Theo yéu cu ciia khich hing, trong mt nim
qua, ching t61i 48 dijch qua 16 mén hoc, 34
cudn séch, 43 bai béo, 5 sb tay (chua tinh cic
tai liéu tir nim 2010 tr& vé& truéc) Xem & ddy

DICH VU "Cpisau mot lan lién lac, viée

DICH S it
TIENG

ANH |
CHUYRN Gia ca: co thé giam dén 10

NGANH nhin/l tran
NHANH

NHAT VA Chat luc_mg:Tgo dung niém tin cho
khach hang bang céng nghé 1.Ban

XAC théy duoc to.:ém b6 ban dich; 2.Ba,n

NHAT danh gia chat lwong. 3.Ban quyét
dinh thanh toan.

Tai liéu nay dwoc dich sang tiéng viét béi:

VA A2 L E T A (W 11|

T ban géc:

https://drive.qoogle.com/folderview?id=0B4rAPqIxIMRDcGpnN2JzSG1CZDQ&usp=shari
ng

Lién hé dé mua:

thanhlam1910 2006@yahoo.com hoic frbwrthes@gmail.com hoic s6 0168 8557 403 (gap Lam)

Gi4 tién: 1 nghin /trang don (trang khéng chia c¢dt); 500 VND/trang song ngir

Dich tai li¢u ciaa ban: http://www.mientayvn.com/dich_tieng_anh_chuyen_nghanh.html

https://drive.google.com/folderview?id=0B4rAPqlxIMRDcGpnN2JzSG1CZDQ&usp=sharing
https://drive.google.com/folderview?id=0B4rAPqlxIMRDcGpnN2JzSG1CZDQ&usp=sharing
mailto:thanhlam1910_2006@yahoo.com
mailto:frbwrthes@gmail.com
http://www.mientayvn.com/dich_tieng_anh_chuyen_nghanh.html

Answer Sets for Prioritized Logic
Programs

Abstract

Conflict resolution is an important
issue in knowledge representation
and reasoning. A common idea of
solving conflicts in reasoning is to
add preferences in the underlying
reasoning mechanism. This paper
describes extensions of Gelfond
and Lifschitz’s extended logic
programs [5] by adding preference
information. We first propose
prioritized logic programs (PLPs)
in which the preference s
expressed statically. An extended
answer set semantics is provided
for PLPs. We then extend PLPs to
dynamic PLPs (DPLPs) in which
the preference can be expressed
dynamically. The semantics of
DPLPs is defined in terms of
answer sets of the corresponding
PLPs. By illustrating typical
examples, we show how conflicts
between rules are resolved in PLPs
and DPLPs. We also investigate
basic properties of PLPs and
DPLPs in detail.

1 Introduction

Conflict resolution is an important
Issue in knowledge representation
and reasoning. A common idea of
solving conflicts in reasoning is to
add preferences in the underlying
reasoning mechanism. The goal of
this paper is to investigate this
problem in the framework of logic
programs. In particular, we extend
Gelfond and Lifschitz’s extended
logic programs by adding
preference information. We first

Cac Tap Tra Loi cho Cac Chuong Trinh Logic Uu Tién
Tom tat 20/6 8 h 30

Giai quyét xung dot 1a mot van dé quan trong trong biéu dién
tri thire va 1ap luan. Y tuong pho bién dé giai quyét xung dot
trong 1ap luan 1a thém vao cac uu tién trong co ché 1ap luan
co ban. Bai bdo nay mé ta viéc khai quat héa cac chuong
trinh logic mé rong cua Gelfond va Lifschitz bang cach thém
thong tin wu tién [5]. Trudc tién ching t6i dé Xuat céc
chuong trinh logic uu tién (cac PLP), trong nhiing chuong
trinh ndy wu tién dugc biéu dién dudi dang tinh. Ngir nghia
tap tra 1oi mo rong duoc cung cap cho cac PLP. Sau do6
ching tdi mo rong cac PLP thanh cac PLP dong (cac DPLP),
trong d6 uu tién duoc biéu dién theo kiéu dong. Ngit nghia
cua cac DPLP dugc xac dinh theo cac tap tra loi cua cac PLP
twong ung. Thong qua cac vi du minh hoa dién hinh, ching
t6i s& cho ban thay cach thac giai quyét xung dot giira cac
quy tac trong cac PLP va DPLP. Chiing t6i ciing xét céc tinh
chat co ban ctia cac PLP va DPLP mot cach chi tiét.

consider logic programs with static
preferences which we call
prioritized logic programs or
PLPs, and then describe logic
programs with dynamic
preferences (dynamic PLPs or
DPLPs). Formal se-mantics for
PLPs and DPLPs is provided
based on extensions of Gelfond
and Lifschitz’s answer set
semantics for extended logic
programs [5].

The paper is organized as follows.
Next section introduces the syntax
of PLPs. Section 3 provides an
answer set semantics of PLPs. By
illustrating several typical
examples, this section also shows
how conflicts are resolved in
PLPs. Section 4 defines syntax and
semantics for dynamic PLPs
(DPLPs), and presents simple
applications of DPLPs, while
section 5 investigates basic
properties of PLPs and DPLPs.
Finally, section 6 disCusses some
related work and concludes the

paper.

2 Syntax of Prioritized Logic
Programs (PLPs)

In this section we provide a formal
description of prioritized logic
programs (PLPs).

Our language L includes the
following vocabulary:

- Variables: X, y, z, m m °.

- Constants: C, Ci, C2, ¢ o o,
including logical constants True
and False.

- Predicates: P,Q, R, m m m.

- Names: N, N\, N2, m m mm

- A strict partial ordering (i.e.

antireflexive, antisymmetric and
transitive) < on names.

- A naming function A/"
which maps a rule (see below) to a
name.

- A symbol , which is used to
represent a rule.

- Connectives -1 and not,
where -1 represents the classical
negation (strong negation), and not
represents negation as failure (phu
dinh ngam, phu dinh nhu thét bai)
(weak negation).

We also require that the sets of
variables, constants, predicates and
names be disjoint.

A term is either a constant or a
variable. An atom [(nguyén to,
nguyen tir) is P{t\, « « «, tk), where
P is a predicate of arity k and t\, m
m - tk are terms. A literal (truc
Kién) is either an atom P or a
negation of an atom —>P. A rule
Is a statement of the form

LgiPi}" 1 Lm,note « * not Ln,

where Li (0 < i < n) is a literal
(truc kien). LQ is the head of the
rule, while Li, m m m, Lm,not
Lm.) i, * * not Ln is the body of
the rule. Obviously, the body of a
rule could be empty.

A term, an atom, a literal, or a rule
Is ground if no variable occurs in
it.

For the naming function A/", we
require that for any rules r and r' in
a PLP (see the following
definition), Af{r) = Af(r") iff r and
r' indicate the same rule.

An extended logic program Il is a
collection of rules [5]. A
prioritized logic program (PLP) V

I

Lo Ly, -, Lyynot Ly, 4y, -+ not L,

is a triplet (11, A/", <), where Il is
an extended logic program, Af is a
naming function mapping each
rule in Il to a name, and < is a
relation representing all strict
partial orderings on names.

The following is an example of
prioritized extended logic
program.

V\=({P <—notQ, notR, Q <—
not P, R <— not P}, {Af(P <—
not Q, not R) = Ni, N{Q <r- not P)
=N2, Af(R P) = A3}, {Nx <
N2,N2 <

Ns}).
To simplify our presentation, we
usually represent V\ as the

following form: Vn
Ni: P <—not Q, not R,
A2 :Q <—notP,

A3 :R <—notP,

Al <A2, N 2<AS.

We also use notations V\ (II),
V\(A/"), and 7?i(<) to denote the
sets of rules, naming function’s
values and <-relation of W\
respectively.

Consider the following program:
V2-.

N\ : P <—not Q, not R,

A2 :Q<—P,

A3 :i? <—nof P,

N1 < A2, A2 < A3, Ai<AS.

Obviously, the only difference
between V\ and V2 is that there is
one more relation Ai < A3 in V2.
As we mentioned earlier, since < is
a strict partial ordering (i.e.,
antirellexive, antisymmetric and

Pr=({P « notQ, not R, () « not P, R « not P}, {N(P « not (), not
R) = Ny, N[+ not P) = Noy N(R « not P) = Na}, { N1 < Na, Nz <
N3}l

3\

Ny i P+ not(), not i,
Ny 1 () + not P,
Nyt R+ not P,

Ny < Ny, Ny < Na.

Ny : P+ not(), not R,
Nz () + not P,
N5t B+ not P,

Ny < Ny, Ny << N3, Ny < N,

transitive), we would expect that
V\ and V2 are identical in some
sense. Furthermore, if we rename
rules in V2 as follows,

V'2-

N[: P <—not Q, not R,
N2:Q <—notP,

A3 : R <—not P,

A<A, A <A A'<A|,

V'2 would be also identical to V2
and hence to V\ too from our
intuition. To make this precise, we
first introduce <-closure as
follows.

Definition 1 Given a program V =
(I, A", <). V(< +) is the <-closure
ofV iffvV{< +) is the smallest set
containing V(<) and closed under
transitivity.

We also need to define a renaming
function as follows. A renaming
function Rn maps a PLP V = (I,
A”, <) to another PLP V , i.e.
Rn(V) = V' = (IT, A/7, <), such
that (i) V{li) = ~'(n"); (ii) for each
ruler £ P(11)1, \f (r) = A G V(AD)
iff Af(r) = A' G V'(Afr) (A and A’
are not necessarily different); (iii)
for any rules r\ and r2 in P(ll),
M{r\) = N\, Nir?) = N2 G P(AO,
and JVj < JV2 € V{<) iff N'in) =
N[, Affa) = G P'(Af'), and< 72
N TI(<N- N is easy to see that
applying a renaming function to a
PLP will only change the names of
rules in the PLP.

Two prioritized extended logic
programs V\ and V2 are identical
Iff there exists a renaming function
Rn, mapping V2 to V'2 such that
Pi (I1) = P2(n"), Pi(AO = and
VI{<+) = P2(</+).

We have defined that a prioritized

3

ey [e B v b b

Py
'
A

R
£
-

-

bl =

A

not (), not I,
nat P,
not I?,
Vi < N

o
-
-

L
'
n

=

o

ray

extended logic program is a
Gelfond and Lifschitz’s extended
logic program [5] by associating
with a partial ordering < to it.
Intuitively such ordering
represents a preference of applying
rules during the evaluation of the
program. In particular, if in a
program V, relation Af{r) < Af(r)
holds, rule r would be preferred to
apply over rule r' during the
evaluation of V (i.e. rule r is more
preferred than rule r'). Consider
the following classical example
represented in our formalism:
V3.
Nx :Fly(x)<- - Bird(x), not
"Fly{x),
n2 :"Fly(x) Penguin(x)
not Fly{x
n3 : Bird(Fweety),
n4d :Penguin (Fweety),
n2 < Nx

Obviously, rules N\ and N2
conflict with each other as their
heads are complementary literals ,
and applying N\ will defeat A®
and vice versa. However, as N2 <
N1, we would expect that rule N2
Is preferred to apply first and then
defeat rule N1 after applying N2
so that the desired solution
~"Fly(Tweety) could be derived.

3 Semantics of PLPs

In this section, we develop the
semantics of PLPs. Our method is
based on an extension of answer
set semantics for extended logic
programs [5]. Before we present
our idea in detail, we need to
introduce this answer set
semantics first.

3.1 Answer Sets for Extended

H:'I

_1'\--| s
Ny

_1\-;5 .
.1\-_.] :

N; <

: =yl) « Penguiniz), not Fly(z),

Fily(x) + Bird(z), not =Fly(x),

Bird(Tweety) «,
Penguin(T weety) +,
N,

Logic Programs: A Review

Let Il be an extended logic
program. For simplicity, we treat a
rule r in Il with variables as the set
of all ground instances (thuc thé,
thé hién, thé nghiém) of r formed
from the set of ground literals of
the language of Il. We will also
adopt this assumption in our
prioritized extended logic
programs. In the rest of paper, we
will not explicitly declare this
assumption whenever there is no
ambiguity in our discussion.

Let Il be an extended logic
program not containing not and Lit
the set of all ground literals in the
language of II. The answer set of
Il, denoted as Ans(ll), is the
smallest subset S of Lit such that
(1) foranyrule LQ <— L1, -
o, Lm from II, if L1, ¢+, Lm G S,
then LQ G S]

(i) if S contains a pair of
complementary literals, then S =
Lit.

Now consider Il be an extended
logic program. For any subset S of
Lit, let 115 be the logic program
obtained from Il by deleting

(i) each rule that has a formula
not L in its body with L G S, and
(i) all formulas of the form not
L in the bodies of the remaining
rules.

We define that S is an answer set
of 11, denoted Ans(ll), iff S is an
answer set of 115 1ie. S =
Aras(115).

Consider V3 presented in last
section. It is not difficult to see
that extended logic program ~(ll)
has two answer sets:
{Bird(Tweety), Penguin(Tweety),

-1Fly(Tweety)} and
{Bird(Tweety), Penguin(Tweety),
Fly(T weety)}.

3.2 Answer Sets for PLPs

In program V3, we have seen that
rules N1 and N2 conflict with each
other. Since N2 < N\, we try to
solve the conflict by applying N2
first and defeating N1. However,
In some programs, even if one rule
iIs more preferred than the other,
these two rules may not affect
each other at all during the
evaluation of the program. In this
case, the preference relation
between these two rules does not
play any role in the evaluation and
should be simply ignored. This is
illustrated by the following
program:

N\ : P <—not Qi,

N2 : -i-P not Q2,

Ni < N2.

Although heads of N1 and N2 are
complementary literals, applying
N1 will not affect the applicability
of N2 and vice versa. Hence N1 <
N2 should not be taken into
account during the evaluation of
V4. The following definition
provides a formal description for
this intuition.

Definition 2 Let n be an extended
logic program and r a rule with the
form Lg <— L1, ¢ * «, Lm, not
Lm+1, ¢ ¢ » not Ln (r does not
necessarily belong to Il). Rule r is
defeated by Il iff for any answer
set Ans(Il) of 11, there exists some
Li G Ans(Il), where m+ I <i<n.

P; .

Ny P+ not(),,
Ny :=FP + not ()z,
N, < Ns.

Now our idea of evaluating a PLP
Is as follows. Let V = (I, A/", <).
If there are two rules r and r' in
P(I) and Af(r) < Af(r"), r' will be
ignored in the evaluation of V,
only if keeping r in P(Il) and
deleting r' from P(I1) will result in
a defeat of r', i.e. r' is defeated by
P(Il) — {r}. By eliminating all
such potential rules from P(ll), V
is eventually reduced to an
extended logic program in which
the partial ordering < has been
removed. Our evaluation for V is
then based on this extended logic
program.

Let us consider program V3 once
again. Since N2 < N1 and A%i is
defeated by V3 — {A7i} (i.e. the
unique answer set of V3 — {A"i}
IS {Bird(Tweety),
Penguin(Tweety), —
>Fly(Tweety)}), rule A”i should
be ignored during the evaluation of
V3. For program V4, on the other
hand, although A™i < N2, relation
AM < N2 will not affect the
solution of evaluating V4 as "(ll)
—{A"} does not defeat N2 (i.e.
the unique answer set of ~(Il) —

{A}is {-P}).

Definition 3 Let V = (Il, A/", <) be
a prioritized extended logic
program. V< is a reduct of V with
respect to < if and only if there
exists a sequence of sets Ilj- (i =
0,1, * * m) such that:

(i) nO=1II

(it) —n8—1 (fI") there exists
r (z 11%—1 such that

foreveryj (=1, k), Af{r) <
M{rj)) G V(< +) and ri, * * °, rfc

are defeated by Ij_i — {ri, * * »,
"}, and (b) there does not exist a
rule r' G n8_i such that N(ri) <
N(r') forsome j(j=1, ¢, k) and
rJ is defeated by 1j_i— {r'}};

(in) p< = a=0n8-

In Definition 3, clearly V< is an
extended logic program obtained
from 11 by eliminating some rules
from I1. In particular, if Af(r) < Af
(rr) and Il — {r'} defeats r', then
rule r' will be eliminated from Il if
no less preferred rule can be
eliminated (i.e. conditions (a) and
(b)). This procedure is continued
until a fixed point is reached. Note
that due to the transitivity of <, we
need to consider each Af(r) < Af
(rr) in the <-closure of V.

Example 1 Using Definition 1 and
3, it is not difficult to conclude
that V\, V3 and V4 have unique
reducts as follows respectively:
Vi={P <—not Q, not R},

= {-iFly(x) <— Penguin(x), not
Fly(x),

Bird(Tweety) , Penguin(Tweety)
<—}

v< = p4(n).

It is quite obvious to note that the
reduct of a PLP may not be unique
as the following example shows.
Example 2 Consider a PLP V5:
V5!

Ni: P

A2 m QnotR,

A3:T

A4 :R <—not Q,

Al <A"2, A3 < A4,

According to Definition 3, it is
easy to see that V5 has two
reducts: {P , T R <— not Q} and

1§

PF={P + not(), not R},
Ps = {-Fly(z) « Penguin(z), not Fly(z),
Bird(Tweety) +, Penguin(Tweety) +},

Ps = Py(11).

I
Ps:

Ny i P+,

Ny : () + not R,
Ny T+,

Ny B+ not(),
Ny < Ny, N3 < N;y.

{P,QntR, T<—}. m

We should also mention that the
condition (b) in the construction of
11; in Definition 3 is necessary.
Without ths condition, some
unintuitive results may be derived.
For instance, if we have additional
preference information A3 < A2 in
program V3, then using a modified
version of Definition 3 without
condition (b) in the construction of
11;, we will conclude that {Fly(x)
<— Bird(x), not -1 Fly(x),
Bird(Tweety) , Penguin(Tweety)
<—1} is also a reduct of V3, which,
as will be followed by Definition 4
next, leads to an unintuitive result
saying that Tweety can fly.

Now it is quite straightforward to
define the answer set(s) for a
prioritized extended logic
program.

Definition 4 Let V = (I, A/", <) be
a PLP and Lit the set of all ground
literals in the language of V. For
any subset S of Lit, S is an answer
set of V, denoted as Ansp(V), iff S
= Ans(V<) for some reduct P< of
V.

Example 3 Immediately from
Definition 4 and Examples 1 and
2, we have the following solutions:
Ansp(V1) = {P},

Ansp (V3) = {Bird{F weety),
Penguin(Fweety), ~"Fly(Fweety)},
Ansp (V4) = Lit,

and two answer sets for V5:
Ansp(V5) = {P,R,F},

Ansp{V5) = {P,Q,F},

which, respectively, are also
consistent with our intuitions. m
3.3 More Examples

Now let wus examine more
examples to illustrate some

Ans’ (Py) = { P},
Ans” (Ps) = {Bird(T weety),
Penguin(Tweety), —Fly(Tweety) },
Anst(Py) = Lit,
and two answer sets for Ps:
Ans" (Ps) ={P, R, T},
Anst (Ps) ={P,Q.T},

features of PLPs. Example 4 Let

VQ be:

V6:

N\:P <—not Q,
N2 : -i-P <—not P,
N2 < Ai.

This program was originally
presented in [2]. The reduct of Vq
Is Vg{T1). So the unique answer
set of VVq is {P}. Note that even if
the heads of N\ and N2 are
complementary literals and N2 <
N\, rule Ni can not be deleted from
An) as Mn) — {A"} does not
defeat N\. m

Example 5 Let V7 be:

VI,

N\:P <—not Q,

N2 :Q <—notP,

:R<—notQ, not S,

N4 :S <—notR,

N1 < N2, N3 <N4.

A(11) has three answer sets: {P, R},
{Q, S}, and {P, S}. The unique
reduct of V7 is {P <— not Q, R
<— not Q, not S}. Therefore, the
unique answer set of V7 is Ansp
(V7) = {P,R}. Note that this
solution is consistent with our
intuition since N1 < N2 and < N4,
and applying N1 and causes N2
and N4 inapplicable respectively.

|

Example 6 Let Vs be:
Vs:

N\ : P <—not Q, not R,
N2 :Q <—not P,

: R <—not P,

Ni < N2.

~(n) has two answer sets {P} and
{Q,R}. Obviously, N2 is not
defeated by Ps(n) — {"2} as P
only belongs to one of two answer
sets {P} and {i?} of Ps(n) — {"2}.

-Pri:

: P+ not (),
: =P« not P,

\
N
V, < Nj.

1
2
2

Ny : P+ not (@),

Ny : () + not P,

Ny R+ not(, not S,
Ny S5+« not K,

N, < Ny Ny < N

-PH:

Ny : P+ not(), not R,
Ny :() + not P,
Ni: R +— not P,
< N

-

2]

Therefore, the unique reduct Vg of
Vs is the same as Ps(n). So Vs has
two answer sets {P} and {Q, R}.

It is worth observing that if we add
N1 < to Vs, Vs will then has a
unigue answer set {P}. On the
other hand, if we add < N1 instead
of N\ < N%, the unique answer set
of Vs will then have {Q, R}. m

4 Logic Programs with
Dynamic Preferences

So far, preferences specified in our
prioritized logic programs are
static in the sense that the partial
ordering < among rules is pre-
defined from outside. Using PLPs
to represent knowledge of a
domain, the user must explicitly
specify his/her preference
information about the domain.
However, as observed by Brewka
recently [2], in many situations,
preferences are context-dependent,
and there may not exist a feasible
way to specify such preferences
explicitly. Consider the following
extended logic program:

Vo:

Ni ; -iIEmployed(x) <—
Student(x),

nof£ Employed(x),

A"2 . Employed(x) <— Age(x, >
25),

no£ -iIEmployed(x),

- Student(x) <— FT-Student(x),
W4 . Student(x) <— PT-
Student(x),

N5 : Student(Peter) ,

A6 : Age(Peterl > 25) .

Obviously, Pg has two answer
sets, from one we conclude -
IEmployed(Peter) and from the
other we conclude
Employed(Peter). By specifying

.1|'I-r-;

c=Employed(z) + Student (z),
not 'mployed(x),

: Employed(x) + Age(x, > 25),
not —Employed(z),

y 1 Student(z) + FT-Student(zx),
g @ Student(z) + PT-Student(x),
5 1 Student(Peter) +,

: Age(Peter, > 25) +.

Ni < A2 or N2 < N\, we can retain
one answer set and exclude the
other, and hence resolve the
conflict as it may occur. However,
the reason for specifying Ni < N2
(or N2 < Ni) rather than N2 < (or
AN < N2) is completely motivated
by the user. There is no way in our
PLPs to express the preference
about preference. For instance,
with a more natural way, we may
hope to express that “if 1 is a full-
time student, then N1 is more
preferred than N2, while if 2; is a
part-time student, then N2 is more
preferred than N\”. Therefore, if
we obtain further information
knowing that Peter is a full-time
student, we would expect to
conclude that Peter is unemployed,
otherwise Peter’s employment
status will remain indefinite.
Hence, to make our system more
flexible, we need to reason about
preferences. In other words, we
hope to specify the preference
information dynamically in our
prioritized logic programs. In this
section, we will discuss the
dynamic PLPs (or DPLPs for
short). We provide an answer set
semantics for DPLPs based on the
answer set semantics of PLPs.

4.1 Syntax of DPLPs

A language CD of DPLPs is a
language £ of PLPs except the
following modifications:

- Variables consist of
variables x, y, z, m m m of C and
name variables n, n\, n2, m m -,
where {X, Yy, z, m m *} and {n, n\,
n2, m m *} are disjoint.

- Constants consist of
constants C, Ci, C2, » » » of C and

name constants N, N\, N2, m m *,
where {C, Ci, C2, m m m} and
{TV, N\, N2, m m *} are disjoint.

- Names consist of name
variables and name constants. The
naming function Af maps each
rule to a name constant.

- A special predicate < takes
two names as arguments, where <
Is used to represent a strict partial
ordering among rules.

Terms, atoms, literals and rules are
defined as the same in PLPs but
under the language CP. Since < is
a special predicate in CP, < can
occur in any rules of CP. For
instance, N\ < N2 <— not N2 < N\
and n\ < n2 <— P(rai), Q(n2), not
n2 < n\ could be valid rules of CD.
A dynamic PLP (DPLP) is a pair
V = (I, A/"), where Il is a
collection of rules of CD and Af is
a naming function that maps each
rule of Il to a name constant.
Given a DPLP V, LitD denotes the
set of all ground literals of the
language CD of V.

To keep the partial ordering <
consistent, we assume that any
DPLP includes the following two
rules :

< n3<r-nt<n2,n2<n3, (1)
-w2<nini<n2. (2

Example 7 Consider a DPLP as
follows.

'Pio-

N\ : -iEmployed(x) <— Student
(x),

nof£ Employed(x),

A”2 : Employed(x) <— Age(x, >

25),
nof -iIEmployed(x),
N3 : Student (x) <— FT-

Student(x),

g < My A Ty < Mg

Ny 1 =FEmployed(x) + Student (z),

not Employed(x),

Ny : Employed(z) + Age(x, > 25),

not =Employed(x),

Nz @ Student(x) +— FT-Student(x),
Nyt Student(x) + PT-Student(zx),

N : FT-5Student(Peter) +,

Ng : Age(Peter, > 25) +,

N : Ny < Ny + FT-Student(x),not Ny
Ng : N3 < N, & PT-Student(x),not N,

FAVAY

(2)

W4 . Student (x) <— PT-
Student(x),

: FT-Student [Peter) ,

7V6 : Age{Peterl > 25),

W7 : TVi < A2 <— FT-
Student(x),not N2 < ./Vi,

A's . A2 < <— PT-Student(x),not
N\ < A™,

Pio is similar to Pg except that
there are two rules A7 and TVs in
A10 which express conditional
preferences and we know Peter is
a full-time student (i.e. rule N5) .
Intuitively, rule N7 is interpreted
as “if a; is a full-time student and
there is no explicit knowledge to
conclude that N2 is more preferred
than Ni, then rule N1 is more
preferred than rule N2”. A similar
interpretation can be stated for Ng.
It should be also noted that in a
DPLP, preference relations on
rules are not explicitly represented
like PLPs. They have been
encoded into the rules of the
DPLP. m

4.2 Answer Set Semantics for
DPLPs

Now we try to provide a formal
semantics for DPLPs. Our method
of evaluating a DPLP is based on a
transformation of each DPLP into
a PLP in language CP under a
sequence of reductions with
respect to the partial ordering <.
Before to present our method
formally, we first introduce some
useful notations. Firstly, a DPLP V
= (I, Af) can be treated as a
special PLP in language CP with
the form (11, Af, <o), where <0= 0-
Generally, we say that a logic
program V is a PLP in language
CD if the program is specified as

the form (I1, Af, <), where 1l is a
set of rules of CP, Af is a naming
function mapping each rule in 1l to
a name constant and < is a set of
ground atoms of the form N < N'.
In this case, we can compute each
of P’s PLP answer sets, denoted as
Ansp,D(V), by using the approach
proposed in section 3. Consider
the following program.

vn.

iVi :PnotQ,

n2 :Q <—notP,

n3 NX<N27- not N2 < AN
nd N2<Nt* not N\< N2

n3 < N4.

Note that Vn is not a DPLP but a
PLP in language CD as N3 < N4 is
specified from outside of the rules
of V\\. Clearly, under the answer
set semantics of PLPs, Vu has two
answer sets: {P, N\ < A%} and {Q,
N\ <

A2}.

Now we give the formal
descriptions of the semantics of
DPLPs.

Definition 5 Let V = (II, Af) be a
DPLP. A PLP V* in CP is a
transformation of V to PLP if and
only if there exists a sequence of
sets \P4- (i=0,1, * * m) such that
(i) =0, A/”, <o), where n0 =
Il and <0=0;

(i) vpj = (11;, Af, <i), where
11;=isa

reducfe with respect to <; |,
and

<i= {A<N'| N < N'"belongs to all
PLP answer sets ofi-i};

(in) V* = (lloo, Af, <00).

'P“:
.1\-| P

Ny ()¢
Nzt N,
Ny No
Na < Ny

FARFAN

not (),
nat IP,

N, ¢
Ny ¢

not Ng
not Ny

rf.f.f.)l P = |:II-k.j1|;Jr :x]

FARFAN

Definition 6 Let VV = (Il, Af) be a
DPLP. For any subset S of LitD, S
Is an answer set of V, denoted as
AnsD(fP), iff S = Ansp,D (fP*) for
some transformation V* of V to
PLP as defined in Definition 5.

Let us examine the above
definitions more closely. The basic
idea of evaluating a DPLP V is to
transform V to a corresponding
PLP V* in CP, and then use the
PLP answer set semantics to
evaluate V* (eg. Definition 6).
From Definition 5, we can see that
during this transformation, V is
first treated as a special PLP in
£D, i.e. \Po- Then for each i (i =
1,2, e=*), \J/,- = (11;, Af, <i) is a
PLP in CD and generated from
I, i = (I, Af, <_ 1).
Intuitively, <4- presents all ground
instances of the partial ordering <
derived from \Pi_i under the
semantics of PLP, and II; is a
reduct of \Pi_i by eliminating
defeated rules from |Ilj_i with
respect to <;_i (eg. Il; =

This transformation procedure is
continued until a fixed point is
reached. To show how the answer
set(s) of a DPLP can be computed,
let us consider the following
examples.

Example 8 Consider a DPLP V12
as follows.

Pi2'-
N\ : P <—not Q,
N2 'm Q not P,

N3 : N\ <C N2 i— not N2 <C N\,
N4 : N2~ -~1 ~—not Ni <C N2 >
N5:N3< N4

According to Definition 5, we get
the following sequence of \Pj- (i =
1,2, 3) : tfi:

'Pu:
Ny i P+ not (),
Nz 1 () + not P,

_1\-3 : _1\-| < .1\-3 — not .\-g < .1\-|)
Ny i Ny < Ny not Ny < N,
Vot Ny < N 4

N\ : P <—not Q,

N2 :Q <—not P,

N3 : N\ <C N2 i— not N2 <C N\,
N4 : N2 N i— not AN <C N2 >
N5:N3< N4 N3 < N4,

®2:
:P<—nof Q,
AN2 . Q <—P,

A3 : AT <C AN2 "AN2 <C ATH,
N5:N3< N4 ANi < AM2, A3 < W4,
®3:

Ni : P <r-not Q,

A3 : AN <C AM2 —?i0f£ AN2 <C
AT,

N5:N3< N4 ANi < AM2, A3 < W4,

Then it is easy to verify that " =
73. So the transformation of V12
to PLP is VI2 = T’s - Therefore,
from Definition 6, V12 has a
unique answer set AnsD{V12) =
{P, Ni < N2, N3 < AT4, -AT2 <
ATX, -.AT4 <N3}u. m

Example 9 Example 7 continued.
Ignoring the detail, it is not
difficult to see that V\o has a
unique answer set AnsD (V10) =
{Age(Peter, > 25), FT-
Student(Peter), Student(Peter), -1
Employed(Peter), Ni < A"2, -iIA"2
< Ari}, which presents the desired
result for Viq. m

Example 10 Consider a DPLP V\s
as follows.

V13:

NX ni<n2 P(ni), Q(n2),
not n2 <

n2 R(C)<- not R(C),

n3 R(C)<r- notR(C),

nd P(N2)<r ~1

n5 Q(n3) *-

U,
N,
Ny
-1"'--:£
N,
N

s,

0.

1 P not (),
1) +— not P,
Ny < Ny not Ny < Ny,
: No << Ny not Ny < Na
: Ny < Ny &,
< N,
1P+ not (),
51 () + not P,
Ny < Ny« not Ny < Ny,

-
-,
-
-,

3 < Ny —,

L < Ny, Na < Ny,

1P+ not (),
3 - _1'\--| < 1"l-__.;- £ nat 1'\-_.;- < '\-l .

< -1\.-; —_

cny < g i Piny),Q(ng), not ng < ny,
r BR(C') + not R(C"),

,r R(CY) + not R(C),

: P(Ng) 4,

:Q [-\-:ﬁ:] —

This program is a bit different
from those DPLPs discussed
above. Intuitively, Ni can be
viewed as a general rule about the
preference of the domain - “for
any two rules n\ and n2, if n\ and
n2 satisfy properties P and Q
respectively, and there is no
explicit knowledge to conclude
that n2 is more preferred than ni,
then n\ is more preferred than n2”,
while N2 - N$ present explicit
knowledge of the domain
Clearly, using the approach
described above, V\s has a unique
answer set {R(C), P(N2), Q(N3),
N2 <N%, ~*"N3 <7V2}. m

5 Properties of Prioritized
Logic Programs

In this section we discuss some
properties of PLPs and DPLPs in
detail. We first discuss the
property of PLPs. To simplify our
presentation, let us introduce some
useful notations.

Let Il be an extended logic
program. We use AArS'(ll) to
denote the class of answer sets of
I1. Suppose V = (ll, Af, <) is a
PLP. From Definition 3, we can
see that a reduct V< of V is
generated from a sequence of
extended logic programs: Il = llo,
I, 112, » « e« We use notation
{11;} (1= 0,1, 2, « * *) to denote
this sequence and call it a reduct
chain of V. Then we can prove the
following useful result .

Theorem 1 Let V = (Il, Af, <) be a
PLP, and {II;} (1i=0,1,2,**m)a
reduct chain ofV. Suppose each I,
has answer setfs). Then for any i
and j where i < j, ANSiUj) C

ANS(Ui).

Theorem 1 shows an important
property of the reduct chain of V:
each Il; is consistent with II;_i but
becomes more specific than II;_i
in the sense that all answer sets of
Il; are answer sets of II;_ i but
some answer sets of

Il; 1 are filtered out if they
conflict with the preference partial
ordering <.

The following theorem shows the
answer set relation between a PLP
and its corresponding extended
logic programs.

Theorem 2 Let V = (I, Af, <) be a
PLP. Then a subset S of Lit is an
answer set ofV iff S is an answer
set of each II; for some reduct
chain {n.-} (i=0,1, 2, » *» m) ofV,
where each I1; has answer set(s).
Now we investigate properties of
DPLPs. Let V and V' be a DPLP
and a PLP in CP respectively. We
use ANSP,D {V') to denote the
class of PLP answer sets of V'
From Definition 5, we can see that
a transformation V* of V is
generated from a sequence of
PLPs in CD: \Po, "i> /2> ¢ ¢ ee We
use notation {'I';} (i=0,1,2, ***) to
denote this sequence and call it a
PLP- reduct chain of V. Then,
similarly to the case of PLPs
described earlier, we have the
following results for DPLPs.
Theorem 3 Let V = (II, M) be a
DPLP, and {T;} (i=0,1,2,**m)a
PLP- reduct chain of V. Suppose
each has PLP answer set(s). Then
for any i1 and j where i < |,
ANSP,D(\Pj) C ANS"HM).
Theorem 4 Let V = (II, M) be a
DPLP. Then a subset S of LitD is

an answer set of V iff S is a PLP
answer set of each for some PLP-
reduct chain {'I';} (i=0,1,2, « » m)
ofV, where each has PLP answer
set(s).

6 Related Work and
Conclusions

The issue of logic programs with
preferences has been explored
recently also by other researchers
[4, 6, 7]. However, most of these
proposals are not completely
satisfactory. One of the major
limitations of their work, as
pointed by Brewka [2], is that the
priority can only be expressed
statically. Another restriction of
some previous proposals is that
only one type of negation was
considered in their logic programs
(eg. [4, 7]).

Our work described in this paper is
most related to Brewka’s recent
work on prioritized logic programs
[2], while Brewka proposed a
well-founded semantics for logic
programs with dynamic
preferences.

Due to the space limitation, we
will not compare these two
semantics in detail. A thorough
investigation of the relationship
between these two approaches was
presented in our technical report.
In brief, our method inherits some
advantages and drawbacks from
answer set semantics, while
Brewka’s approach inherits some
advantages and drawbacks from
well-founded semantics as well.
For instance, our answer set
semantics can derive reasonable
conclusions in most cases, but
some reasonable solutions can not

be obtained from Brewka’s well-
founded semantics (see page 35 in
[2]). On the other hand, reasoning
under our semantics is intractable
in the general case while it can be
done in polynomial time under
Brewka’s semantics. However,
based on recent results of
computations of stable models, eg.
[3], it is possible to locate a
reasonably broad tractable
subclass of our prioritized logic
programs so that the applicable
range of our method can be
identified. Detailed work
concerning the computational
analysis about our PLPs and
DPLPs was presented in [9].

The prioritized logic programs
proposed in this paper can be used
to solve some important problems
in reasoning about change. In [8]
and [9], we also investigated the
applications of PLPs to deal with
generalized rule-based updates and
actions in domains including
defeasible and causal constraints.
These results have enhanced our
expectation of using prioritized
logic programs as a general tool to
formalize and implement dynamic
knowledge systems in the real
world.

