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2.3 Previous Research on Nonlinear
Periodic Signal Processing Devices T1H

As explained in the preceding section,
nonlinear  periodic  structures  can
potentially achieve multiple optical signal
processing functions. Considerable past
research effort has investigated various

2.3 Cac nghién ctru trude day vé thiét bi
xt ly tin hiéu tuan hoan phi tuyén

Nhu di néi & phan trudc, cac cau tric
tuan hoa phi tuyén cd nhiéu tiém ning
trong viéc xu ly dong thoi nhiéu tin hiéu
quang. Trudc day di co nhiéu cdng trinh
nghién ctu cac thiét bi xa Iy tin hiéu
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nonlinear periodic signal processing
devices. The theoretical and experimental
work is grouped under two categories:
solitonic and non-solitonic propagation.
2.3.1 Solitonic Propagation

Studies of pulse propagation in nonlinear
Bragg gratings have concentrated on
Bragg solitons. Bragg solitons are solitary
waves that propagate through a grating
without changing their shapes. They arise
from the balancing of the dispersion of the
grating and the self-phase modulation due
to the Kerr nonlinearity, and are predicted
theoretically using nonlinear coupled-
mode equations. Gap solitons represent the
most studied class of Bragg solitons.
These are Bragg solitons which have pulse
spectra lying entirely within a photonic
band gap [17, 18]. The term ‘gap soliton’
(gap soliton la nhitng s6ng phi tuyén lan
truyén trong mdi truong chiét suat tuyén
tinh thay doi tuan hoan) was first
introduced in 1987 by Chen and Mills
[19]; then Mills and Trullinger [20] proved
the existence of gap solitons by analytic
methods. Later, Sipe and Winful [21] and
de Sterke and Sipe [22] showed that the
electric field satisfies a nonlinear
Schrodinger equation, which allows
soliton solutions with carrier frequencies
close to the edge of the stopband.
Christodoulides and Joseph [23], and
Aceves and Wabnitz [24] obtained soliton
solutions with carrier frequencies close to
the Bragg resonance.

Experiments with Bragg gratings have
demonstrated soliton propagation, and
more importantly, optical switching, and
pulse compression. Sankey et al. [25]
reported the first observation of all-optical
switching in a nonlinear periodic structure
using a corrugated silicon-on-insulator
waveguide.  They  showed  optical

tuan hoan phi tuyén khac nhau. Chdng ta
c6 thé chia cac cong trinh thuc nghiém
va ly thuyét d6 thanh hai nhom: lan
truyén soliton va phi soliton.

2.3.1 Lan truyén soliton

Trong cé4c nghién ctru vé lan truyén xung
trong céch tir Bragg phi tuyén, ngudi ta
thuong tap trung vao cac soliton Bragg.
Cac soliton Bragg la song don doc
truyén qua cach tor ma khong thay doi
hinh dang. Chtng sinh ra do su can bang
gita hién twong tan sac cach tir va hién
tuong tu diéu bién pha do hiéu tng Kerr,
va da duogc tién doan vé mat Iy thuyét
bang cac phuong trinh mode ghép phi
tuyén. Cac soliton gap la nhitng soliton
Bragg duoc nghién ctu nhiéu nhat. Day
la nhitng soliton Bragg c6 phd xung nam
hoan toan trong d6 rong ving cam
photonic [17,18]. Thuat ngr “soliton
gap” do Chen va Mills [19] dua ra lan
dau tién; sau d6 Mills va Trullinger [20]




switching of a 5.5 ~J pulse with 50 ns
duration at a wavelength A = 1.064 "m.
They demonstrated the concept described
in  Section 2.2.3 that pulses with
frequencies in the stopband are detuned
out of the gap because of the nonlinear
effects, switching from a highly reflective
state to a highly transmissive one.
Switching between high- and low-
reflectivity states implies these structures
can serve as optical switching devices.
Soon after Sankey et al., Herbert et al. [8]
observed optical power limiting in a three-
dimensional colloidal array of
microspheres immersed in a Kerr medium.
These optical limiters transmit only low-
intensity light but block high intensity
radiation, and are useful in signal
processing functions such as filtering,
reshaping, and switching. In 1996,
Eggleton et al. [18] reported a direct
observation of soliton propagation and
pulse compression in uniform fiber
gratings, verifying experimentally for the
first time the theories developed by
Christodoulides and Aceves. This was
followed by a further report [26], which
both refined the experimental technique
and  broadened the  experimental
understanding of the dynamics of pulse
propagation in these structures. Pulse
compression was also later observed in
nonuniform Bragg gratings by Broderick
et al. [7]. Optical pulse compression in
nonuniform gratings is attributed to two
mechanisms: the optical pushbroom effect
and cross phase modulation.

The optical pushbroom effect requires a
strong optical pump to alter the local
refractive index. The pump-induced
nonlinear index change creates a




frequency shift at the trailing edge of the
probe pulse. The consequent velocity
increase of the trailing edge sweeps the
probe energy to the front of the pulse,
resulting in pulse compression. The
change in index due to the pump also acts
to detune the weak probe pulse from the
center of the band gap, modifying the
transmission of the probe [6]. The cross-
phase modulation effect works in a similar
fashion, except the probe pulse counter-
propagates with the signal pulse [7].

2.3.2 Non-solitonic Propagation

Gap solitons are certainly of great interest
for applications in telecommunications.
However the strict requirements on peak
power, pulse shape, and pulse duration
needed to balance precisely the effects of
dispersion and nonlinearity for producing
a soliton may be difficult to satisfy.

Over the past years, studies of non-
solitonic pulse propagation through
multilayered structures with Kerr-type
nonlinearities have attracted considerable
attention. Scalora et al. [27] examined the
nonlinear propagation of ultrashort pulses
through a Kerr nonlinear quarter-wave
Bragg reflector. They  predicted
numerically the possibility of ultrafast
optical limiting and switching operations
in such a structure. In these operations an
increase in the optical field intensity
changes the local refractive index due to
the material nonlinearity (Eq. 1.1 ),
shifting the entire stopband and making
the system transparent at the initial Bragg
stopband wavelengths. In order to achieve
a higher switching contrast, a nonlinear
coupled-cavity-type multilayered structure
(NLCC) is proposed by Lee [28]. This
new device consists of stacks of two half-
wavelength cavity regions sandwiched by
standard quarter-wavelength dielectric




mirrors.

In 2000, Brzozowski et al. [9, 14]
proposed a novel design of a nonlinear
Bragg structure, one that consists of
alternating layers of oppositely-signed
Kerr materials. Figure 2.3 illustrates the
proposed Bragg structure. This device is
significantly  different from periodic
structures studied previously. The key to
the novelty is the stability of the device
due to the fact the nonlinearity of the
structure is balanced precisely. None of
the previous periodic structures have such
configuration, therefore, they are not
inherently stable. Here ‘stable operation’
means a single output depends solely on a
single input (not the case in a bistable
device). As a result of the balanced-
nonlinearity, the average refractive index
n, and thus the Bragg frequency (Eq. 2.3),
remain fixed as intensity grows. The
behavior of the device does not rely on the
movement of stopband edges, but on the
establishment of a stopband with intensity-
invariant  center  frequency. Later,
Pelinovsky et al. published two thorough
theoretical steady-state analyses of this
structure [10, 11]. The numerical analyses
concluded that the device can perform
stable all-optical limiting, even with small
time-dependent perturbations [10]. Such
optical limiters can be used to filter, shape,
and multiplex optical pulses and to limit
the optical power [29]. Additionally,
optical limiters based on structural
resonances - periodic alternations in the
Kerr-coefficient - are distinct from other
commonly used passive optical limiters
exploiting  self-focusing,  two-photon
absorption, and total internal reflection
[30]. These limiters provide a usable
reflected signal in addition to the
transmitted signal. A complete set of logic




functions using the transfer functions of
the transmittance and reflectance was
proven by Johnson et al. [31].

Figure 2.3: A schematic of a nonlinear
Bragg grating with alternating oppositely-
signed Kerr coefficients. A is the
periodicity of the grating; n01,02 are the
linear refractive indices; nnll,nl2 are the
Kerr coefficients of the two adjacent
layers.

2.4  Thesis Objective

It is clear from the literature that nonlinear
periodic structures represent a promising
class of devices to enable a wide range of
signal processing operations. Past research
has concentrated on either soliton
propagation or the steady-state analysis of
nonlinear Bragg structures. The switching
capabilities of Bragg solitons and the
intensity limiting abilities for continuous
waves have been studied in detail.
However, the temporal behavior of one
important class of nonlinear periodic
structures - the stable nonlinear periodic
devices with constant average refractive
index - has been neglected. Furthermore,
there has never been a complete
investigation contrasting solitonic and
non-solitonic propagation behavior in the
same device. A systematic study
identifying how ultrashort solitonic and
non-solitonic pulses are processed in such
stable devices remains to be carried out.

Present work considers the temporal
behavior of the nonlinear Bragg grating
device of Figure 2.3 with a focus on its
applications in optical signal processing.
The thesis seeks to address the following
hitherto unanswered questions:

. in what ways do the proposed
nonlinear Bragg structure provide an
improvement to optical signal processing




over previously considered devices?

. what are the important design issues
in using nonlinear Bragg structures for
practical optical signal processing?

. how does the time-dependent
(pulse-processing) behavior relate to the
known steady- state responses?

. what differentiates solitonic from
non-solitonic propagation?

This is the first time-domain analysis of
pulse propagation through a stable
periodic  structure  with  alternating
oppositely-signed Kerr coefficients.

The subsequent chapters will thus
characterize  both  qualitatively and
quantitatively the non-solitonic
propagation through a nonlinear Bragg
structure, and then explore the response of
the nonlinear periodic structure model
proposed by Brzozowski et al. in the
presence of a time-varying incident pulse.
The transfer characteristic behavior is
expected to be significantly different than
that previously revealed through stationary
analyses. Furthermore, the large spectral
bandwidth of the ultrashort pulses in a
time- domain analysis is expected to have
further implications on both limiting
behavior and pulse distortion.

2.5  Thesis Organization

The organization of the thesis is as
follows:

In Chapter 3, the quantitative analytic
framework is derived for subsequent
deployment throughout the remainder of
this thesis. The coupled-mode equations
that describe the evolution of pulse
envelopes in a nonlinear Bragg grating are
derived. The Bragg soliton solutions of
these coupled-mode equations are also
obtained mathematically in this chapter.
Chapter 4 describes the procedure for a




convergent numerical solution of the
equations derived. The numerical method
for solving the coupled-mode system is
explained. The boundary conditions and
the balance equations for the system to be
satisfied are identified. Also in this
chapter, the Bragg structure studied in this
thesis is defined and the material
parameters chosen for the numerical
simulations are stated and justified. Both
solitonic (expressions defined in Chapter
3) and non-solitonic pulses are explained.
Chapter 5 reports on three sets of time-
domain analyses of ultrashort pulse
propagation through different Bragg
gratings with alternating oppositely-signed
Kerr coefficients: (i) O linear grating; (ii)
in-phase linear grating; (iii) out-of-phase
linear grating. The term in-phase linear
grating refers to as the case when the
material with the higher linear index has a
positive Kerr coefficient, and the material
with the lower linear index has a negative
Kerr coefficient. Similarly, the term out-
of-phase linear grating means that the
material with lower linear index has a
positive Kerr coefficient, and the material
with higher linear index has a negative
Kerr coefficient. The numerical simulation
results and the mechanisms behind the
observations are discussed. The thesis
concludes in Chapter 6 with an overview
of the significant contributions made to
optical signal processing and suggests
future research directions.

3.4  Exact Soliton Solutions

Since the propagation behavior of
solitonic and non-solitonic pulses will be
compared in the next chapter, it is
important to derive the exact solutions of
the coupled-mode system (3.19)-(3.20) for
gap solitons. We collaborated with with
Professor D. Pelinovsky from McMaster




University to obtain the soliton solutions.
The gap solitons exist in the system when
nnl = 0, nOk < 0, n2k > 0, or alternatively
when nnl = 0, nOk > 0, n2k < 0. The
parameter n2k can be normalized to be
positive without loss of generality. In
order to find exact solutions for gap
solitons when nnl = 0, we adopt relativistic
Lorentz transformations of the
coordinates, giving:

The coupled-mode system (3.19) - (3.20)
in these new coordinates then takes the
form:

............. (3.23)

Gap solitons are stationary solutions of the
coupled-mode system (3.19)-(3.20) that
move with a constant velocity V and have
a constant detuning frequency (tan sé léch
huéng, do chénh léch tan sb, do dich tan
s0) Q. Separating variables in the system
(3.22)-(3.23), we write these stationary
solutions in the form:

at = yQZ) ei(™z)_"(2))*+iQr, a_ = "QC)
en(c)+iQr. (3.24)

The function Q(Z) in (3.24) is the intensity
of the right-propagating and left-
propagating waves, i.e. Q(2) = [a+12(2) =
la_|2(Z), where ax(Z,T) satisfies zero
boundary conditions in Z. The functions
0(0) - M2)) and ~2Z) in (3.24) are the
complex phases of the waves, given that
NZ) represents the phase difference
between the complex phases. It follows
from Egs. (3.22), (3.23), and (3.24) that
the functions Q(Z) and ~(Z) satisfy the
planar Hamiltonian system:
........................... (3.26)

where the Hamiltonian H — H(Q,?) is

given by:

H — 2Q (nok + 2n2kQ) cos  — 2QQ.
(3.27)




The gap soliton solution satisfies the zero
boundary conditions at infinity: Q(2) * 0
as |Z|  TO. Such solutions occur for H —
0 in Eq. (3.27), requiring:

cos N — . (3.28)

The closed-form solution of the system
(3.25)-(3.26) can be then written as:

+ U(Q) — 0, where U(Q) — —4Q2 [(nok
+2n2kQ) — 2] . (3.29)

The system (3.29) describes the zero
energy level of a particle moving in a
potential field U(Q). The critical point Q
— 0 is a saddle point if U"(0) < 0, which
necessitates | < |nok|. Under this
constraint, the trajectory of the solution Q
— Q(2) starts from Q — 0 in the limit Z
— —1t0, grows exponentially until the
turning point Q — Qsol, where U(Qsol)
— 0, and then decays exponentially to Q
— 0 in the limit Z ~ +to. If n2k > 0 and
nok < 0, the turning point exists at

The analytical expression for the gap
soliton can be derived from Eqg. (3.29) and
is found to take the form:

where Y — 2(nok — H2)1/2. The gap
soliton is centered at Z — 0, where Q(0)
— Qsol, and it is exponentially localized,
such that Q(Z) » Q”e-7|z| as |Z| ~ TO.

The gap soliton solution (Eqg. 3.30) exists
for n2k > 0, nOk < 0 and 0 = |Q| < |nOk|,
I.e., when the nonlinear grating has an out-
of-phase built-in modulation of the linear
refractive index. The term out-of-phase
grating is referred to as the case when the
material with the lower linear index has a
positive Kerr coefficient, and the material
with the higher linear index has a negative
Kerr coefficient.

4.1  Introduction

In the previous chapter, the system of
coupled-mode equations for nonlinear
periodic  structures was developed




analytically. This chapter presents the
numerical techniques employed in solving
the system and asserts the range of
physically important material parameters.
4.2  Numerical Method for Solving the
CME System

The complex envelope function of the
forward and backward propagating waves
can be decomposed into its real and
Imaginary parts:

At =u+iw, A =v+iy. (4.1)

The real functions u, v, w, and y satisfy
the coupled system (3.19) - (3.20), and
therefore are given by:

where the nonlinear function /(u,w,v,y) is
defined by

/ (u, w, v,y)=nnl(u2 + w2 + 2v2 + 2y2)w
+ n2k [(u2 + 3w2 + v2 + y2)y + 2uwv].
(4.3)

Assuming the nonlinear functions /(u, w,
v, y), [(w, u,y, V), /(v,y, u, w), and /(y, v,
w, u) are small, the partial differential
equations system in Eq. (4.2) can be
further reduced to:

(4.4)

To solve these numerically, a finite-
difference method is used, where the
functions u, v, w, and y are calculated
based on the number of mesh points taken
in both time and space:

Z=am Az, wherea=0,1,..., N, N +1, and
the space step size Az = -

N+1

T=/3 m At, where * = 0,1,..., K, and At is
the time step size.

The functions u(Z, T), v(Z, T), w(Z, T),
and y(Z, T) can be thought of as two-
dimensional vectors, with time and space
dimensions. For example, with each
element U™A in the array represents the

1 LD




value of the function u at the grid point (Z
= aAz,T = MAt). For simplicity, the term
u”z is written as u” from here on.

The Crank-Nicholson finite difference
method is used to solve the partial
differential equations defined in Eq. (4.2).
The two-dimensional partial differential
equations (i.e., ) and )) evaluated at a grid
point (Z = aAz,T = /3At) can be
approximated as

The partial derivatives of the functions
w(Z, T), v(Z, T), and y(Z, T) are
approximated in a similar manner. This
numerical method is known to be
unconditionally stable [11] for any values
of At, Az, and nOk. Thus, a linear system
is obtained for solving the functions at a
specific time instance:

The full derivation of the above linear
system is included in Appendix A. The
expressions of the matrices A, B, C, D,
and H are also stated there.

The complicated coupled-mode system
described in Chapter 3 can be now
estimated by using the non-iterative
algorithm expressed in Eq. (4.7). This
makes the numerical computations of the
envelope functions u, v, w, and y much
simpler.

4.3 Boundary Conditions and Balance
Equations

By assumption, the input pulse /in(T) is
incident from the left end. The boundary
conditions therefore are defined as:
.............. (4.8)

where /in(T) and 0in(T) represent the
amplitude and phase modulation of the
incident pulse launched at the grating,
respectively, at a specific time instance T.
Eq. (4.8) can be rearranged by using the
relationship in Eq. (4.1) as follows:
........................ (4.9)

where /re/ (T) is the intensity of the input




light wave at the input end of the grating
(left end), and /tran(T) is the intensity at
the output (right end). The reflected and
transmitted intensities /re/(T) and /tran(T)
are generated dynamically through the
time- dependent solutions of the coupled-
mode system (3.19)-(3.20).

The boundary conditions defined in Eg.
(4.9) are satisfied at all times. In addition
to this restriction, the coupled-mode
system (3.19)-(3.20) obeys the balance
equations:

dT (|A+2 + |.A_|2) +dZ (JA+]2 - |A_|2) =
0. (4.10)

Integrating over the nonlinear structure, a
balance between the incident, reflected,
and transmitted intensities can be
obtained:

—  T(A+2+]A |2)dZ=/,(T) - Ir.I(T)
- WT).

If the incident pulse is fully transmitted
and no light becomes trapped within the
grating, the conservation of total energy
density (W), in the limit T ~ TO, takes the
form:

In(T)dT.  (4.11)

where W denotes the total incident,
reflected, or transmitted energy density.
This balance between total intensities
enables the computation of the input-
output transmission characteristic for a
pulse, Wtran = Wtran(Win).

4.4 The Nonlinear Bragg Structure
Model

The device under consideration in this
work is a nonlinear Bragg structure which
consists of alternating layers of
oppositely-signed Kerr materials [9]. This
structure was briefly introduced earlier in
Chapter 2 (Figure 2.3).

An incident pulse is assumed to be
launched at the left end of the structure.
The boundary conditions defined in Eq.




4.9 are satisfied at all times. In addition,
zero initial conditions are assumed: A+(Z,
T = 0) = 0. For most of the simulations, a
Gaussian pulse is considered as the input
to the system:

where /peafc is the maximum intensity of
the pulse, ” is the time-delay of the pulse,
and a defines the pulse duration as the full
width at half maximum, or FWHM:
FWHM = 2a V2 In2. (4.13)

If ~ ~ FWHM, the pulse intensities
approach zero at T = 0 and the small
mismatch between the pulse intensity
/in(0) and the zero initial condition at T =
0 is neglected.

4.4.1 Material Parameters Justification
This section discusses the physical
approximations behind the derivation of
the coupledmode system (3.19)-(3.20),
and justifies the choice of material
parameters nOk and n2k in the numerical
modeling of the system.

In deriving the coupled-mode system
(3.19)-(3.20), it is assumed that the
response time of the optical material is
much smaller than the duration of the
pulse envelope. Also, in the present work,
a maximum index change of 0.01 is
assumed. Experimentally, refractive index
changes as large as 0.1 have been
obtained. Ultrafast index changes have
been reported in systems such as polymers
doped with azobenzenes, low temperature
grown GaAs, or Helium-plasma-assisted
molecular beam epitaxy InGaAsP [32, 33,
34, 35]. The response time of the materials
was reported to be as fast as 2 ps [33, 34].

In deriving the coupled-mode equations
(3.19)-(3.20), the effects of absorption are
also neglected. In reality, materials which
exhibit index changes as large as 0.1 have




significant linear absorption. Devices
made from such highly nonlinear materials
would need to be at least two microns
thick to give rise to the class of transfer
functions considered herein. Over such
length a device would lose up to 50% of
the transmitted power as a result of
absorption. This effect would limit the
performance of the optical device. In
simulations reported herein, the absorption
effects are not included because they do
not change the qualitative behavior. It is
also noted that index changes of 0.01 can
be obtained at spectral points at which the
absorption is lowered by orders of
magnitude [36].

The specific devices considered herein
assume significant control over the values
of both the Kerr coefficient (oppositely-
signed) and linear indices of the materials.
In a two- level system with a single
absorption resonance, the sign of the Kerr
coefficient is positive for wavelengths
shorter than the wavelength of maximum
absorption and for wavelengths longer
than the wavelength of maximum two-
photon absorption [16]. For wavelengths
in between these two regions the sign of
Kerr coefficient is negative [37]. Thus, for
any two nonlinear materials with single
absorption resonances at different spectral
positions there exists a spectral range
where the Kerr nonlinearities are of
opposite sign. Also, index- matching
techniques can be used to enable control
over the value of the linear index. For
example, a combination of polymers in
correct proportions can be used in organic
systems in order to obtain the desired bulk
refractive index. In the case of compound
semiconductors, a change in the
composition tunes the linear refractive
index.




Throughout the simulations reported
herein, the Kerr coefficients nrall>2 of the
two adjacent layers are assumed to be
nnll,2 = +2.5 x 10-12 cm2/W, and the
average linear index nln = (n0l + n02)/2 is
fixed at 1.50. The center frequency of the
incident pulse is assumed fixed at f0 = 2x
1014 Hz (or at wavelength AO = 1.50 *m).
These choices give the values nnl = 0 and
n2k = 2- x 10-11 cm2/W in the coupled-
mode system (3.19)-(3.20).

4.5 Numerical Model Validation and
First Explo-ration

This section describes the evolution of
pulse shape and spectrum when short
optical pulses propagate through the
nonlinear Bragg structure. In general, Kerr
nonlinearity- induced self-phase
modulation and grating-generated
dispersion occur simultaneously, and both
tend to modify the shapes of the
propagating optical pulses. However,
under certain circumstances, an exact
cancellation of these two effects can
occur, allowing the Bragg soliton to
propagate through large distances with no
change in shape. Given the availability of
the analytical solutions of the Bragg
soliton, the simulations presented in this
section serve to validate the numerical
model.

In Section 3.3, the soliton solutions to the
coupled-mode system were derived. The
propagation of a Bragg soliton with its
shape defined in Eq. (3.30) is simulated
here to compare with its known properties
to validate the numerical model. Device
parameters of nnl = 0, n2k = 2L x 10-11
cm2/W, and nOk = —0.1 are used in the
coupled-mode system (3.19)  -(3.20).
The parameters of the Bragg solitons are
chosen as: /peak = 55 GW/cm2, input
soliton pulse FWHM « 27 fs, the constant
velocity factor V = 0.5, and the detuning




frequency Q = 0.01. The intensities of the
forward and backward waves |A+|2 for a
propagating Bragg soliton are simulated
and shown in Figure 4.1(a) and 4.1(b)
below. The Bragg soliton propagates with
a constant speed V and a constant
detuning

(b)

Figure 4.1: Bragg soliton propagation
simulated using the system (3.19)-(3.20)
with nnl = 0, nOk = -0.1, and n2k = 2L X
10 11 cm2/W. Shown are (a) the intensity
of the forward wave and (b) the intensity
of the backward wave. The parameters of
the Bragg soliton are: /peak = 55 GW/cm2
and FWHM « 27 fs.

frequency Q from the center of the
stopband frequency wO. The amplitude
envelope of both forward and backward
propagating waves remain constant
spatially. Thus steady propagation of
Bragg solitons is observed in devices with
large L.

For comparison, the propagation of a non-
solitonic pulse (a Gaussian pulse defined
in Eq. 4.12) with Ipeak = 55 GW/cm2 and
FWHM = 27 fs through the same device is
simulated to illustrate the effect of
imbalance between self-phase modulation
and dispersion. Two scenarios of Gaussian
pulse propagation are observed, depending
on the parameter nOk which represents the
strength of the linear index grating along
the structure. If nOk = 0, the pulse
amplitude decays and the pulse width
grows over the propagation distance. This
scenario is shown in Figure 4.2. If nOk =
—0.1 (the same device as in the soliton
case in Figure 4.1), the pulse amplitude
experiences strong compression, pulse
reshaping and high-amplitude multiple-
peak oscillations. This scenario is shown
in Figure 4.3. Pulse compression-
decompression cycling is observed in the




system (3.19) -(3.20) in the case
when nOk < 0 (Bragg soliton propagation
Is possible); and pulse amplitude decay is
observed when nOk > 0 (Bragg soliton
propagation is not allowed).

To summarize, a gap soliton (Eq. 3.24)
propagates through the periodic structure
as a uniformly shaped soliton pulse in both
coupled counter-propagating waves. When
a non-solitonic pulse (Eq. 4.12) is
launched at the input of the optical device,
it could also evolve into a gap soliton. In
the case when the system does not support
solitons, pulse propagates as a forward
wave, generates a reflected backward
wave, therefore exhibits non-solitonic
behavior: the pulse amplitude decays, or
the pulse compresses, gets reshaped and
oscillates.

(b)

Figure 4.2: Decaying Gaussian pulse
propagates in the same structure as in
Figure 4.1, but without a built-in linear
grating (nOk = 0). Shown are (a) the
intensity of the forward wave and (b) the
intensity of the backward wave. The
parameters of the Gaussian pulse are:
/peak = 55 GW/cm2 and FWHM = 27 fs
to match the Bragg soliton in Figure 4.1.

Figure 4.3: Gaussian pulse propagates in
structure with an out-of-phase built-in
linear grating (nOk = -0.1). Compression-
decompression cycling is observed. All
other parameters are the same as in Figure
4.2. Shown are (a) the intensity of the
forward wave, (b) the intensity of the
backward wave, (c) top view of (a), and
(d) top view of (b).




