

Tài liệu này được dịch sang tiếng việt bởi:

Từ bản gốc:

https://drive.google.com/folderview?id=0B4rAPqlxIMRDNkFJeUpfVUtLbk0&usp=sharing

Liên hệ dịch tài liệu :

<u>thanhlam1910_2006@yahoo.com</u> hoặc <u>frbwrthes@gmail.com</u> hoặc số 0168 8557 403 (gặp Lâm)

Tìm hiểu về dịch vụ: http://www.mientayvn.com/dich_tieng_anh_chuyen_nghanh.html

Modified Z-scan set-up using	Hệ Z-scan hiệu chỉnh dùng
CCD for measurement of	CCD để đo các tham số phi
optical nonlinearity in PLD	tuyến quang học trong màng
carbon thin film	mỏng carbon PLD
A modified Z-scan set-up	Chúng tôi báo cáo hệ Z-scan
utilizing CCD is reported which	hiệu chỉnh dùng CCD có thể
can be used for open as well as	dùng cho cấu hình Z-scan khe
closed aperture configuration in	mở hoặc Z-scan khe đóng trong
a single scan. The technique is	Z-scan đơn. Kỹ thuật này dựa
based on recording the	trên việc ghi nhận chùm laser
transmitted laser beam through	truyền qua mẫu trực tiếp trên

the sample on CCD directly. It has the advantage of using the same recorded image for open as well as closed Z-scan for each 'z' position, thus minimizing the effect due to beam pointing instability and background vibrations.

1. Introduction

In 1989, Sheik-bahae et al. reported the Z-scan technique, for measuring the sign and magnitude of the third-order nonlinear refraction coefficient of materials [1]. Ever since, the Z-scan has been widely used technique for measuring the nonlinear optical properties of materials because of its experimental simplicity and sensitivity compared to that of techniques other involving relatively complex experimental setup [2-4]. In this technique, the sample is translated along the optic axis of a focused Gaussian laser beam. The translation of the sample changes the irradiance within the sample, resulting in inducing the modification of intensity dependent optical The properties. intensity transmitted through the sample is recorded as a function of sample position 'z' with respect to the focal plane. The plot of intensity transmitted as a function of 'z' gives the information about the order of the nonlinearity as well as its sign and magnitude. The open Z-scan aperture (OA)determines nonlinear absorption

CCD. Ưu điểm của nó là dùng cùng ảnh ghi nhận cho Z-scan khe đóng cũng như khe mở đối với mỗi vị trí "z", vì thế giảm thiểu được sự bất ổn định hướng chùm và các dao động nền.

1.Giới thiệu

Năm 1989, Sheik-bahae đã đưa ra kỹ thuật Z-scan, để đo dấu và độ lớn của chiết suất phi tuyến bậc ba của vật liệu [1]. Kế từ đó, Z-scan trở thành một kỹ thuật được sử dụng rộng rãi để đo tính chất quang phi tuyến của vật liệu do tính đơn giản về mặt thực nghiệm và độ nhạy so với những kỹ thuật khác sử dung bố trí thí nghiêm tương đối phức tạp [2-4]. Trong kỹ thuật này, người ta dịch chuyển mẫu doc theo truc quang hoc của chùm laser Gauss điều tiêu. Sư dịch chuyển mẫu làm thay đổi bức xạ trong mẫu, dẫn đến sự thay đổi tính chất quang học theo cường độ. Cường độ truyền qua mẫu được ghi nhận theo vi trí mẫu 'z' đối với măt phẳng tiêu. Đồ thị cường độ truyền qua theo 'z' cho thông tin về bậc phi tuyến cũng như dấu và đô lớn. Z-scan khe mở (OA) xác đinh hê số hấp thu phi tuyến (NLA). Z-scan khe đóng (CA) với kích thước khe thích hợp biểu diễn chiết suất phi tuyến (NLR).

(NLA) coefficient. The closed	
aperture (CA) Z-scan with	
appropriate aperture size	
reflects nonlinear refractive	
index (NLR) coefficient.	
In the present paper, the	Trong bài báo này, photodiode
photodiode in the conventional	trong hê thí nghiêm Z-scan
Z-scan experimental setup was	truyền thống được thay thế
replaced by charge-coupled	nằng camera linh kiên tích điện
device (CCD) camera for the	kép (CCD) để đo cường đô
measurement of transmitted	truyền qua. Phép đo Z-scan
intensity. The Z-scan	dùng CCD được báo cáo trước
measurements using CCD	đâv dựa trên việc (a) trừ chùm
reported earlier were based on	tín hiệu với chùm chuẩn [5].
(a) subtracting the reference	(b) thay thế khe bằng đĩa mờ
beam from signal beam [5], (b)	đục [6] và (c) đo kích thước
replacing aperture with an	chùm [7]. Trong bố trí thí
opaque disk [6] and (c)	nghiệm của chúng tôi, khe
measuring the beam dimension	cứng được thay thế bằng khe
[7]. In the present set-up, the	tổng hợp bằng phần mềm và
hard aperture was replaced by a	suy ra cường độ bằng cách lấy
software aperture and the	tích phân các giá trị thang xám
intensity was obtained by	ånh. Hệ z-scan hiệu chỉnh này
integrating the image gray	dùng CCD có một số hiệu
values. This modified Z-scan	chỉnh so với hệ truyền thống
setup using CCD offers several	dùng photodiode: (a) khoảng
advantages over conventional	động học của detector CCd rất
system using a photodiode: (a)	lớn và kích thước pixel khoảng
the dynamic range of a CCD	vài micro mét, giúp tăng cường
detector is very large and its	độ nhạy so với Z-scan thông
pixel size is in few micrometers,	thường, (b) khe tông hợp thích
which enhances the sensitivity	hợp áp dụng trên ảnh băng
compared to that of the	chương trình Matlab thay vì
conventional Z-scan, (b) a	khe vật lý, làm cho nó không
suitable synthetic aperture was	phụ thuộc vào sự bất ôn định
applied on to the image using	hướng chùm laser, (c) khe cứng
Matlab programming rather	(lô tròn trong Z-scan thông
than the physical aperture,	thường) không khớp với mọi
making it independent of the	hình dạng chùm và vì vậy
beam pointing instability of the	không thể dùng nó cho chùm
laser, (c) a hard aperture	khác ngoài chùm Gauss, trong
(circular pinhole in	khi đó khe tông hợp bằng
conventional Z-scan) does not	chương trình Matlab có thê xác
follow the shape of the beam	định dê dàng đê khớp với biên

and so it cannot be used for other than Gaussian beam. whereas the synthetic aperture employed numerically by the Matlab programming, can be easily defined to match the incident laser beam profile, (d) reduces experiment it the running time, as data was obtained for both, open as well as closed aperture configuration in a single Z-scan and (e) focusing lens in front of the detector is not required. In CA Z-scan measurement, an aperture is used to separate out the contribution of absorptive nonlinearity from the nonlinearity due to refractive index. A closed Z-scan curve having equal magnitude of the height of peak and depth of valley is devoid of contribution of NLA [1]. If the aperture size is not appropriate then the CA curve is not symmetric and the calculated NLR hence coefficient will be incorrect. In CA Z-scan, the setup using photodiode, experiment is to be repeated for various apertures to obtain the optimum aperture size such that the peak and valley of the curve are equal. The CCD camera records the profile of the transmitted beam and so the data for the variant aperture size from the same set of images can be obtained by applying the aperture via software after recording the full Thus the data is images. extracted for both, OA and CA from same set of images and the

dạng chùm laser tới, (d) giảm thời gian tiến hành thí nghiệm, vì dữ liệu đối với cả cấu hình khe mở và khe đóng thu được trong một lần dịch chuyển mẫu duy nhất và (e) không cần thấu kính hội tụ trước detector.

Trong phép đo Z-scan CA, khe được dùng để tách đóng góp của phi tuyến hấp thụ ra khỏi phi tuyến tổng thể do chiết suất. Đường cong Z-scan khe đóng có đô cao peak và đô sâu thung lũng bằng nhau chứng tỏ không có hấp thu phi tuyến [1]. Nếu kích thước khe không thích hợp thì đường cong CA không đối xứng và do đó chiết suất phi tuyến tính được không chính xác. Trong Z-scan khe đóng, hệ dùng photodiode, thí nghiệm được lặp lại đối với các khe khác nhau để thu được kích thước tối ưu sao cho peak và thung lũng của đường cong bằng nhau. Camera CCD ghi nhân biên đô của chùm truyền qua và do đó dữ liệu đối với các kích thước khe khác nhau từ cùng một tập hợp ảnh có thể thu được bằng cách áp dụng khe tổng hợp bằng phần mềm sau khi ghi nhận toàn bộ ảnh. Vì thế, dữ liệu được rút ra đối với cả OA và CA từ cùng tập hợp ảnh và ảnh hưởng của bất kỳ dao động nào trong chùm laser được triệt tiêu tự động và effect of any fluctuations in the laser beam is automatically canceled out and simultaneous recording of the reference beam is not required.

2. Experimental details

To demonstrate the modified Zscan experimental setup, an amorphous carbon thin film was used as a nonlinear medium. The carbon thin film was deposited by the pulsed laser deposition (PLD) technique. The deposition was carried out using a Q-swit- ched Nd:YAG laser (QUANTA SYSTEM HYL-101, 532 nm, 10 Hz) at a base pressure of the order of \sim 10- 5 mbar. The film was deposited for 5 min onto fused silica at a substrate temperature of 750 °C using graphite target. The thickness, L, of the film measured using stylus was profilometer (Veeco Dektak 150) and found to be $\sim 30 \text{ nm}$ which is much less than the Rayleigh length of the He-Ne laser beam and hence fulfills the thin sample approximation for Z-scan technique. The linear absorption coefficient 'a' was calculated from the absorption spectra using the expression $a=(1/L) \ln (I/I0)$, where L is the thickness of the film, I is the transmitted intensity through the carbon thin film and IO is the incident intensity onto it. The linear absorption coefficient of the carbon film at 632.8 nm was found to be 2.74 x 105cm-1. Fig. 1 shows the schematic of the modified Z-scan set-up for

việc ghi nhận đồng thời chùm quy chiếu là không cần thiết.

2. Thực nghiệm

Để minh họa bố trí thí nghiệm z-scan hiêu chỉnh, chúng tôi sử dụng màng mỏng carbon vô đinh hình làm môi trường phi tuyến. Màng mỏng carbon được chế tạo bằng kỹ thuật lắng tụ laser xung (PLD). Quá trình lắng tụ được thực hiện bằng laser Nd:YAG công tắc Q (QUANTA SYSTEM HYL-101, 532 nm, 10 Hz) ở áp suất cơ bản vào bậc ~ 10- 5 mbar. Màng được lắng tụ 5 phút trong silic đioxit nung chảy ở nhiệt độ đế 750 °C dùng bia than chì. Độ dày L của màng được đo bằng stylus profilometer (Veeco Dektak 150) và thu được kết quả ~ 30 nm nhỏ hơn nhiều so với khoảng Rayleigh của chùm laser He-Ne và do đó thỏa mãn gần đúng mẫu mỏng đối với kỹ thuật Z-scan. Tính toán từ phổ hấp thụ dùng biểu thức a=(1/L) ln (I/IO) chúng ta suy ra được hệ số hấp thụ tuyến tính 'a', trong đó L là độ dày màng, I là cường độ truyền qua màng mỏng carbon và I0 là cường độ tới. Chúng ta tìm được hệ số hấp thụ tuyến tính của màng mỏng carbon ở bước sóng 632.8 nm là 2.74 x 105cm-1. H.1 biểu diễn sơ đồ bố trí thí nghiệm Z-scan hiệu chỉnh để đo các hê số NLA và NLR. Laser He-Ne (32 mW, MELLES GRIOT 05-LHP-927,

the measurement of NLA and NLR coefficients. A He-Ne **MELLES** laser (32)mW. GRIOT 05-LHP-927, 632.8 nm) was focused by a convex lens of focal length of 5 cm. The PLD thin film of carbon under investigation was placed after the lens as shown in Fig. 1. The intensity distribution of the transmitted beam was recorded on a CCD detector (PCO PixelFly) kept at a distance of \sim 25 cm from the focusing lens. A neutral density (ND) filter was placed in front of CCD to avoid its saturation. An iris diaphragm of the aperture size 6 mm was placed before the ND filter (20 cm from the focusing lens), as shown in Fig. 1, to suppress the scattered light entering into the CCD. The images of the transmitted beam were recorded by scanning the film 2.0 cm either side of the focal position of the lens. The transmitted intensity through the thin film was obtained by integrating the gray values of the recorded images.

The same images were used to obtain the data for CA Z-scan by applying a suitable synthetic aperture the by Matlab program. The aperture size was varied and the ratio of integrated intensity of the masked image (with the synthetic aperture) to that of the entire image of laser beam (S) after passing through the thin film in the range of was 0.200.60 measured to determine the phase distortion

632.8 nm) được hội tụ bằng môt thấu kính lồi tiêu cư 5 cm. Màng mỏng carbon PLD đang nghiên cứu được đặt sau thấu kính như biểu diễn trong H.1. Phân bố cường đô của chùm truyền qua được ghi nhận trên detector CCD (PCO PixelFly) đăt cách thấu kính hôi tu ~25 cm. Bô loc cường đô trung hòa (ND) được đặt trước CCD để CCD khỏi bi bão hòa. Môt khe iris kích thước 6 mm được đăt trước bộ lọc ND (cách thấu kính hội tụ 20 cm) như biểu diễn trong H.1 để triệt tiêu ánh sáng tán xạ đi vào CCD.

Ánh của chùm truyền qua được nhân bằng cách dịch ghi chuyển mẫu 2.0 cm ở hai phía điểm hôi tu của thấu kính. Cường độ truyền qua màng mỏng suy ra bằng cách lấy tích phân giá tri thang xám của ảnh ghi nhận được. Cũng những ảnh này sẽ được dùng để thu dữ liêu Z-scan khe đóng bằng cách áp dụng khe tổng hợp bằng chương trình Matlab. Kích thước khe được thay đối và tỷ số của cường độ được lấy tích phân của ảnh bi che (với khe tổng hợp) so với toàn bộ ảnh của chùm laser (S) sau khi qua màng mỏng nằm trong khoảng 0.2 đến 0.6 được đo để xác định độ méo pha nhằm thu được giá trị tối ưu của S.

so as to obtain the optimum value of S.

Fig. 1. Schematic diagram of Z-scan setup.

3. **Results and discussion** The structural characterization of the PLD carbon thin film was studied by recording Raman spectrum (LabRam HR 800) using He- Ne laser (632.8 nm) as an excitation source. The Raman spectrum of the PLD carbon thin film is shown in The de-convoluted Fig. 2. spectrum shows five peaks; 1604 cm-1, 1586 cm-1, 1347 cm-1, 1326 cm-1 and 1104 cm-1. The peak at 1586 cm -1 designated as G-band originates from lattice vibrations due to E2g symmetry and corresponds to sp2 bonding [8]. The peak at 1347 cm-1 known as D-band appears due to the presence of structural disorder and corresponds to the breathing modes of A1g symmetry [8]. Depending upon the disorder, the position and width of D band may vary. In the present spectrum, a small peak around 1326 cm-1 appeared as a subband of D band. The Raman peak towards higher frequency at 1604 cm -1 is due to microcrystalline graphite [9]. The origin of peak at 1104 cm-1 is not known [10,11]. The presence of sp2 bonding in the present carbon film furnishes delocalized n-electrons. thus optical exhibiting the nonlinearity.

H.1.Sơ đồ bố trí thí nghiệm Zscan

3.Kết quả và thảo luận

Chúng ta dùng phổ Raman (LabRam HR 800) để nghiên cứu đặc tính cấu trúc của màng mỏng carbon PLD, nguồn kích thích là laser He-Ne (632.8 nm). Phố Raman của màng mỏng carbon được biểu diễn trong H.2. Phổ được lấy nét có 5 peak: 1604 cm-1, 1586 cm-1, 1347 cm-1, 1326 cm-1 and 1104 cm-1. Peak tai 1586 cm -1 do vùng G bắt nguồn từ các dao động mạng do đối xứng E2g và tương ứng với liên kết sp2 [8]. Peak nằm tai 1347 cm-1 theo chúng tôi hiểu là vùng D xuất hiện do sự biến dạng cấu trúc và tương ứng với các mode breathing của đối xứng A1g [8]. Tùy thuộc vào sư biến dạng, vị trí và độ rộng của vùng D có thể thay đổi. Trong phổ đang xét, peak nhỏ quanh 1326 cm-1 đóng vai trò như vùng con của vùng D. Peak Raman hướng về tần số cao ở 1604 cm -1 do vi tinh thể than chì [9]. Chúng ta chưa biết được nguồn gốc của peak ở 1104 cm-1 [10, 11]. Sư hiên diên của liên kết sp2 trong màng mỏng carbon này tạo ra các electron ... bất đinh xứ, vì thế tạo nên tính phi tuyến quang học.

The recorded CCD image of the Anh CCD ghi nhận được của

transmitted beam through the	chùm truyền qua màng mỏng
thin film positioned at 20 mm	cách tiêu điểm 200 mm được
from the focal point is shown in	biểu diễn trong H.3(a) và (b)
Fig. 3(a) and (b) for OA and CA	ứng với cấu hình Z-scan OA và
Z-scan configuration (for	CA (khi S~0.40).
S~0.40) respectively.	
The transmitted intensity for	Cường đô truyền qua của OA
OA was normalized with that of	được chuẩn hóa đối với cường
the far field (beyond the	đô truyền qua ở trường xa
Rayleigh length where	(virot quá khoảng Rayleigh nơi
nonlinear effect does not exist)	không tồn tại hiệu ứng phi
intensity in order to obtain the	tuyến H4 biểu diễn đồ thị
normalized transmittance Fig 4	truyền qua chuẩn hóa theo 'z'
shows the normalized	Dĩr liêu thực nghiêm được
transmittance plot as a function	khớp với Pt (10 và được biểu
of 'z' The experimental data	diễn bằng đường liên nét trong
was fitted to Fa (1) and is	H 4 [12]
shown as solid line in Fig. A	11.7 [12].
[12]	
a = fi 0 a fi /22 /2 b =	Trang dá $a-fil0I afi/22/2 h -$
where, $c = 110Le11/23/2$, $b = 1/z0$, $z0$ is the Payleigh length	110 $III = 1/20$ and $III = 1/20$ and $III = 1/20$
1/20, 20 is the kayleight length,	1/20, 20 là khoảng Kayleigh, 10
to is the intensity of the laser	hà tu là hà số NHA và Laff
beam at the locus, is the NLA	hội tụ,là hệ số NLA và Len
coefficient and Leff is the	là dộ dây mẹu dụng của màng
effective unckness of the carbon film which is given by E_{π} (2)	carbon tuan theo Pt.(2)
$\begin{array}{c} \text{Infit which is given by Eq. (2).} \\ \text{(2)} \end{array}$	
(2)	$\begin{pmatrix} 2 \\ \mathbf{p} \end{pmatrix}$
The OA Z-scan profile shows	Bien dạng Z-scan OA co thung
valley around the focal position	lung quann vị tri nội tụ và doi
and symmetric to either side of	xung o nai phia cua no, cho
it, indicating the reverse	thây màng mông có hiệu ứng
saturation absorption (RSA)	hap thụ bảo hòa ngược (RSA).
effect in the film. The NLA	Hệ số NLA được tính từ Pt.(1)
coefficient was calculated from	và có giá trị bằng 8.22 + 0.91
Eq. (1) and found to be $8.22 +$	cm/W.
0.91 cm/W.	
In order to determine the NLR	Đê xác định hệ số NLR từ các
coefficient from Z-scan images,	anh Z-scan, đóng góp của hập
the contribution of NLA is to be	thụ phi tuyên được loại trừ
subtracted by obtaining the	băng cách tìm ảnh Z-scan đóng
closed Z-scan images at	tại kích thước khe tối ưu sao
optimum aperture size such that	cho đường cong Z-scan CA
the CA Z-scan	

Fig. 2. Raman spectrum of PLD	H.2.Phổ Raman của màng
deposited carbon thin film.	mỏng carbon lắng tụ bằng
Fig. 4. Normalized	phương pháp PLD.
transmittance curve for carbon	H.4. Đường cong truyền qua
thin film for open aperture Z-	chuẩn hóa đối với màng mỏng
scan.	carbon trong Z-scan khe mở.
Fig. 5. CA Z-scan curve for	H.5. Đường cong Z-scan CA
various aperture sizes; S~0.20,	ứng với các kích thước khe
0.25, 0.30, 0.35, 0.40, 0.45,	khác nhau: S~0.20, 0.25, 0.30,
0.50, 0.55, and 0.60.	0.35, 0.40, 0.45, 0.50, 0.55, và
, , , ,	0.60.
curve is symmetric around the	Đối xứng quanh tiêu điểm và
focal point and peak height and	độ cao peak và chiều sâu thung
valley depth are equal. The	lũng bằng nhau. Chúng tôi thu
normalized transmittance of CA	được đường cong Z-scan CA
Z-scan was obtained for $S \sim 0.20$	truyền qua chuẩn hóa ứng với
to 0.60 in a step of 0.05. CA	S~ 0.20 đến 0.60 với bước
transmission curves for various	0.05. Các đường cong truyền
value of S are plotted in Fig. 5.	qua CA ứng với các giá trị S
The symmetry of CA curve was	khác nhau được biểu diễn trong
estimated by the parameter	H.5. Sự đối xứng của đường
A/pv = A(peak intensity)-	cong CA được ước lượng bằng
A(valley intensity), where	tham số A/pv = A(cường độ
A(peak intensity) and A(valley	peak)-A(cường độ thung lũng),
intensity) are defined by A(peak	trong đó A(cường độ peak) và
intensity) = peak intensity -1	A(cường độ thung lũng) được
A(valley intensity) = $1 - valley$	định nghĩa qua công thức
intensity	A(cường độ peak) = cường độ
	peak -1 A(cường độ thung
	$ \tilde{u}ng) = 1 - cường độ thung$
	lũng.
The plot for AIpv as a function	Đô thịtheo S được biêu diễn
of S is shown in Fig. 6. The	trong H.6.
Fig. 6. Alpv for CA	H.6đối với đường cong
transmission curve as a function	CA theo S.
of S.	2
minimum value of AIpv in the	Giá trị cực tiêu củatrong
CA transmission curve is at S~	đường cong truyên qua CA
0.40, corresponds to best	năm tại S~ 0.40, tương ứng với
symmetry. Hence $S \sim 0.40$ is the	tính đôi xứng tốt nhất. Vì thê,
optimum aperture size for the	$S \sim 0.40$ là kích thước khe tôi
determination of the coefficient	ưu để xác định chiết suất phi
of nonlinear refraction.	tuyên.
Fig. 7 shows the normalized	H.7 biêu diên đô thi truyên qua

transmittance plot for CA Z- scan experiment for S~ 0.40 only. It shows a prefocal minima (valley) followed by a postfocal maxima (peak), suggesting positive refractive nonlinearity. The experimental data was fitted to the normalized CA transmission expression [13], given by Eq. (3).	chuẩn hóa đối với thí nghiệm Z-scan CA khi S~ 0.40. Đường cong này có một cực tiểu trước điểm hội tụ (thung lũng) tiếp tho là cực đại sau điểm hội tụ (peak), cho thấy hiệu ứng tán sắc phi tuyến dương. Dữ liệu thực nghiệm được khớp với biểu thức truyền qua CA chuẩn hóa [13], tuân theo Pt.(3).
where, a=2nn2I0Leff/Az0 and n2 is the NLR coefficient. The NLR coefficient 'n2' of the carbon film is found to be (1.40 + 0.10) x 10-4 cm2/W. The separation between the peak and Fig. 7. Normalized transmittance curve for carbon thin film for close aperture Z- scan, S 0.40.	 Trong đó,và n2 là hệ số NLR. Theo tính toán hệ số NLR 'n2' là (1.40 + 0.10) x 10-4 cm2/W. Khoảng cách giữa peak và H.7. Đường cong truyền qua chuẩn hóa đối với màng mỏng carbon trong trường hợp Z-scan khe đóng, S 0.40.
valley position of normalized transmission, Azp _v for CA Z- scan curve in the present case is 4.4 mm satisfying the Eq. (4) for the third order optical nonlinearity [13]. (4)	Vị trí thung lũng của đường cong truyền qua chuẩn hóa,ứng với đường cong Z- scan CA trong trường hợp này là 4.4 mm thỏa mãn Pt.(4) đối với sự phi tuyến quang học bậc ba [13] (4)
where the Rayleigh length, z0 is 2.53 mm in the present case. In Fig. 7, the peak and valley were symmetrically placed with respect to the focus, indicating the small phase distortion (i.e. A@0 < 1) in the film. The phase distortion, A00, due to the nonlinear refractive index at the focus (z=0) is defined as [13] (5) The numerical value of A00 was calculated from the	Trong đókhoảng Rayleigh, z0 là 2.53 mm trong trường hợp này. Trong H.7, peak và thung lũng nằm đối xứng đối với tiêu điểm, cho thấy độ méo pha nhỏ (tức là) trong màng. Độ méo pha,, do chiết suất phi tuyến tại tiêu điểm (z=0) được định nghĩa là [13] (5) Giá trị bằng số củađược tính từ tham sốcủa đường cong

parameter 'a' of the fitted curve,	khớp
Fig. 7, and found to be ~ 0.22 .	H.7, và chúng ta tìm được giá
	tri ~ 0.22.
Since the phase distortion is	Bởi vì đô méo pha nhỏ, đai
small, it can also be estimated	lượng này cũng có thể ước
using following relationship	lượng bằng hệ thức sau [1 13].
	(6)
[1,15]. (6)	
(0) where ATR wis difference	Trang đá là đã shânh làsh
where, ATP _v is unterence	
between the normalized peak	giua ne so truyen qua peak va
and valley transmission. From	thung lung. I't pt(6), chung ta
Eq. (6), A00 was estimated and	co the troc lượng đượcva suy
found to be ~ 0.24 for S ~ 0.40 ,	ra được nổ gần bằng ~0.24 khi
nearly same as that of obtained	S~0.40, gân như tương tự với
by Eq. (5). Thus $S = 0.4$ is the	giá trị thu được bằng Pt.(5). Vì
optimum value confirming the	thê, S=0.4 là giá trị tôi ưu xác
validity of the present Z- scan	nhận giá trị (xác nhận tính hiệu
set-up.	lực) của hệ Z-scan này.
Conclusion	Kêt luận
The NLA and NLR coefficients	Chúng tôi đã xác định được các
of PLD deposited carbon thin	hệ số NLA và NLR của màng
film was obtained in a single Z-	mỏng carbon lắng tụ bằng hệ
scan setup using CCD camera in	thống Z-scan đơn dùng CCD
place of photodiode as a	camera thay thế cho
detector. The implementation of	photodiode đóng vai trò là
the synthetic aperture in the	detector. Việc áp dụng khe
present setup provides the	tổng hợp trong hệ hiện tại giúp
option of selecting the aperture	chúng ta có thể chọn được kích
size more precisely for the	thước khe chính xác hơn để tối
optimization of closed Z-scan	ưu hóa đường cong Z-scan
curve without physically	đóng mà không cần lặp lại thí
repeating the experiment for the	nghiệm để xác định chiết suất
determination of NLR	phi tuyến. Đường cong truyền
coefficient. The transmittance	qua ứng với phép đo Z-scan
curve for CA Z-scan	khe đóng có peak sau thung
measurement has a valley	lũng cho thấy sự phi tuyến
followed by a peak which	trong màng mỏng carbon là do
indicates that the nonlinearity in	tự hội tự. Khoảng cách peak-
the carbon film is due to self-	thung lũng bằng 1.7 lần khoảng
focusing. The peak-valley	Rayleigh của chùm hội tụ, xác
separation is 1.7 times of the	nhận sự hiện diện của phi tuyến
Rayleigh length of the focusing	bậc ba. Sự phù hợp giữa giá tri
beam, confirming the presence	lý thuyết và thực nghiêm của
of third order nonlinearity. The	hệ số méo pha khẳng định giá

	1
agreement of the theoretical and	trị của hệ thống Z-scan đơn
experimental value of phase	giản hóa này dùng CCD trong
distortion factor confirms the	một lần quét duy nhất.
suitability of present simplified	
Z- scan -system using CCD in a	
single scan.	