Theo yêu cầu của khách hàng, trong một năm qua, chúng tôi đã dịch qua 16 môn học, 34 cuốn sách, 43 bài báo, 5 sổ tay (chưa tính các tài liệu từ năm 2010 trở về trước) Xem ở đây

Tài liệu này được dịch sang tiếng việt bởi:

Từ bản gốc:

https://drive.google.com/folderview?id=0B4rAPqlxIMRDNkFJeUpfVUtLbk0&usp=sharing

Liên hệ dịch tài liệu :

thanhlam1910_2006@yahoo.com hoặc frbwrthes@gmail.com hoặc số 0168 8557 403 (gặp Lâm)

Tìm hiểu về dịch vụ: http://www.mientayvn.com/dich_tieng_anh_chuyen_nghanh.html

1. Equation	1.Phương trình
In this project we study the interplay of	Trong đề tài này, chúng tôi nghiên
inter and intra channel symmetry	cứu sự tác động lẫn nhau giữa phá vỡ
breaking. We consider the following	đối xứng giữa các kênh và trong một
set of coupled equations	kênh. Chúng ta xét tập hợp các
	phương trình ghép sau
After simple rescaling of physical	Sau khi thay đổi tỷ lệ (chia cho cùng
variables our equations may describe	một số) của các biến vật lý, các
for example a dual-core waveguide	phương trình của chúng ta có thể mô
structure with coupling coefficient $\kappa >$	tả chẳng hạn một cấu trúc ống dẫn
0, which includes some impurities.	sóng lõi kép với hệ số ghép $\kappa > 0$, có
These obstacles are represented by $g(x)$	xét đến một số tạp chất. Những

function and modeled by the spatial	chướng ngại vật này được biểu diễn
modulation of the nonlinearity.	bằng hàm $g(x)$ và được mô hình hóa
,	thông qua sự biến thiên theo không
	gian của độ phi tuyến.
To the first approximation we	Trong gần đúng bậc nhất, chúng tạ
introduced impurities in the form of g	đưa vào các tạp chất dưới dang g (x)
$(x) = \delta (x + 1) + \delta (x - 1)$, expecting to	$=\delta (x + 1) + \delta (x - 1)$, nhằm nghiên
obtain some insight in the mechanism	cứu thấu đáo hơn về cơ chế phá vỡ
of symmetry breaking taking advantage	đối xứng do tính đơn giản về mặt tính
of the numerical simplicity of formulas.	toán của các công thức. Sau đó chúng
Later we intend to use more realistic	ta sẽ sử dụng mô hình thực tế hơn
model	
where the modulated nonlinearity	Trong đó hệ số phi tuyến điều biến
coefficient is subject to the following	(thay đổi) thỏa mãn điều kiên chuẩn
normalization condition	hóa sau đây
	5
The total conserved norm is	Chuẩn bảo toàn toàn phần là
For equations 1 a Lagrangian density	Đối với phương trình 1, mật độ
can be calculated as; and the	Lagrange có dang như sau; và các
corresponding Hamiltonian Stationary	nghiệm tĩnh Hamilton tương ứng với
solutions with real chemical potential µ	thế hóa học thực μ có dạng $\phi(x, t) =$
are sought in the form $\phi(x, t) = e^{-i\mu t u}$	$e-i\mu tu$ (x) và ψ (x, t) = $e-i\mu tv$ (x),
(x) and ψ (x, t) = e-i\mu tv (x), which	chúng ta thu được các phương trình
yields the stationary equations:	tĩnh:
and we can solve it everywhere except	Và chúng ta có thể giải được nó ở
the points $x = \pm 1$ (linear system of	mọi nơi trừ các điểm $x = \pm 1$ (hệ
equations)	phương trình tuyến tính).
New functions corresponding to the	Các hàm mới tương ứng với các
symmetric and antisymmetric solutions	nghiệm đối xứng và phản đối xứng có
can be substituted: $w1 = u + v$ and $w2$	thể được thay thế bằng w $1 = u + v$ và
= u - v. Thus, the system of uncoupled	$w^2 = u - v$. Từ đó, chúng ta thu được
equations can be obtained. We are	hệ phương trình độc lập. Chúng ta chỉ
searching trapped modes only. Hence,	tìm các mode bẫy. Vì thế, $(\mu \pm \kappa) > 0$
$(\mu \pm \kappa) > 0$ and self-confined solution	và nghiệm tự giam cầm đối với $\mu <$
can be found for $\mu < -\kappa$ in the form	–κ có dạng
Returning to original variables u and v	Quay lại các biến u và v ban đầu (sự
(nonlinearity is limited to points $x =$	phi tuyến chỉ giới hạn ở các điểm x =
± 1), the full nonlinear solution can	±1), nghiệm phi tuyến đầy đủ có dạng
found as	
The continuity of wave functions at	Sự liên tục của các hàm sóng tại các
points $x = \pm 1$ imposes relations	điểm x = ± 1 dẫn đến hệ thức.
These equations system can be easily	Hệ phương trình này có thể dễ dàng
simplified	đơn giản hóa thành
These relations allow to eliminate A0,	Những hệ thức này cho phép chúng ta
B0, C0 and D0 in favor of A1, B1, C1	ước tính A0, B0, C0 và D0 để phục

and D1	vụ cho việc tính toán A1, B1, C1 và
	D1
Further, the integration of 7 in	Hơn nữa, việc lấy tích phântrong
infinitesimal vicinities of $x = \pm 1$ yields	các vùng lân cân nhỏ vô cùng của $x =$
expressions for jumps of derivatives at	+1 cho chúng tạ các biểu thức bước
these points Λ (u') $ x=+1 = -2$	nhảy của đạo hàm tại những điểm A
(u v=+1) and $(v') v=+1 = -2$	$(u') v=+1 = -2 (u v=+1)^3 v^3 \Lambda (v')$
(u x-1) and $(v) x-1 = 2$	u = 1 - 2 (u x-1) - 2 (u x-1)
$(V X=\pm 1)$ 5. The substitution of solutions	$ x-\pm 1 = -2$ ($\sqrt{ x-\pm 1 }$). The light in
11 in these relations produces system	
of four cubic equations for amplitudes.	bon phương trình bậc bà đói với biện độ.
The four amplitudes with subscript "0"	Bốn biên đô với chỉ số dưới "0" có
can be substituted by 14 and finally	thể thay bằng 14 và cuối cùng có bốn
there are four cubic equations for	phương trình bậc bạ đối với các biện
amplitudes A1, B1, C1 and D1.	đô A1, B1, C1 và D1.
The system of 4 equations can be	Chúng ta có thể đơn giản hóa hệ 4
simplified by adding $(1)+(3)$ and	phương trình bằng cách công (1) +
(2)+(4) and then by subtracting $(1)-(3)$	(3) và (2) + (4) và sau đó trừ (1) - (3)
and (2)-(4).	và (2) - (4).
2. Special cases	2.Các trường hợp đặc biệt
2.1 Symmetry Breaking in the	2.1 Sư phá vỡ đối xứng trong kênh:
channel: symmetric case	trường hợp đối xứng
Let us assume that there is a full	Chúng tạ giả sử rằng có sự đối xứng
	chung tu giu bu rung co bụ doi xung
symmetry between both components	hoàn toàn giữa hại thành nhân tức là
symmetry between both components, i.e. $u = v$. This can be derived only if	hoàn toàn giữa hai thành phân, tức là $u = v$. Điều pày chỉ có thể suy ra được
symmetry between both components, i.e. $u = v$. This can be derived only if $C_1 = D_1 = 0$. Then the system (17) has	hoàn toàn giữa hai thành phân, tức là u = v. Điều này chỉ có thể suy ra được nấu C1 – D1 – O. Thấ thì hậ (17) có
symmetry between both components, i.e. $u = v$. This can be derived only if C1 = D1 = 0. Then the system (17) has	hoàn toàn giữa hai thành phân, tức là u = v. Điều này chỉ có thể suy ra được nếu C1 = D1 = 0. Thế thì hệ (17) có
symmetry between both components, i.e. $u = v$. This can be derived only if C1 = D1 = 0. Then the system (17) has a reduced form	hoàn toàn giữa hai thành phân, tức là u = v. Điều này chỉ có thể suy ra được nếu C1 = D1 = 0. Thế thì hệ (17) có dạng rút gọn là Dâ là lành các thành chiết (17 là 10)
symmetry between both components, i.e. $u = v$. This can be derived only if C1 = D1 = 0. Then the system (17) has a reduced form These are Eqs. (17 and 18) presented	hoàn toàn giữa hai thành phân, tức là u = v. Điều này chỉ có thể suy ra được nếu C1 = D1 = 0. Thế thì hệ (17) có dạng rút gọn là Đây là những phương trình (17 và 18)
symmetry between both components, i.e. $u = v$. This can be derived only if C1 = D1 = 0. Then the system (17) has a reduced form These are Eqs. (17 and 18) presented by Boris and Dong. The full analysis	hoàn toàn giữa hai thành phân, tức là u = v. Điều này chỉ có thể suy ra được nếu C1 = D1 = 0. Thế thì hệ (17) có dạng rút gọn là Đây là những phương trình (17 và 18) được trình bày bởi Boris và Dong.
symmetry between both components, i.e. $u = v$. This can be derived only if C1 = D1 = 0. Then the system (17) has a reduced form These are Eqs. (17 and 18) presented by Boris and Dong. The full analysis from that paper can be then repeated. In	hoàn toàn giữa hai thành phân, tức là u = v. Điều này chỉ có thể suy ra được nếu C1 = D1 = 0. Thế thì hệ (17) có dạng rút gọn là Đây là những phương trình (17 và 18) được trình bày bởi Boris và Dong. Chúng ta có thể lặp lại phân tích
symmetry between both components, i.e. $u = v$. This can be derived only if C1 = D1 = 0. Then the system (17) has a reduced form These are Eqs. (17 and 18) presented by Boris and Dong. The full analysis from that paper can be then repeated. In particularly, the bifurcation point can	 hoàn toàn giữa hai thành phân, tức là u = v. Điều này chỉ có thể suy ra được nếu C1 = D1 = 0. Thế thì hệ (17) có dạng rút gọn là Đây là những phương trình (17 và 18) được trình bày bởi Boris và Dong. Chúng ta có thể lặp lại phân tích trong bài báo đó. Đặc biệt, điểm tới
symmetry between both components, i.e. $u = v$. This can be derived only if C1 = D1 = 0. Then the system (17) has a reduced form These are Eqs. (17 and 18) presented by Boris and Dong. The full analysis from that paper can be then repeated. In particularly, the bifurcation point can be determined as $exp(\sqrt{2} \mu bif +$	 hoàn toàn giữa hai thành phân, tức là u = v. Điều này chỉ có thể suy ra được nếu C1 = D1 = 0. Thế thì hệ (17) có dạng rút gọn là Đây là những phương trình (17 và 18) được trình bày bởi Boris và Dong. Chúng ta có thể lặp lại phân tích trong bài báo đó. Đặc biệt, điểm tới hạn (điểm phân nhánh) có thể được
symmetry between both components, i.e. $u = v$. This can be derived only if C1 = D1 = 0. Then the system (17) has a reduced form These are Eqs. (17 and 18) presented by Boris and Dong. The full analysis from that paper can be then repeated. In particularly, the bifurcation point can be determined as $exp(\sqrt{2} \mu bif + \kappa)=\sqrt{2}$, i.e. $\mu bif + \kappa = -(\ln 2)2/8 \approx$	hoàn toàn giữa hai thành phân, tức là u = v. Điều này chỉ có thể suy ra được nếu C1 = D1 = 0. Thế thì hệ (17) có dạng rút gọn là Đây là những phương trình (17 và 18) được trình bày bởi Boris và Dong. Chúng ta có thể lặp lại phân tích trong bài báo đó. Đặc biệt, điểm tới hạn (điểm phân nhánh) có thể được xác định dưới dạng $exp(\sqrt{2} \mu bif +$
symmetry between both components, i.e. $u = v$. This can be derived only if C1 = D1 = 0. Then the system (17) has a reduced form These are Eqs. (17 and 18) presented by Boris and Dong. The full analysis from that paper can be then repeated. In particularly, the bifurcation point can be determined as $exp(\sqrt{2} \mu bif + \kappa)=\sqrt{2}$, i.e. $\mu bif +\kappa = -(\ln 2)2/8 \approx$ -0.06. This regime corresponds to full	hoàn toàn giữa hai thành phân, tức là u = v. Điều này chỉ có thể suy ra được nếu C1 = D1 = 0. Thế thì hệ (17) có dạng rút gọn là Đây là những phương trình (17 và 18) được trình bày bởi Boris và Dong. Chúng ta có thể lặp lại phân tích trong bài báo đó. Đặc biệt, điểm tới hạn (điểm phân nhánh) có thể được xác định dưới dạng $\exp(\sqrt{2 \mu bif} + \kappa) = \sqrt{2}$, tức là $\mu bif + \kappa = -(\ln 2)2/8 \approx$
symmetry between both components, i.e. $u = v$. This can be derived only if C1 = D1 = 0. Then the system (17) has a reduced form These are Eqs. (17 and 18) presented by Boris and Dong. The full analysis from that paper can be then repeated. In particularly, the bifurcation point can be determined as $exp(\sqrt{2} \mu bif + \kappa)=\sqrt{2}$, i.e. $\mu bif +\kappa = -(\ln 2)2/8 \approx$ -0.06. This regime corresponds to full symmetry of both modes u and v what	hoàn toàn giữa hai thành phân, tức là u = v. Điều này chỉ có thể suy ra được nếu C1 = D1 = 0. Thế thì hệ (17) có dạng rút gọn là Đây là những phương trình (17 và 18) được trình bày bởi Boris và Dong. Chúng ta có thể lặp lại phân tích trong bài báo đó. Đặc biệt, điểm tới hạn (điểm phân nhánh) có thể được xác định dưới dạng $\exp(\sqrt{2} \mu bif + \kappa) = \sqrt{2}$, tức là $\mu bif + \kappa = -(\ln 2)2/8 \approx$ -0.06. Chế độ này tương ứng với sự
symmetry between both components, i.e. $u = v$. This can be derived only if C1 = D1 = 0. Then the system (17) has a reduced form These are Eqs. (17 and 18) presented by Boris and Dong. The full analysis from that paper can be then repeated. In particularly, the bifurcation point can be determined as $exp(\sqrt{2} \mu bif + \kappa) = \sqrt{2}$, i.e. $\mu bif + \kappa = -(\ln 2)2/8 \approx$ -0.06. This regime corresponds to full symmetry of both modes u and v what means they can be both symmetric	hoàn toàn giữa hai thành phân, tức là u = v. Điều này chỉ có thể suy ra được nếu C1 = D1 = 0. Thế thì hệ (17) có dạng rút gọn là Đây là những phương trình (17 và 18) được trình bày bởi Boris và Dong. Chúng ta có thể lặp lại phân tích trong bài báo đó. Đặc biệt, điểm tới hạn (điểm phân nhánh) có thể được xác định dưới dạng $\exp(\sqrt{2 \mu bif} + \kappa) = \sqrt{2}$, tức là $\mu bif + \kappa = -(\ln 2)2/8 \approx$ -0.06. Chế độ này tương ứng với sự đối xứng hoàn toàn của cả hai mode u
symmetry between both components, i.e. $u = v$. This can be derived only if C1 = D1 = 0. Then the system (17) has a reduced form These are Eqs. (17 and 18) presented by Boris and Dong. The full analysis from that paper can be then repeated. In particularly, the bifurcation point can be determined as $exp(\sqrt{2} \mu bif + \kappa)=\sqrt{2}$, i.e. $\mu bif +\kappa = -(\ln 2)2/8 \approx$ -0.06. This regime corresponds to full symmetry of both modes u and v what means they can be both symmetric (symmetric-symmetric states "S-S"	hoàn toàn giữa hai thành phân, tức là u = v. Điều này chỉ có thể suy ra được nếu C1 = D1 = 0. Thế thì hệ (17) có dạng rút gọn là Đây là những phương trình (17 và 18) được trình bày bởi Boris và Dong. Chúng ta có thể lặp lại phân tích trong bài báo đó. Đặc biệt, điểm tới hạn (điểm phân nhánh) có thể được xác định dưới dạng $\exp(\sqrt{2} \mu bif + \kappa) = \sqrt{2}$, tức là $\mu bif + \kappa = -(\ln 2)2/8 \approx$ -0.06. Chế độ này tương ứng với sự đối xứng hoàn toàn của cả hai mode u và v, có nghĩa là chúng có thể là các
symmetry between both components, i.e. u = v. This can be derived only if C1 = D1 = 0. Then the system (17) has a reduced form These are Eqs. (17 and 18) presented by Boris and Dong. The full analysis from that paper can be then repeated. In particularly, the bifurcation point can be determined as $\exp(\sqrt{2} \mu bif + \kappa) = \sqrt{2}$, i.e. $\mu bif + \kappa = -(\ln 2)2/8 \approx$ -0.06. This regime corresponds to full symmetry of both modes u and v what means they can be both symmetric (symmetric-symmetric states "S-S" [please do not use this notorious	hoàn toàn giữa hai thành phân, tức là u = v. Điều này chỉ có thể suy ra được nếu C1 = D1 = 0. Thế thì hệ (17) có dạng rút gọn là Đây là những phương trình (17 và 18) được trình bày bởi Boris và Dong. Chúng ta có thể lặp lại phân tích trong bài báo đó. Đặc biệt, điểm tới hạn (điểm phân nhánh) có thể được xác định dưới dạng $\exp(\sqrt{2 \mu}bif + \kappa)=\sqrt{2}$, tức là μ bif $+\kappa = -(\ln 2)2/8 \approx$ -0.06. Chế độ này tương ứng với sự đối xứng hoàn toàn của cả hai mode u và v, có nghĩa là chúng có thể là các trạng thái đối xứng –đối xứng "S-S"
symmetry between both components, i.e. $u = v$. This can be derived only if C1 = D1 = 0. Then the system (17) has a reduced form These are Eqs. (17 and 18) presented by Boris and Dong. The full analysis from that paper can be then repeated. In particularly, the bifurcation point can be determined as $exp (\sqrt{2} \mu bif + \kappa) = \sqrt{2}$, i.e. $\mu bif + \kappa = -(\ln 2)2/8 \approx$ -0.06. This regime corresponds to full symmetry of both modes u and v what means they can be both symmetric (symmetric-symmetric states "S-S" [please do not use this notorious acronym; if you need it, you can	hoàn toàn giữa hai thành phân, tức là u = v. Điều này chỉ có thể suy ra được nếu C1 = D1 = 0. Thế thì hệ (17) có dạng rút gọn là Đây là những phương trình (17 và 18) được trình bày bởi Boris và Dong. Chúng ta có thể lặp lại phân tích trong bài báo đó. Đặc biệt, điểm tới hạn (điểm phân nhánh) có thể được xác định dưới dạng $\exp(\sqrt{2} \mu bif + \kappa) = \sqrt{2}$, tức là $\mu bif + \kappa = -(\ln 2)2/8 \approx$ -0.06. Chế độ này tương ứng với sự đối xứng hoàn toàn của cả hai mode u và v, có nghĩa là chúng có thể là các trạng thái đối xứng –đối xứng "S-S" [đừng dùng từ viết tắt phổ biến này;
symmetry between both components, i.e. u = v. This can be derived only if C1 = D1 = 0. Then the system (17) has a reduced form These are Eqs. (17 and 18) presented by Boris and Dong. The full analysis from that paper can be then repeated. In particularly, the bifurcation point can be determined as $\exp(\sqrt{2} \mu bif + \kappa) = \sqrt{2}$, i.e. $\mu bif + \kappa = -(\ln 2)2/8 \approx$ -0.06. This regime corresponds to full symmetry of both modes u and v what means they can be both symmetric (symmetric-symmetric states "S-S" [please do not use this notorious acronym; if you need it, you can replace it by "SY-SY", for instance]),	hoàn toàn giữa hai thành phân, tức là u = v. Điều này chỉ có thể suy ra được nếu C1 = D1 = 0. Thế thì hệ (17) có dạng rút gọn là Đây là những phương trình (17 và 18) được trình bày bởi Boris và Dong. Chúng ta có thể lặp lại phân tích trong bài báo đó. Đặc biệt, điểm tới hạn (điểm phân nhánh) có thể được xác định dưới dạng $\exp(\sqrt{2 \mu bif} + \kappa)=\sqrt{2}$, tức là $\mu bif +\kappa = -(\ln 2)2/8 \approx$ -0.06. Chế độ này tương ứng với sự đối xứng hoàn toàn của cả hai mode u và v, có nghĩa là chúng có thể là các trạng thái đối xứng –đối xứng "S-S" [đừng dùng từ viết tắt phổ biến này; nếu cần, bạn có thể thay thế bằng
symmetry between both components, i.e. u = v. This can be derived only if C1 = D1 = 0. Then the system (17) has a reduced form These are Eqs. (17 and 18) presented by Boris and Dong. The full analysis from that paper can be then repeated. In particularly, the bifurcation point can be determined as $\exp((\sqrt{2} \mu bif + \kappa)=\sqrt{2}$, i.e. $\mu bif +\kappa = -(\ln 2)2/8 \approx$ -0.06. This regime corresponds to full symmetry of both modes u and v what means they can be both symmetric (symmetric-symmetric states "S-S" [please do not use this notorious acronym; if you need it, you can replace it by "SY-SY", for instance]), both antisymmetric (antisymmetric-	hoàn toàn giữa hai thành phân, tức là u = v. Điều này chỉ có thể suy ra được nếu C1 = D1 = 0. Thế thì hệ (17) có dạng rút gọn là Đây là những phương trình (17 và 18) được trình bày bởi Boris và Dong. Chúng ta có thể lặp lại phân tích trong bài báo đó. Đặc biệt, điểm tới hạn (điểm phân nhánh) có thể được xác định dưới dạng $\exp(\sqrt{2} \mu bif + \kappa) = \sqrt{2}$, tức là $\mu bif + \kappa = -(\ln 2)2/8 \approx$ -0.06. Chế độ này tương ứng với sự đối xứng hoàn toàn của cả hai mode u và v, có nghĩa là chúng có thể là các trạng thái đối xứng –đối xứng "S-S" [đừng dùng từ viết tắt phổ biến này; nếu cần, bạn có thể thay thế bằng "SY-SY", chẳng hanl) hoặc các trạng
symmetry between both components, i.e. u = v. This can be derived only if C1 = D1 = 0. Then the system (17) has a reduced form These are Eqs. (17 and 18) presented by Boris and Dong. The full analysis from that paper can be then repeated. In particularly, the bifurcation point can be determined as $\exp(\sqrt{2} \mu bif + \kappa)=\sqrt{2}$, i.e. $\mu bif +\kappa = -(\ln 2)2/8 \approx$ -0.06. This regime corresponds to full symmetry of both modes u and v what means they can be both symmetric (symmetric-symmetric states "S-S" [please do not use this notorious acronym; if you need it, you can replace it by "SY-SY", for instance]), both antisymmetric (antisymmetric- antisymmetric states "AS-AS") or both	hoàn toàn giữa hai thành phân, tức là u = v. Điều này chỉ có thể suy ra được nếu C1 = D1 = 0. Thế thì hệ (17) có dạng rút gọn là Đây là những phương trình (17 và 18) được trình bày bởi Boris và Dong. Chúng ta có thể lặp lại phân tích trong bài báo đó. Đặc biệt, điểm tới hạn (điểm phân nhánh) có thể được xác định dưới dạng $\exp(\sqrt{2 \mu bif} + \kappa)=\sqrt{2}$, tức là µbif $+\kappa = -(\ln 2)2/8 \approx$ -0.06. Chế độ này tương ứng với sự đối xứng hoàn toàn của cả hai mode u và v, có nghĩa là chúng có thể là các trạng thái đối xứng –đối xứng "S-S" [đừng dùng từ viết tắt phổ biến này; nếu cần, bạn có thể thay thế bằng "SY-SY", chẳng hạn]) hoặc các trạng thái phản đối xứng –đối xứng
symmetry between both components, i.e. u = v. This can be derived only if C1 = D1 = 0. Then the system (17) has a reduced form These are Eqs. (17 and 18) presented by Boris and Dong. The full analysis from that paper can be then repeated. In particularly, the bifurcation point can be determined as $\exp(\sqrt{2} \mu bif + \kappa)=\sqrt{2}$, i.e. $\mu bif +\kappa = -(\ln 2)2/8 \approx$ -0.06. This regime corresponds to full symmetry of both modes u and v what means they can be both symmetric (symmetric-symmetric states "S-S" [please do not use this notorious acronym; if you need it, you can replace it by "SY-SY", for instance]), both antisymmetric (antisymmetric- antisymmetric states "AS-AS") or both can also be asymmetric (asymmetric-	hoàn toàn giữa hai thành phân, tức là u = v. Điều này chỉ có thể suy ra được nếu C1 = D1 = 0. Thế thì hệ (17) có dạng rút gọn là Đây là những phương trình (17 và 18) được trình bày bởi Boris và Dong. Chúng ta có thể lặp lại phân tích trong bài báo đó. Đặc biệt, điểm tới hạn (điểm phân nhánh) có thể được xác định dưới dạng $\exp(\sqrt{2 \mu bif} + \kappa)=\sqrt{2}$, tức là $\mu bif +\kappa = -(\ln 2)2/8 \approx$ -0.06. Chế độ này tương ứng với sự đối xứng hoàn toàn của cả hai mode u và v, có nghĩa là chúng có thể là các trạng thái đối xứng –đối xứng "S-S" [đừng dùng từ viết tắt phổ biến này; nếu cần, bạn có thể thay thế bằng "SY-SY", chẳng hạn]) hoặc các trạng thái phản đối xứng-phản đối xứng ("AS-AS") hoặc cả hai có thể là bất
symmetry between both components, i.e. $u = v$. This can be derived only if C1 = D1 = 0. Then the system (17) has a reduced form These are Eqs. (17 and 18) presented by Boris and Dong. The full analysis from that paper can be then repeated. In particularly, the bifurcation point can be determined as $exp (\sqrt{2} \mu bif + \kappa) = \sqrt{2}$, i.e. $\mu bif + \kappa = -(\ln 2)2/8 \approx$ -0.06. This regime corresponds to full symmetry of both modes u and v what means they can be both symmetric (symmetric-symmetric states "S-S" [please do not use this notorious acronym; if you need it, you can replace it by "SY-SY", for instance]), both antisymmetric (antisymmetric- antisymmetric states "AS-AS") or both can also be asymmetric (asymmetric- asymmetric states "A-A")	hoàn toàn giữa hai thành phân, tức là u = v. Điều này chỉ có thể suy ra được nếu C1 = D1 = 0. Thế thì hệ (17) có dạng rút gọn là Đây là những phương trình (17 và 18) được trình bày bởi Boris và Dong. Chúng ta có thể lặp lại phân tích trong bài báo đó. Đặc biệt, điểm tới hạn (điểm phân nhánh) có thể được xác định dưới dạng $\exp(\sqrt{2} \mu bif + \kappa)=\sqrt{2}$, tức là $\mu bif +\kappa = -(\ln 2)2/8 \approx$ -0.06. Chế độ này tương ứng với sự đối xứng hoàn toàn của cả hai mode u và v, có nghĩa là chúng có thể là các trạng thái đối xứng –đối xứng "S-S" [đừng dùng từ viết tắt phổ biến này; nếu cần, bạn có thể thay thế bằng "SY-SY", chẳng hạn]) hoặc các trạng thái phản đối xứng-phản đối xứng ("AS-AS") hoặc cả hai có thể là bất đối xứng (các trạng thái bất đối vứng
symmetry between both components, i.e. $u = v$. This can be derived only if C1 = D1 = 0. Then the system (17) has a reduced form These are Eqs. (17 and 18) presented by Boris and Dong. The full analysis from that paper can be then repeated. In particularly, the bifurcation point can be determined as $exp (\sqrt{2} \mu bif + \kappa) = \sqrt{2}$, i.e. $\mu bif + \kappa = -(\ln 2)2/8 \approx$ -0.06. This regime corresponds to full symmetry of both modes u and v what means they can be both symmetric (symmetric-symmetric states "S-S" [please do not use this notorious acronym; if you need it, you can replace it by "SY-SY", for instance]), both antisymmetric (antisymmetric- antisymmetric states "AS-AS") or both can also be asymmetric (asymmetric- asymmetric states "A-A").	hoàn toàn giữa hai thành phân, tức là u = v. Điều này chỉ có thể suy ra được nếu C1 = D1 = 0. Thế thì hệ (17) có dạng rút gọn là Đây là những phương trình (17 và 18) được trình bày bởi Boris và Dong. Chúng ta có thể lặp lại phân tích trong bài báo đó. Đặc biệt, điểm tới hạn (điểm phân nhánh) có thể được xác định dưới dạng $\exp(\sqrt{2} \mu bif + \kappa)=\sqrt{2}$, tức là $\mu bif +\kappa = -(\ln 2)2/8 \approx$ -0.06. Chế độ này tương ứng với sự đối xứng hoàn toàn của cả hai mode u và v, có nghĩa là chúng có thể là các trạng thái đối xứng –đối xứng "S-S" [đừng dùng từ viết tắt phổ biến này; nếu cần, bạn có thể thay thế bằng "SY-SY", chẳng hạn]) hoặc các trạng thái phản đối xứng-phản đối xứng ("AS-AS") hoặc cả hai có thể là bất đối xứng (các trạng thái bất đối xứng

2.2 Symmetry Breaking in the	2.2 Sư phá vỡ đối xứng trong kênh:
channel: Antisymmetric case	trường hợp phản đối xứng
Analogically, full antisymmetry can be	Tương tự, chúng ta cũng xét trường
considered, i.e. $u = -v$. The case can be	hợp phản đối xứng, tức là $u = -v$.
derived for $A1 = B1 = 0$. Then the	Trường hợp này có thể được phân
system (17) has a reduced form.	tích với $A1 = B1 = 0$. Thế thì, hê (17)
	có dang rút gon.
Following the paper of Boris and	Theo công trình của Boris và Dong.
Dong, the bifurcation point is now	điểm tới han (điểm phân nhánh) lúc
equal to exp ($\sqrt{2}$ lubif $-\kappa$)= $\sqrt{2}$ or	này bằng exp ($\sqrt{2}$ lubif – κ) = $\sqrt{2}$
simply upif $-\kappa \approx -0.06$ For	hoặc đơn giản là uhif $-\kappa \approx -0.06$ Đối
antisymmetric regime there can be	với chế đô phản đối xứng, chúng ta
explored states like symmetric with	cũng cần khảo sát những trang thái
opposite signs (symmetric-(-	giống như đối xứng với dấu ngược lai
symmetric) "S-(-S)"). antisymmetric	(đối xứng-(-đối xứng) "S-(-S)"), phản
with opposite signs (antisymmetric-(-	đối xứng với các dấu ngược lai (phản
antisymmetric) "AS-(AS)") as well as	đối xứng-(-phản đối xứng) "AS-(
asymmetric states with opposite signs	AS)") cũng như các trang thái bất đối
(asymmetric-(-asymmetric) "A-(-A)").	xứng với dấu ngược lại (bất đối xứng
	- (- bất đối xứng) "A - (- A)").
2.3 Symmetry Breaking between	2.3 Sư phá vỡ đối xứng giữa các kênh
channels	• 1 22
We can also consider the case of	Chúng ta cũng xét trường hợp đối
symmetry in the frame of each mode	xứng cho từng mode một cách riêng
separately. In other words, the	biệt. Nói cách khác, các tính toán
calculations presented by Boris can be	được trình bày bởi Boris có thể được
generalized into the regime $u \Box = v$	khái quát hóa thành chế độ u \Box = v
with $A1 = B1$ and $C1 = D1$.	với $A1 = B1$ và $C1 = D1$.
For symmetric states, i.e. for $C1 = D1$	Đối với các trạng thái đối xứng, tức là
= 0 from 17 there is	đối với $C1 = D1 = 0$ từ 17 có
and corresponding amplitude is	Và biên độ tương ứng là
what gives results analogical to Boris	Cho ra kết quả tương tự như Boris.
ones. The same way produces	Cách tương tự cũng tạo ra sự phụ
dependences for antisymmetric states	thuộc đối với các trạng thái phản đối
(A1 = B1 = 0)	x úng (A1 = B1 = 0)
Note, that this is not analogical to Boris	Lưu ý rằng trường hợp này không
case, because there is	giống trường hợp Boris, bởi vì có sự
antisymmetrybetween both components	phản đối xứng giữa hai thành phần
(in Boris's paper that was symmetry,	(trong bài báo của Boris các tác giả
i.e. $u = v$).	xét đối xứng, tức là u=v).
In a case of asymmetric states $(C1 = 0)$	Trong trường hợp các trạng thái bất
and $D1 = 0$) the system 17 can be	đôi xứng $C1 = 0$ and $D1 = 0$), hệ
simplified to	có thể đơn giản hóa thành
what can be rewritten as	Có thể viết lại dưới dạng
Thus, the amplitudes can be	Vì thế, chúng ta có thể suy ra ngay

straightforwardly found	được biên độ qua công thức
To search the bifurcation point between	Để tìm điểm tới hạn giữa trường hợp
asymmetric and symmetric case, i.e.	bất đối xứng và trường hợp đối xứng,
the point where modes u and v become	tức là điểm mà các mode u và v đối
symmetric to each other $(u = v)$ we	xứng với nhau (u=v), chúng ta sẽ giả
should assume that $C1 = D1 > 0$ for	sử ràng C1 = D1 > 0 đối với các trạng
asymmetric states and from second	thái bất đối xứng và từ biểu thức thứ
expression in (25) we find necessary	hai trong (25), chúng ta tìm được điều
states [The analysis of this setting should be completed, as far as it is possible. Will the branches of the asymmetric solutions go backward without turning forward, as shown below for the single	 bất đối xứng. [Việc phân tích trường hợp này cần phải hoàn chỉnh càng nhiều càng tốt. Các nhánh của các nghiệm bất đối xứng có đi ngược lại mà không đi tới như biểu diễn bên dưới đối với hàm
deltafunction?]	delta không ?]
3. Single Dirac delta	3.Hàm delta Dirac đơn
Let us consider a case with reduced	Chúng ta xét trường hợp hàm điều
spatial modulation function, i.e. when g (x) = δ (x). Obviously, we require continuity of wave functions in x = 0, hence, the solution is sought as	bien không gian rút gọn, tức là g (x) = δ (x). Hiển nhiên, hàm sóng phải liên tục tại x=0, vì thế, nghiệm có dạng
[Here and in similar expressions, it is necessary to replace $\sqrt{2 \mu \pm \kappa }$ by $\sqrt{-2}$ $(\mu \pm \kappa)$, to make it clear that we require $\mu \pm \kappa < 0$ for the existence of the solution.] The condition for jump of derivative can be considered analogically like in former chapter, namely Δ (u') $ x=0=-2$ $(u x=0)3$ and Δ (v') $ x=0=-2$ (v x=0)3. That produces system of coupled cubic	[Ở đây và trong các biểu thức tương tự, chúng ta cần thay thế $\sqrt{2 \mu \pm \kappa }$ bằng $\sqrt{-2}$ ($\mu \pm \kappa$), để dễ thấy được rằng chúng ta cần $\mu \pm \kappa < 0$ để nghiệm tồn tại.] Điều kiện bước nhảy của đạo hàm có thể phân tích tương tự như chương trước, cụ thể là Δ (u') x=0 =-2 (u x=0)3 và Δ (v') x=0 = -2 (v x=0)3.
equations	Ta được hệ phương trình bậc ba ghép
These two equation can be easily	Hai phương trình này có thể dễ dàng
simplified by adding and subtracting	đơn giản hóa bằng cách cộng hoặc trừ
(correct only for asymmetric case, i.e.	(chỉ chính xác cho trường hợp bất đối
$A \square = 0$ and $C \square = 0$.	xứng, tức là A $\Box = 0$ và C $\Box = 0$.
Eventually, the amplitudes are given by	Cuối cùng, biên độ có dạng
Asymmetric states can be found only	Chúng ta chỉ tìm được các trạng thái
for C > 0. Thus, the respective	bất đối xứng chỉ khi C > 0. Vì thế
condition for their existence can be	điều kiện tương ứng cho sự tồn tại
written as	của chúng là
When there is no coupling, i.e. $\kappa = 0$,	Khi không có trường, tức là $\kappa = 0$, các
asymmetric states occur for $\mu < 0$, so	trang thái bất đối xứng xuất hiện khi

	0
Fig. 1. A general form of energy can be	tổng quát của năng lượng có thể thu
obtained by means of (6).	được thông qua (6).
While in special cases of symmetric	Trong khi đôi với trường hợp đặc biệt
and antisymmetric states corresponding	của các trạng thái đối xứng và phản
energies are Esym = $-\kappa$ and Eant = κ ,	đối xứng, các năng lượng tương ứng
the final form of the energy can be	là Esym = $-\kappa$ và Eant = κ , dạng năng
found in generally by using 30	lượng cuối cùng có thể suy ra bằng
Figure 1: Norm of degenerated	Hình 1: Chuẩn của trạng thái đối
symmetric state (red line) vs. norm of	xứng suy biến (đường đỏ) và chuẩn
asymmetric one (black line). Solid and	của trang thái không đối xứng (đường
dashed lines denote stable and unstable	đen). Các vạch liền nét và nét đứt lần
states, respectively.	lượt chỉ các trang thái ổn định và
	không ổn đinh.
At the bifurcation point (cf. Figs. 2a	Tai điểm tới han (tham khảo các hình
and 2b), when $\mu = -(5/4) \kappa$, both	2a và 2b), khi $\mu = -(5/4) \kappa$, cả hai
expressions in Eq. (35) tend to the	biểu thức trong Pt.(35 có khuynh
same value 0, which is in agreement	hướng tiến đến cùng giá trị, điều
with Esym = 0 at μ = - (5/4) κ .	này phù hợp với Esym = 0 tại μ = –
Moreover, in the same point energy of	$(5/4)$ κ . Hơn nữa, trong cùng một
antisymmetric state is positive, Eant =	điểm, năng lượng của trạng thái phản
10κ . For the analysis of asymmetric	đôi xứng dương, Eant = 10κ . Đê phân
states, an asymmetry coefficient can be	tích các trạng thái bất đôi xứng, hệ số
defined:	bât đôi xứng được định nghĩa là:
Figure 2: Energy of symmetric (black),	Hình 2: Năng lượng của các trạng
asymmetric (red) and antisymmetric	thái đôi xứng (đen), bất đối xứng (đỏ)
(blue) states as a function of chemical	và phản đối xứng (xanh) theo hàm
potential	của thể hóa học.
It is obvious that for $\mu \in (-54\kappa, -\kappa)$ real	Rõ ràng đối với $\mu \in (-54\kappa, -\kappa)$, phần
part of expression in brackets is 0,	thực của biểu thức trong các dấu
because C amplitude is pure imaginary.	ngoặc bằng không, bởi vì biên độ C
Hence, asymmetry in this range	thuần túy ảo. Do đó, sự bất đối xứng
vanishes, while at $\mu < -(5/4) \kappa$	trong khoảng này không còn, trong
amplitude C is real and $\Theta \square = 0$. Then,	khi tại $\mu < -(5/4)$ κ biên độ C thực và
for real C asymmetry can be obtained	$\Theta \Box = 0$. Thể thì, đối với C thực, độ
as	bất đối xứng có dạng
Obviously, the limit value can be easily	Rõ ràng, giá trị giới hạn có thể dễ
checked $\Theta \mu \rightarrow -\infty \rightarrow 1$ (see Figs.3 and	dàng kiểm tra được $\Theta\mu \rightarrow -\infty \rightarrow 1$
4).	(xem H.3 và 4).
[For the numerical analysis, it is	[Đối với phân tích số, chúng ta cần
essential to replace the ideal delta-	phải thay thế hàm delta lý tưởng bằng
functions by regularized ones. Then, it	hàm chuẩn tắc. Thế thì, chúng ta có
may be expected that the backward-	thể dự đoán rằng nhánh đi về phía sau
going branches of the asymmetric	của nghiệm bất đối xứng sẽ chuyển
solutions will turn forward at some	về trước tại một điểm nào đó, và
point, and the branch will get	nhánh sẽ trở nên ổn định; tính chất

stabilized; a similar effect was reported	tương tự cũng được trình bài trong
in Ref. [2] for the single-component	TLTK[2] đối với mô hình một thành
model.]	phần.]
Figure 3: Asymmetry dependence on	Hình 3: Sự phụ thuộc bất đối xứng
chemical potential. Here and in Fig.4	vào thế hóa học. Ở đây và trong H.4,
solid and dashed lines are designated	đườngg liền nét và các đường nét đứt
for stable and unstable states,	ứng với các trạng thái ổn định và
respectively.	không ổn định.
Figure 4: The same as in Fig.3 as a	Hình 4: Tương tự như trong H.3 theo
function of total norm. Attention: on x	chuẩn toàn phần.
axis is a norm, so these are backwardly	Chú ý: trên trục x là một chuẩn, vì thế
going branches.	có những nhánh di chuyển ngược lại.