

Tài liệu này được dịch sang tiếng việt bởi:

Từ bản gốc:

https://drive.google.com/folderview?id=0B4rAPqlxIMRDNkFJeUpfVUtLbk0&usp=sharing

Liên hệ dịch tài liệu :

<u>thanhlam1910_2006@yahoo.com</u> hoặc <u>frbwrthes@gmail.com</u> hoặc số 0168 8557 403 (gặp Lâm)

Tìm hiểu về dịch vụ: http://www.mientayvn.com/dich tieng anh chuyen nghanh.html

2-SCAN AND EZ-SC	CAN	CÁC PHÉP ĐO Z-SCAN VÀ EZ-
MEASUREMENTS OF OPTIC	CAL	SCAN SỰ PHI TUYẾN QUANG
NONLINEARITIES		HỌC
We describe the application of sin	ngle	Chúng tôi mô tả ứng dụng của các
beam propagation methods, namely Z-		phương pháp lan truyền đơn chùm, cụ
scan and EZ-scan, for	the	thể là Z-scan và EZ-scan để các định
determination of nonlinear refractive		chiết suất phi tuyến trong các vật liệu
indices in materials including	thin	kể cả màng mỏng. Trong những thí
films. In these experiments	the	nghiệm này, hệ số truyền qua mẫu
transmittance of a sample is measured		được đo hoặc qua một khe hữu hạn
either through a finite aperture	(Z-	(Z-scan) hoặc quanh đĩa (EZ-scan)

scan) or around an eclipsing disk (EZ-	đặt ở trường xa khi mẫu di chuyển
scan) placed in the far-field as the	theo hướng lan truyền (z) của chùm
sample is moved along the	hội tụ. Cả hai phương pháp đều được
propagation path (Z) of a focused	dùng để đo hấp thụ phi tuyến để có
beam. Both methods can also be used	thể xác định được cả phần thực và
to separately measure the nonlinear	phần ảo của độ cảm phi tuyến cùng
absorption so that both the real and	với dấu của chúng.
imaginary parts of the nonlinear	C
susceptibility are determined along	
with their signs.	
The sensitivity to induced phase	Đô nhay của đô méo pha cảm ứng
distortion depends on the sensitivity of	phu thuộc vào đô nhay của thiết bi đo
the measuring apparatus to	hê số truyền qua AT. Đối với các
transmittance changes AT. For the 10	laser Nd:YAG tần số 10 Hz dùng
Hz repetition rate Nd:YAG lasers used	trong các thí nghiêm của chúng tôi,
in our experiments, we can detect AT	chúng tôi có thể phát hiên AT ~ 10~3.
~ 10 ~3. This leads to a sensitivity to	Tương ứng với đô nhay đối với sư
optical path length changes of $A/103$	thay đổi quang lô A/103 đối với
for the Z-scan and A/104 for the EZ-	phương pháp Z-scan và A/104 đối với
scan where A is the wavelength. This	phương pháp EZ-scan, trong đó A là
interferometric sensitivity, using a	bước sóng. Đô nhay giao thoa kế này
single beam, allows measurement of	cho phép đo chiết suất phi tuyến
nonlinear refraction in thin films	trong màng mỏng mà không cần dùng
without the need for using a	cấu hình ống dẫn sóng.
waveguiding geometry.	C C
1. Introduction	1.Giới thiệu
We describe the use of the single	Chúng tôi mô tả việc sử dụng các
beam methods, Z-scan1,2 and EZ-	phương pháp đơn chùm, Z-scan và
scan,3 for determining the magnitude	EZ-scan để xác định độ lớn và dấu
and sign of nonlinear refraction of	của chiết suất phi tuyến của ánh sáng
light in a variety of materials. We also	trong nhiều vật liệu. Chúng tôi cũng
describe how these methods can	mô cả cách đo hấp thụ phi tuyến của
separately measure the nonlinear	những phương pháp này. Trước đây
absorption. Previous measurements of	để đo chiết suất phi tuyến người ta
nonlinear refraction have used a	dùng nhiều kỹ thuật khác nhau chẳng
variety of techniques including	hạn như giao thoa kế phi tuyến, trộng
nonlinear interferometry,4,5	bốn sóng suy biến, trộn ba sóng gần
degenerate four-wave mixing,6 nearly-	suy biến, quay ellipse và các phép đo
degenerate three-wave mixing,7	méo chùm. Ba phương pháp đầu tiên,
ellipse rotation8 and beam distortion	cụ thể là giao thoa kế phi tuyến và
measurements.9,10 The first three	trộn sóng là những kỹ thuật nhạy
methods, namely nonlinear	nhưng tất cả đều đòi hỏi những dụng
interferometry and wave mixing axe	cụ tương đối phức tạp. Mặt khác,
notantially consitive techniques but all	nhén đo méo chùm tuy không nhạy

require relatively complex experimental apparatus. Beam distortion measurements, on the other hand, are relatively insensitive and require detailed wave propagation analysis. The techniques reported here are based on the principles of spatial beam distortion but offer simplicity as well as surprisingly high sensitivity. We have demonstrated a sensitivity to nonlinearly induced wavefront distortion of A/103 for Z-scan and A/104 for .EZ-scan using relatively noisy laser systems. The ultimate potential of these techniques should, in principle, be orders-of-magnitude higher.

We introduce the principles of these techniques in Sec. 2 along with a brief de-scription of the data analysis in Sec. 2. More in-depth analysis is given in Ref. (2) for Z-scan and in Ref. (3) for EZ-scan. Analysis of so-called 'thick' nonlinear media. where within nonlinear propagation the material is important, is given in Ref. (11). For many practical cases, the sign and magnitude of nonlinear refraction can be obtained from a simple linear relationship between the observed transmittance changes and the induced phase distortion without need for performing detailed the calculations. In Sec. 4 we present measurements of nonlinear refraction absorption in a varietv and of materials.

2. Z-Scan and EZ-Scan Technique

We first describe the use of these techniques for measuring nonlinear refraction. We then describe their use for measuring nonlinear absorption and finally describe how nonlinear refraction can be measured in the và đòi hỏi phải phân tích chi tiết sự lan truyền sóng. Những kỹ thuật được trình bày ở đây dự trên nguyên tắc méo chùm không gian nhưng đơn giản đồng thời có độ nhạy rất cao. Chúng tôi đã đạt được độ nhạy méo mặt đầu sóng cảm ứng phi tuyến đến A/103 đối với Z-scan và A/104 đối với EZ-scan dùng những hệ thống laser có độ nhiễu tương đối mạnh. Về nguyên tắc, độ nhạy cuối cùng của những kỹ thuật này có thể cao hơn một bậc độ lớn.

Chúng tôi trình bày nguyên tắc của những kỹ thuật này trong Phần 2 cùng với mô tả về phân tích dữ liêu trong phần 2. Để hiểu sâu hơn, đô giả có thể tham khảo phương pháp Z-scan trong (2) và eZ-scan trong (3). Phép phân tích môi trường phi tuyển dày, trong đó sư lan truyền phi tuyền trong vật liệu đóng vai trò quan được đưa ra trong (11). Đối với nhiều trường hợp thực tế, dấu và độ lớn của chiết suất phi tuyến có thể suy ra từ hệ thức biêu diễn mối quan hệ giữa độ thay đối hệ số truyền qua và độ méo pha cảm ứng mà không cần thực hiện những tính toán chi tiết. Trong phần 4, chúng tôi trình bày các phép đo chiết suất phi tuyến và hấp thu phi tuyến trong nhiều loại vật liệu.

2.Kỹ thuật Z-scan và EZ-scan

Trước hết chúng tôi mô tả việc dùng những kỹ thuật này để đo chiết suất phi tuyến. Sau đó chúng tôi mô tả việc dùng chính để đo hấp thụ phi tuyến và cuối cùng mô tả cách đo chiết suất phi tuyến khi có hấp thụ phi

of nonlinear absorption. presence Using a single Gaussian laser beam in a tight focus geometry, as depicted in Fig. 1, we measure the transmittance of a nonlinear medium through a finite aperture (Z- scan) or around an obscuration disk (.EZ-scan), both positioned in the far field, as a function of the sample position Z measured with respect to the focal The plane. following example qualitatively describes how such data (Z-scan or EZ-scan) are related to the nonlinear refraction of the sample. We first describe the Z-scan and then show how the EZ-scan gives a large enhancement of the sensitivity.

Assume, for example, a material with a positive nonlinear refractive index. Starting the scan from a distance far away from the focus (negative Z) the beam irradiance is low and negligible nonlinear refraction occurs; hence, the transmittance remains relatively constant. The transmittance here is normalized to unity as shown in Fig. 2. As the sample is bought closer to focus, the beam irradiance increases leading to self-focusing in the sample. This positive nonlinear refraction moves the focal point closer to the lens leading to a larger divergence in the far field. Thus, the transmittance is reduced. Moving the sample to behind the focus, the self-focusing helps to collimate the beam increasing the transmittance of the aperture. Scanning the sample farther toward the detector returns the normalized transmittance to unity. Thus, the valley followed by peak signal shown in Fig. 2 is indicative of positive nonlinear refraction, while a peak shows followed by valley self-

tuyến. Dùng một chùm laser Gauss trong cấu hình hội tụ mạnh (Hình 1), chúng ta đo hệ số truyền qua qua một môi trường phi tuyến qua một khe hữu hạn (z-scan) hoặc quanh một đĩa che chắn (EZ-scan), cả hai đều nằm trong trường xa, theo vị trí mẫu z được đo đối với mặt phẳng tiêu. Ví dụ sau đây mô tả định lượng mối quan hệ giữa những dữ liệu như thế (Zscan hoặc EZ-scan) với chiết suất phi tuyến của mẫu. Trước hết, chúng tôi mô tả Z-scan và sau đó mô tả cách EZ-scan tăng cường độ nhạy.

Chẳng hạn chúng ta xét vật liệu có chiết suất phi tuyến dương. Bắt đầu dịch chuyển từ vị trí cách xa điểm hội tụ (z âm), cường độ bức xạ thấp và hiện tượng tán sắc phi tuyến không đáng kê; do đó hệ số truyền qua gần như không đối. Hệ số truyền qua ở đây được chuẩn hóa thành một như biêu diên trong H.2. Khi mâu đên gân điểm hội tụ, cường độ bức xạ tăng gây ra (dân đên) sự tự hội tụ trong mâu. Chiết suất phi tuyên dương di chuyên tiêu cự đến gần thấu kính hơn làm cho chùm phân kỳ ở trường xa nhiều hơn. Do đó, hệ số truyền qua giảm. Di chuyển mẫu ra phía sau điểm hội tụ, hiện tượng tự hội tụ giúp chuẩn trực chùm làm tăng hệ số truyền qua khe. Dịch chuyển mẫu ra xa hơn về phía detector làm cho hệ số truyền qua chuẩn hóa chuyển thành một. Do đó, tín hiệu thấp rồi đến cao như H.2 đặc trưng cho hiệu ứng tán săc phi tuyên dương, trong khi tín hiệu cao rồi đến thấp tương ứng với hiệu ứng tự phân kỳ. EZ-scan có thê mô tả theo những thuật ngữ gần như

defocusing.	tương tự nhưng ở đây chúng ta giám
The EZ-scan can be described in	sát thông tin bổ sung của ánh sáng rò
nearly identical terms except we	rỉ qua đĩa mở đục hoặc đĩa nhật thực.
monitor the complementary	Rõ ràng, phần ánh sáng truyền qua
information of what light leaks past	khe trong Z -scan lai hi khóa hởi đĩa
the observation disk or calinging disk	trong EZ sean uì thấ gựa đại và gựa
Cl 1 1 1 1 1 1 1 1	tiong EZ-scan, vi the cục dại và cục
Clearly what is transmitted by the	tieu cua EZ-scan ngược với Z-scan
aperture in a Z-scan is blocked by the	như biêu diễn trong H.3. Một đặc tính
disk in an iSZ-scan, so that peak and	quan trọng nữa được biêu diễn trong
valley are reversed for the EZ-scan as	H.3 là độ nhạy đối với sự méo pha
shown in Fig. 3. The additional	cảm ứng do tự hội tụ có thể tăng đáng
important feature shown in Fig. 3 is	kể trong EZ-scan (tăng 12 lần như
that the sensitivity to induced phase	trong H.3). Như đã nói trong phần
distortion caused by self-lensing can	thực nghiệm, những dữ liệu này được
be significantly larger for the EZ-scan	chọn trong những điều kiện thực
(an experimentally observed factor of	nghiệm giống nhau ngoại trừ khe
~ 12 in Fig. 3). As described in the	được thay thế bằng đĩa. Lưu ý rằng
experimental section, these data were	thang thăng đứng trong Z-scan được
taken under identical experimental	phóng đại lên 10 lần để hiển thị rõ
conditions expect that the aperture was	hơn.
replaced by a disk. Note that the	
vertical scale for the Z-scan is	
expanded by a factor of 10 for clarity.	