function
must have no zeros (other than at
infinity) to meet the nodeless
requirement (2). The simplest choice
fulfilling both demands is the
Gaussian form

(6.26)




EXAMPLE 6.10 Normalizing the
Oscillator Ground State
Wavefunction

Normalize the oscillator ground-state
wavefunction found in the preceding
paragraph.

Solution With pO(x) = COe—
mmx2/2h, the integrated probability
is

\ pO(x) \2 dx = CO | e—mmx /h dx
Evaluation of the integral requires
advanced techniques. We shall be
content here simply to quote the
formula

e—ax2dx=\l—a>0

Limits of Vibration for a Classical
Oscillator

EXAMPLE 6.11

Obtain the limits of vibration for a
classical oscillator having the same
total energy as the quantum oscillator
In its ground state.

Solution The ground-state energy of
the quantum oscillator is EO0 = jhm.
At its limits of vibration x = A, the
classical oscillator has transformed all
this energy into elastic potential
energy of the spring, given by "KA2
= |mm2A2. Therefore,

In our case we identify a with mm/h
and obtain

The classical oscillator vibrates in the
interval given by —A < x < A,
having insufficient energy to exceed
these limits.

Normalization requires this integrated
probability to be 1, leading to

EXAMPLE 6.12 The Quantum




Oscillator in the Nonclassical Region
Calculate the probability that a
guantum oscillator in its ground state
will be found outside the range
permitted for a classical oscillator
with the same energy.

Solution Because the classical
oscillator is confined to the interval
—A < x < A, where A is its
amplitude of vibration, the question is
one of finding the quantum oscillator
outside this interval. From the
previous example we have A =
Vh/mM for a classical oscillator with
energy |h(». The quantum oscillator
with this energy is described by the
wavefunction ipo(x) = Cgexp( —
mMx2/2h), with Co = (mffl/wft)1/4
from Example 6.10. The probability
in question is found by integrating the
probability density 100|2 in the region
beyond the classical limits of
vibration, or | “o |2 dx + | "o |2 dx "A
From the symmetry of “g, the two
integrals contribute equally to P, so

| mw\1/2 £22/hP=21—11e—mwx
/h dx

Changing variables from x to z =
Vmw/h x and using A = Vh/mw
(corresponding to z = 1) leads to
Expressions of this sort are
encountered frequently in probability
studies. With the lower limit of
integration changed to a variable—
say, y—the result for P defines the
complementary error function erfc(y).
Values of the error function may be
found in tables. In this way we obtain
P =erfc(1) = 0.157, or about 16%.




To obtain excited states of the
oscillator, a procedure can be
followed similar to that for the
ground state. The first excited state
should be antisymmetric about the
midpoint of the oscillator well (x = 0)
and display exactly one node. By
virtue of the antisymmetry, this node
must occur at the origin, so that a
suitable trial solution would be i*(x)
= X exp( —ax2). Substituting this
form into Equation 6.25 yields the
same a as before, along with the first
excited-state energy E1 = |hw.

Continuing in this manner, we could
generate ever-higher-lying oscillator
states with their respective energies,
but the procedure rapidly becomes
too laborious to be practical. What is
needed is a systematic approach, such
as that provided by the method of
power series expansion.11 Pursuing
this method would take us too far
afield, but the result for the allowed
oscillator energies is quite simple and
sufficiently important that it be
included here:

The energy-level diagram following
from Equation 6.29 is given in Figure
6.19. Note the uniform spacing of
levels, widely recognized as the
hallmark of the harmonic oscillator
spectrum. The energy difference
between adjacent levels is just AE =
hw. In these results we find the
quantum justification for Planck’s
revolutionary hypothesis concerning
his cavity resonators (see Section




3.2). In deriving his blackbody
radiation formula, Planck assumed
that these resonators (oscillators),
which made up the cavity walls,
could possess only those energies that
were multiples of hf = hw. Although
Planck could not have foreseen the
zero-point energy hw/2, it would
make no difference: His resonators
still would emit or absorb light
energy in the bundles AE = hf
necessary to reproduce the blackbody
spectrum.

nThe method of power series
expansion as applied to the problem
of the quantum oscillator is
developed in any more advanced
guantum mechanics text. See, for
example, E. E. Anderson, Modern
Physics and Quantum Mechanics,
Philadelphia, W. B. Saunders
Company, 1971.

Figure 6.19 Energy-level diagram for
the quantum oscillator. Note that the
levels are equally spaced, with a
separation equal to hw. The ground
state energy is EO.

Figure 6.20 Probability densities for a
few states of the quantum oscillator.
The dashed curves represent the
classical probabilities corresponding
to the same energies.

The probability densities for some of
the oscillator states are plotted in
Figure 6.20. The dashed lines,
representing the classical probability
densities for the same energy, are
provided for comparison (see
Problem 28 for the calculation of




classical probabilities). Note that as n
increases, agreement between the
classical and quantum probabilities
improves, as expected from the
correspondence principle.

EXAMPLE 6.13 Quantization of
Vibrational Energy

The energy of a quantum oscillator is
restricted to be one of the values (n +
2) ho. How can this quantization
apply to the motion of a mass on a
spring, which seemingly can vibrate
with  any amplitude (energy)
whatever?

Solution The discrete values for the
allowed energies of the oscillator
would go unnoticed if the spacing
between adjacent levels were too
small to be detected. At the
macroscopic level, a laboratory mass
m of, say, 0.0100 kg on a spring
having force constant K = 0.100 N/m
(a typical value) would oscillate with
angular frequency o = VK/m = 3.16
rad/s. The corresponding period of
vibration is T = 2-n/o = 1.99 s. In this
case the quantum level spacing is
only

Such small energies are far below
present limits of detection.

At the atomic level, however, much
higher frequencies are commonplace.
Consider the vibrational frequency of
the hydrogen molecule. This behaves
as an oscillator with K = 510.5 N/m
and reduced mass x = 8.37 X 10~28
kg. The angular frequency of
oscillation is therefore




510.5 N/m 8.37 X 10~28 kg = 7.8 X
1014 rad/s

At such frequencies, the quantum of
energy ho is 0.513 eV, which can be
measured easily!

6.8 OBSERVABLES AND
OPERATORS
An observable is any particle

property that can be measured. The
position and momentum of a particle
are observables, as are its kinetic and
potential energies. In  quantum
mechanics, we associate an operator
with each of these observables. Using
this operator, one can calculate the
average value of the corresponding
observable. An operator here refers to
an operation to be performed on
whatever  function follows the
operator. The quantity operated on is
called the operand. In this language a
constant ¢ becomes an operator,
whose meaning is understood by
supplying any function f (x) to obtain
cf(x). Here the operator ¢ means
“multiplication by the constant c.” A
more complicated operator is d/dx,
which, after supplying an operand
f(x), means “take the derivative of
f(x) with respect to x.” Still another
example is (d/dx)2 = (d/dx)(d/dx).
Supplying the operand f(x) gives
(d/dx)2f(x) = (d/dx)(df/dx) = d2f/dx2.
Hence, (d/dx)2 means “take the
second derivative with respect to X,
that is, take the indicated derivative
twice.”

The operator concept is useful in
guantum mechanics because all
expectation  values we  have




encountered so far can be written in
the same general form, namely,

(6.37)

In this expression, Q is the observable
and [ Q ] is the associated operator.
The order of terms in Equation 6.37 is
Important; it indicates that the
operand for [Q] always i1s ¥
Comparing the general form with that
for (p) in Equation 6.36 shows that
the momentum operator is [p] =
(t1/1)(d/dx). Similarly, writing x[¥2 =
¥*x¥ in Equation 6.31 implies that
the operator for position is [x] = X.
From [X] and [p] the operator for any
other observable can be found. For
instance, the operator for x2 is just
[x2] = [x]2 = x2. For that matter, the
operator for potential energy is
simply [U ] = U([x]) = U(x), meaning
that average potential energy is
computed as

Still another example is the Kinetic
energy K. Classically, K is a function
of p: K = p2/2m. Then the kinetic
energy operator is [K] = ([p])2/2m = (
— ti/2m)d2/dx2, and average kinetic
energy is found from

To find the average total energy for a
particle, we sum the average Kinetic
and potential energies to get

Table 6.2 Common Observables and
Associated Operators

The form of this result suggests that
the term in the braces is the operator
for total energy. This operator is
called the Hamiltonian, symbolized
by [H]:

The designation [E ] is reserved for

Ly |




another operator, which arises as
follows: Inspection of Schrodinger’s
equation (Equation 6.10) shows that it
can be written neatly as [H | =
ihd™/dt. Using this in Equation 6.38
gives an equivalent expression for (E)
and leads to the identification of the
energy operator:

Notice that [H] is an operation
involving only the spatial coordinate
X, whereas [E ] depends only on the
time t. That is, [H ] and [E ] really are
two different operators, but they
produce identical results when
applied to any solution of
Schrodinger’s equation. This s
because the LHS of Schrodinger’s
equation is simply [H]?, while the
RHS is none other than [E]®
(compare Equation 6.10)! Table 6.2
summarizes the observables we have
discussed and their associated
operators.

OPTIONAL

Quantum  uncertainty for any
observable Q

QUANTUM UNCERTAINTY AND
THE EIGENVALUE PROPERTY

In Section 6.7 we showed how AX,
the quantum uncertainty in position,
could be found from the expectation
values (x2) and (x). But the argument
given there applies to any observable,
that is, the quantum uncertainty AQ
for any observable Q is calculated as

Again, if AQ = 0, Qis said to be a
sharp observable and all




measurements of Qyield the same
value. More often, however, AQ >0
and repeated measurements reveal a
distribution of values—as in Table
6.1 for the observable x. In such
cases, we say the observable is fuzzy,
suggesting that, prior to actual
measurement, the particle cannot be
said to possess a unique value of Q.

In classical physics all observables
are sharp. The extent to which sharp
observables can Dbe specified in
guantum physics is limited by
uncertainty principles, such as

(6.42)

The uncertainties here are to be
calculated from Equation 6.41.
Equation 6.42 says that no matter
what the state of the particle, the
spread in distributions obtained in
measurements of x and of p will be
inversely related: when one is small,
the other will be large. Alternatively,
if the position of the particle is quite
“fuzzy,” its momentum can be
relatively ‘“sharp,” and vice versa.
The degree to which both may be
simultaneously sharp is limited by the
size of h. The incredibly small value
of h in Sl units is an indication that
quantum ideas are unnecessary at the
macroscopic level.

Despite restrictions imposed by
uncertainty principles, some
observables in quantum physics may
still be sharp. The energy E of all
stationary states is one example. In
the free particle plane waves of
Section 6.2 we have another: The




plane wave with wavenumber Kk,
WK(x, t) = e,(kx~ai)

describes a particle with momentum p
= hk. Evidently, momentum is a sharp
observable for this wavefunction. We
find that the action of the momentum
operator in this instance is especially
simple:

that is, the operation [p] returns the
original function multiplied by a
constant. This is an example of an
eigenvalue problem for the operator
[p]. The wavefunction "k is the
eigenfunction, and the constant, in
this case hk, is the eigenvalue. Notice
that the eigenvalue is just the sharp
value of particle momentum for this
wave. This connection between sharp
observables and eigenvalues is a
general one: For an observable Q to
be sharp, the wavefunction must be
an eigenfunction of the operator for
Q. Further, the sharp value for Q in
this state is the eigenvalue. In this
way the eigenvalue property can
serve as a simple test for sharp
observables, as the following
examples illustrate.

EXAMPLE 6.16 Plane Waves and
Sharp Observables

Use the eigenvalue test to show that
the plane wave "k(x, t) = ei(kx-wt) is
one for which total energy is a sharp
observable. What value does the
energy take in this case?

Solution To decide the issue we
examine the action of the energy
operator [E] on the candidate function
ei(kx-a)tK Since taking a derivative




with respect to t of this function is
equivalent to multiplying the function
by — i«, we have

showing that ei(kx—wt) is an
eigenfunction of the energy operator
[E] and the eigenvalue is tiw. Thus,
energy is a sharp observable and has
the value tiw in this state.

It is instructive to compare this result
with the outcome found by using the
other energy operator, [H]. The
Hamiltonian for a free particle is
simply the Kkinetic energy operator [K
], because the potential energy is zero
in this case. Then

Again, the operation returns the
original function with a multiplier, so
that ei(kx—wt> also is an
eigenfunction of [H]. The eigenvalue
in this case is ti2k2/2m, which also
must be the sharp value of particle
energy. The equivalence with hrn
follows from the dispersion relation
for free particles (see footnote 1).
Exercise 6 Show that total energy is a
sharp observable for any stationary
state.

EXAMPLE 6.17 Sharp Observables
for a Particle in a Box

Are the stationary states of the
infinite square well eigenfunctions of
[p]? of [p]2? If so, what are the
eigenvalues? Discuss the implications
of these results.

Solution The candidate function in
this case is any one of the square well
wave- functions ¥(x, t) = "2/L




sin(nvx/L)e—iEnt/ti. Because the
first derivative gives (d/dx)sin(n”x/L)
= (nv/L)cos(nvx/L), we see at once
that the operator [p] will not return
the original function ¥, and so these
are not eigenfunctions of the
momentum  operator. They are,
however, eigenfunctions of [p]2. In
particular, we have
(d2/dx2)sin(nx/L) = —
(n/L)2sin(nvx/L), so that

The eigenvalue is the multiplier
(nnti/L)2.  Thus, the  squared
momentum  (or  magnitude  of
momentum) is sharp for such states,
and repeated measurements of p2 (or
Ip|) for the state labeled by n will give
identical results equal to (nnti/L)2 (or
nwh/L). By contrast, the momentum
itself is not sharp, meaning that
different values for p will be obtained
In  successive measurements. In
particular, it is the sign or direction of
momentum that is fuzzy, consistent
with the classical notion of a particle
bouncing back and forth between the
walls of the “box.”

SUMMARY

In quantum mechanics, matter waves
(or de Broglie waves) are represented
by a wavefunction ¥(x, t). The
probability that a particle constrained
to move along the x-axis will be
found in an interval dx at time t is
given by [¥[2dx. These probabilities
summed over all values of x must
total 1 (certainty). That is,

This is called the normalization
condition. Furthermore, the




probability that the particle will be
found in any interval a < X < b is
obtained by integrating  the
probability density | ~ |2 over this
interval.

Aside from furnishing probabilities,
the wavefunction can be used to find
the average, or expectation value, of
any dynamical quantity. The average
position of a particle at any time t is
(6.31)

In general, the average value of any
observable Q at time t is

(6.37)

where [Q] is the associated operator.
The operator for position is just [x] =
X, and that for particle momentum is
[p] = (h/i)3/3x.

The wavefunction A must satisfy the
Schrodinger equation,

(6.10)

Separable solutions to this equation,
called stationary states, are ~(x, t) =
p(xX)e—mt, with p(x) a time-
independent wavefunction satisfying
the time- independent Schrodinger
equation

(6.13)

The approach of quantum mechanics
is to solve Equation 6.13 for p and E,
given the potential energy U(x) for
the system. In doing so, we must
require

. that p(x) be continuous

. that p(x) be finite for all Xx,
including x =+TO

. that p(x) be single valued

bl




. that dp/ dx be continuous
wherever U(x) is finite

Explicit solutions to Schrodinger’s
equation can be found for several
potentials of special importance. For
a free particle the stationary states are
the plane waves p(x) = eikx of
wavenumber k and energy E =
h2k2/2m. The particle momentum in
such states is p = hk, but the location
of the particle is completely
unknown. A free particle known to be
In some range AX is described not by
a plane wave, but by a wave packet,
or group, formed from a
superposition of plane waves. The
momentum of such a particle is not
known precisely, but only to some
accuracy Ap that is related to Ax by
the uncertainty principle,

AxAp > 2h

For a particle confined to a one-
dimensional box of length L, the
stationary-state waves are those for
which an integral number of half-
wavelengths can be fit inside, that is,
L = nA/2. In this case the energies are
quantized as

and the wavefunctions within the box
are given by

M(x)=4Lsinjn=1"2,3¢¢¢(6.18)
For the harmonic oscillator the
potential energy function is U(x) =
|ma2x2, and the total particle energy
IS quantized according to the relation
En=+—han=0,1,2,*++ (6.29)
The lowest energy is EO = 2>ha; the
separation between adjacent energy




levels is uniform and equal to ha. The

wavefunction for the oscillator
ground state is

(6.26)

where a = ma/2h and CO is a

normalizing constant. The oscillator
results apply to any system executing
small-amplitude vibrations about a
point of stable equilibrium. The
effective spring constant in the
general case is

with the derivative of the potential
evaluated at the equilibrium point a.
The stationary state waves for any
potential share the following
attributes:

. Their time dependence is e—
iat.

. They vyield probabilities that
are time independent.

. All average values obtained
from stationary states are time
independent.

. The energy in any stationary
state is a sharp observable; that is,
repeated measurements of particle
energy performed on identical
systems always yield the same result,
E = ha. For other observables, such as
position, repeated measurements
usually yield different results. We say
these observables are fuzzy. Their
inherent “fuzziness” is reflected by
the spread in results about the average
value, as measured by the standard
deviation, or uncertainty. The
uncertainty in any observable Q can
be calculated from expectation values




as
(6.41)




