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3 Outline of  density-
functional perturbation theory

In this section we give an outline
of the basic concepts of DFPT,
also known as linear-response
theory or, in the quantum-
chemistry context, ‘“analytic

3.S0 lugc vé ly thuyét nhidu loan ham mat do

Trong phan nay, ching tdi trinh bay khai niém co ban vé
DFPT, hay con goi la ly thuyét dap ang tuyén tinh, hoic
trong hoa lugng tur goi l1a cac phuong phap “dao ham
giai tich”.
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derivative” methods. DFPT has
an outstanding role in addressing
many  crystalline  properties
besides dielectric ones,
including lattice-dynamical,
elastic, electron-phonon
coupling properties. A
comprehensive review of DFPT
in crystalline solids is available
in Ref. [16]. We will emphasize
the formulation and application
of DFTP for evaluating
derivatives of the macroscopic
polarization to compute such
quantities as the Born effective
charge from Eq. (5) [27-30] or
the dielectric constant = 1 + 4nx
with x from Eqg. (2). Since the

and

nuclear contribution to the
macroscopic  polarization s
trivial, we focus on the

electronic term only, indicating
it with P for the sake of
simplicity. We stress, however,
that the nuclear term is essential
to ensure charge neutrality and
translational invariance.

Let us start with a large but
finite insulating system having
discrete single particle orbitals |-
0*} which vanish outside the
sample. We will switch to the
crystalline case, with periodic
boundary conditions, only later
in this Section. We write the
electron density as

n(r)=Y, I*MI2,

where the sum is over occupied
(“valence”) states 1, and a factor
of 2 may be inserted in all
formulas for the spin-degenerate
case. The electronic term in the
macroscopic polarization is then,
from Eqs. (1) and (6),

DFPT ¢ vai tro noi bat trong viéc xac dinh nhiéu tinh
chat cua tinh thé ciing nhu tinh chit cia dién moi bao
gom tinh chat dong hoc mang, dan hdi va su ghép
electron-phonon. Tai liéu tham khao [16] trinh bay kha
toan dién vé phuong phap DFPT trong chat rin tinh thé.

Chdng ta sé tap trung vao viéc xay dung va ap dung
DFPT dé tinh dao ham cuia d6 phan cuc vi md va suy ra
cac dai luong nhu dién tich hiéu dung Bohr tir PT (5)
[27-30] hoic hang sé dién mdi = 1 + 4nx, vai x dugc
cho trong PT.(2). Do dong gép cua hat nhan vao do phan
cuc vi md khong dang ké, chung toi chi tap trung vao sé
hang dién tir, ki hiéu 1a P dé don gian. Tuy nhién, ching
t6i nhan manh rang sé6 hang hat nhan 1a can thiét dé dam
bao sy trung hoa dién tich va su bat bién tinh tién.

Gia su chlng ta xet mot hé cach dién I6n nhung hitu han
c6 orbital caa tirng hat roi rac |;)va bang khéng bén
hgoali mau. Ching ta s& chuyen sang truong hop tinh
thé, véi diéu kién bién tuan hoan trong phan sau cua
muc nay. Biéu dién mat do electron dudi dang
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(7)
where L3 is the volume of the
finite sample.
Suppose now that we switch on
a given perturbation—e.g. a
sublattice displacement us as in
Eqg. (5)—whose amplitude we
measure by a dimensionless
parameter A. We expand all
relevant quantities in powers of
A eq.,
Vext(r) = VS?(r) + VS(r) +
V$(r) + ..., (8)
where VeXt’ (r) contains the
terms of order An. Here Vext (r)
is the bare (or unscreened)
potential felt by the electrons, so
that VeXt (r) is the first-order
perturbing term in the KS
Hamiltonian [31]. We write
similar expansions for the self-
consistently ~ screened  total
potential V(r), the electron
density n(r), the wavefunctions
|**}, etc. Using Eqg. (7), we wish
to evaluate the corresponding
first-order change in the
polarization,
P(1) = -V IrlV™ + c.c. ;
)
where the sum is over occupied
(“valence™) states and “c.c.” is
the complex conjugate.
For a finite system, Eqg. (9) is
straightforward to evaluate as
soon as |-0(1?7} is available. The
latter can be obtained by
ordinary first-order perturbation
theory
K(1)>=EvW I"V"> <10>

involving a sum over all other
states, including all unoccupied

. i) g ril} . ri 2} .
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states.1 Because such sums often
converge very slowly, it is a
common practice to obtain |-
0(1?} instead by solving the
equivalent implicit Sternheimer
equation

E?> - H) Qi Wi = Qi V(1)

wf} (11)

for |'0(1°}, where Qi =1 — I
HV-, | This can be
accomplished using standard

iterative techniques.

Finally, since V = Vext + VH +
VAc, it is also necessary to
iterate an outer self-consistent
screening loop to solve for

n(1? (r) =2 N0’* (r)-0(1? (r)i +
cc. (12

1 1t is permissible to replace the
sum over j =i in Eqg. (10) by a
sum over unoccupied states
only, and also the projector Qi in
Eg. (11) by a projector onto
unoccupied states only, for the
purposes of computing any
physical change such as P (1? of
Eqg. (9). This is almost always
done in practice, but for
simplicity we will not follow
this path here.

V(1) =VE>+fH  n(1) + Xc *
n(1>

together with Eq. (11). Here the
dot product indicates an integral
over r'; fH is the (linear) Hartree
potential kernel, and
f(rT\= = "EAN\
xc ” Sn( 1) Sn(r)Sn(r")
IS the exchange-correlation
kernel, where Exc is the KS
exchange-correlation energy
functional [31]. This completes
the solution of Eqg. (9) in the
case of a finite sample.

/14X
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We now prepare to apply the
thermodynamic limit and let the
size of the sample become
infinite. Then the occupied and
empty states |**} will become
Bloch states |-Onk}. However, it
IS not permissible to leave the
position operator r in place in
Eq. (9), because matrix elements
of r between Bloch functions are
ill-defined. Therefore, before
taking the thermodynamic limit,
we first introduce an alternative
method for obtaining |-0a)i} =
ral-0(0)} that avoids this
problem. In particular, we
compute it from

............... (15)

as can easily be checked using
the definition

v=——[r,H] (16)

of the velocity operator. 2 This
approach appears to reintroduce
an undesirable sum  over
unoccupied states, but in view of
the similarity of Eqg. (15) to Eq.
(10), we can once again replace
it by a Sternheimer equation
(E(0) — H) Qi [Vv} = Qi (ihva)
1#}  (17)

which will be solved by iterative
methods. Then Eqg. (9) becomes
pa]=~js +cx- (18)

2 The velocity operator v
coincides with p/me in the
simple case where all potentials
are local. The generalization to
nonlocal pseudopotentials—
either norm- conserving or
ultrasoft [32]—has been

L0}
(E

H) Qi [thai) = Qi (ihua) [

(16)

(18)




considered in Ref. [16].
A conceptually similar scheme
was first proposed in the 1950s

by Stern- heimer [33] for
evaluating atomic
polarizabilities.

We  emphasize  that the

replacement of r by v at this
point essentially corresponds to
switching from a formulation
based on charge to one based on
current. If we are actually
dealing with a finite system,
Egs. (9) and (18) are equally
valid. But in taking the
thermodynamic  limit, matrix
elements of r become ill-defined,
for essentially the same reason
that Eq. (1) is ill-defined. For an
extended system in  the
thermodynamic limit, it is then
mandatory to use the velocity
formula, hence the current, as in
Eqg. (18). Focusing on currents
has thus been crucial to the

development of the modern
theory of polarization, as
illustrated  further in  the

following Section.

Let us now make the transition
to the crystalline case, with
periodic boundary conditions,
and let the index i be identified
with the band index n and the
Bloch vector k. At this point we
also drop the superscript “(0)”
from unperturbed quantities, so
that, e.g., [-0(°’} ~ |-Otk}. Then
Eq. (18) becomes

where n runs over the occupied
valence bands of the insulator
and the integral is over the
Brillouin  zone (BZ). In
combination with Eqg. (10) or

i
|

(19)

. . . . v (L
PO - Yy [ i = e Vi) Wk Vo)
ljrl. ~ o Jr;r.'l:( Jr'ﬂr.'.'l{

M 2




(11), this provides the solution
to the problem of computing the
first-order linear response of the
polarization in response to a
perturbation, such as a sublattice
displacement, that preserves the
crystal periodicity.

While such linear-response or
DFPT methods have
satisfactorily provided P
derivatives over the years, the
problem of evaluating the
“polarization itself” remained an
open and confusing one until the
mid-1990s, when the advent of
the modern theory of
polarization provided a
resolution. This is the subject of
the next Section.

4 The Berry-phase theory of
polarization

In this Section, we provide a
brief derivation of the central
results that were uncovered in
the early 1990s, which are often
referred to as the ‘“modern
theory of polarization.” The
basic idea is to consider the
change in polarization of a
crystal as it undergoes some
slow change, e.g, a slow
displacement of one sublattice
relative to the others, and relate
this to the current that flows
during this adiabatic evolution
of the system. These
considerations will allow us to
arrive at an expression for the
polarization that does not take
the form of an expectation value
of an operator, as is normally the
case. Rather, it takes the form of
a “Berry phase,” which is a




geometrical phase property of a
closed manifold (the Brillouin
zone) on which a set of vectors
(occupied Bloch states) are
defined.

Once again, we assume that the
crystal Hamiltonian Ha depends
smoothly on parameter A and
has Bloch eigenvectors obeying
HA|-0A>nk} = EA,nk |-OA>nk}
(the A subscripts will often be
suppressed for clarity). We also
assume that A changes slowly
with time, so that the adiabatic
approximation is appropriate.
With a slight change of notation
(introducing dA = d/dA), the
principal result (19) of the
previous Section becomes

Since the spatially averaged
current density is just j = dP/dt =
(dAP)A, this equation can be
converted into the statement that

the instantaneous current is
given by

iheA A A r (“nk
IV[*mk}(*mk|dA™nK} ,
JN¥SIZ* +(21)

We can then say that the change
in polarization during some time
interval is

AP =y j(t) dt (22)

where j(t) is given by Eqg. (21).
This formulation is particularly
intuitive, since it is phrased in
terms of the current density that
Is physically flowing through the
crystal as the system traverses
some adiabatic path. But since j
= dP/dt is proportional to A =
dA/dt in Eq. (21), the dt can be
factored out, and we can
equivalently go back to

il Ik l:r 'rik |V|r 'mk:,': l:r -,..,k|r'i',\r '”H:}
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integrating Eq. (20) directly to
obtain

AP = j(dxP) dA  (23)

where dAP is given by Eq. (20).
This is the formally more direct
path.

In the case that the Hamiltonian
Is just p2/2me plus a local
potential, it follows that v =
p/me, and it is possible to
evaluate Eq. (20) directly (or, to
avoid the sum over unoccupied
states, to obtain |'ipa>nk} by the
method of Eqg. (17)). However,

we can proceed in a more
general fashion, which also
eliminates the energy

denominator in Eqg. (20), using
ordinary k m p perturbation
theory. Here we introduce the
effective Schrodinger equation
Hklunk} = Enk |unk} where
unk(r) = e-ik>r -Onk(r) and

Hk = e-*k'r_ffe*k'r = — (p +
hk)2 + e-*k'rFe*k'r . (24)

(The last term reduces back to V
if the potential commutes with r,
but this is often not the case
when dealing with modern
pseudopotentials.) By
elementary perturbation theory,
the first-order change of |unk}
with wavevector is just

Vtu,, 0=£ ("« (25)

But using the definition (16) of
the velocity operator, and VkHk
= —i[r, HK] (which follows
immediately from Hk = e-ik>r
Heik>r), the first matrix element
in the numerator of Eg. (20)
becomes
(-Onk|v|'Omk}

ih  (unk|[ri

H, = o ikrfeikr — I—rh |

(Vi Hy) [t

-'r':r.'l{ -'r-:r.'.'l{

| Vitink ) = Z

e

e —1 I 1 3 -1 7 | 4
ih™ | v Hie]| e} = 17 (| {(VieH ) |t} -

(e [V [ k) = (26)




HK]umk} — h (unk|] (VKHK)

lumk§ « (26)
Then Eq. (20) turns into
(2703 Erik-E,
OP — % Zr: Z ’I ik uf_re,..k|{vkf;:::re”,F::}”lE:,l.m|r');\re,,.k:} v e (27)

mER gy

or, using Eq. (25), simply

aw = t 0
{VAUnkldxUnk) + C.C. . (28)

remarkablv. OP = —=3 | dk (Vieuldsa) + c.c.. (28)
emarkably, e sum over \&T

empty states has been eliminated
from this formula, showing that
the rate of change of polarization
with A is a property of the
occupied bands only, as one

expects on physical grounds.

" opz

it

This  expression can  be [|P{A) = MT,EZ / dk {wn | Vic [t ni) (29)
integrated with respect to A to Y "Bz

obtain [6]

P(A) = (WA ,nk|VKJwA nk)

: (29)

as may be verified by taking the
A derivative of both sides of Eq.
(29) and comparing with Eqg.
(28). The result is independent
of the particular path of A(t) in
time, and depends only on the
final value of A, as long as the
change is slow in the adiabatic
sense. We therefore associate
P(A) with  the physical
polarization of state A, and
henceforth drop the A label. (
Since VK((UA)nkluA>nk}) = 0, [|F = B ™
the integrand is pure imaginary,
and Eq. (29) can alternatively be
written as

To be more precise, this is the

electronic contribution to the
polarization; to this must be
added the nuclear (or “ionic”

/ dk (tse| Vic [tiaic) - (30)
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contribution
Pion = Q-1 £ Zsrs ,(31)
where the sum is over atoms s
having core charge Zs and
location rs in the unit cell of
volume Q.
Equation (30) is the central
result of the modern theory of
polarization. It says that the
electronic contribution to the
polarization of a crystalline
insulator may be expressed as a
Brillouin-zone integral of an
“operator” 1Vk that plays the
role of an r operator in a
heuristic sense. However, iVK is
not a normal operator; it
involves taking the derivative of
the state wvector |unk} with
respect to wavevector. In
particular, the quantity iVkjunk}
depends on the choice of relative
phases of the Bloch functions at
different k; such a sensitivity is
not expected for a “normal”
quantum-mechanical operator.
To explore this point, we
specialize for the moment to a
single band for a one-
dimensional (1D) crystal of
lattice constant a, so that P = —
e0/2n, where

= — ImJ dk (uk"Uk} «(32)

Now suppose that a new set of
Bloch functions is defined by
"k} = e-i(Kk) [k}, (33)
with an equivalent relation
between |UKk} and |uk}, where
P(k) is some smooth real
function of k. As mentioned in
the Introduction, such a twist of
the phases is often referred to as
a “change of gauge.” Then

P, =0"'Y Zr,, [iil:‘




(uk\dk\uk) = (uk\dk\uk) - i —
(34)

Fig. 3. At left, a sketch of the
Brillouin zone of a 1D crystal,
regarded as a segment of the real
k axis. At right, a sketch of the
same Brillouin zone regarded as
a topologically closed loop.
showing that the integrand of
Eqg. (32) depends on the choice
of gauge. One may then wonder
whether Eq. (30) is well-defined
at all.

However, it turns out that the
entire integral in Eqg. (32) is
independent of gauge. The
demonstration of this claim
depends on the fact that the
eigenvectors |-Ok} are periodic
functions of k with
|-02n/a} = |-00}, (35)

which is known as the “periodic
gauge condition.” Indeed, it is
natural to regard the Brillouin
zone not as an interval of the
real axis, but as a closed space
(i.e., aring), as illustrated in Fig.
3. Thus, to be sensible, the
gauge change should obey
P(2n/a) = P(0) + 2nm, (36)
where m is an integer, so that
exp(—iP) will match seamlessly
at the Brillouin zone boundary.
We shall assume here that m =
0, returning to the possibility of
m = 0 in Sec. 6. The integral of
the last term of Eq. (34) over the
entire Brillouin zone therefore
vanishes, so that 0 = 0, and the
polarization is indeed gauge-
invariant. The quantity 0 is

|{r4,-' |r',:',-'|r4,-':',: = (uy|dh, |r4,-':}

3

IE.
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327 fa) = 3(0)
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known a “Berry phase” [9]; it is
a global phase property of the
Bloch bands as the wavevector k
is carried around the Brillouin
zone.

In order to perform practical
calculations using Eq. (30), it is
necessary to reformulate the
theory on a discrete k mesh. We
illustrate this again in the
context of the 1D single-band
case, where we note that Eq.
(32) can be discretized as

0= — ImIn Y[ {ukj Kj+1}

37)

where kj = 2nj/Ma is the j ’th k-
point in the Brillouin zone. That
this reproduces Eg. (32) can be
checked by plugging the
expansion uk+Ak = uk + Ak
(dkuk) + O(AKk2) into Eqg. (37)
and keeping the leading term as
Ak " 0. Eq. (37) says to take the
complex phase of the product of
(ukl |uk2} with (uk2 |uk3}, etc.,
all the way around the Brillouin
zone (as in the right panel of
Fig. 3). The gauge-invariance is
manifest: changing the phase of
one Bloch function |uk}
obviously has no effect, since it
appears in the product once as a
bra and once as a ket. (Note that,
in evaluating Eg. (37), one
should apply the periodic gauge
condition of Eqg. (35) in the form
u2n/a(x) = e-2nix/a u0(x) in
evaluating the last inner product
needed to close the loop.)

In three dimensions (3D), the
Brillouin zone can be regarded

M-l
= —Im In H (k| uk,, ) (37)
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as a closed 3-torus obtained by
identifying boundary points -Onk
= "™n,k+Gj, where Gj are the
three primitive reciprocal lattice
vectors. Then the electronic
polarization can be written as
where Rj is the real-space
primitive translation
corresponding to Gj, and the
Berry phase phase for band n in
direction j is

To compute the Onj for a given
direction j, the sampling of the
Brillouin zone is arranged as in
Fig. 4, where ky is the direction
along Gj and k” refers to the 2D
space of wavevectors spanning
the  other two  primitive
reciprocal lattice vectors. For a
given k7, the Berry phase
Onj(k™) is computed along the
string of M k-points extending
along ky as in Eg. (37), and
finally a conventional average is
taken over the k” via
K=tt—2Z"k-0+ (40)

This is the form in which the
Berry-phase theory of
polarization is implemented in

modern electronic-structure
codes. Further details and
discussion, including the

appropriate  reformulation of
Egs. (39-40) for the case of
connected multiple bands (i.e.,
bands with symmetry-induced
degeneracies at certain locations
in the Brillouin zone) may be
found in Refs. [6] and [7].
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