

Tài liệu này được dịch sang tiếng việt bởi:

Từ bản gốc:

https://drive.google.com/folderview?id=0B4rAPqlxIMRDcGpnN2JzSG1CZDQ&usp=shari ng

Liên hệ để mua:

thanhlam1910_2006@yahoo.com hoặc frbwrthes@gmail.com hoặc số 0168 8557 403 (gặp Lâm)

Giá tiền: 1 nghìn /trang đơn (trang không chia cột); 500 VND/trang song ngữ

Dịch tài liệu của bạn: <u>http://www.mientayvn.com/dich_tieng_anh_chuyen_nghanh.html</u>

Α	therm	odynaı	nic	moc	lel	for	the
me	lting	of	su	pport	ed	m	netal
nai	nopartio	cles <mark>9 l</mark>	h 13	15/7			

Abstract

We simple construct а thermodynamic model to describe the melting of a supported metal nanoparticle with spherically a curved free surface both with and without surface melting. We use the model to investigate the results of recent molecular dynamics simulations. which suggest the melting temperature of a supported metal particle is the same as that of a free spherical particle with the same surface curvature. Our model shows that this is only the case when the contact angles of the supported solid and liquid particles are similar. This is also the case for the temperature at which surface melting begins.

1. Introduction

Despite decades the of study. melting of nanoparticles continues to generate interest [1-4]. In general, the melting temperature of spherical nanoparticles has been found to decrease in proportion to the surface area to volume ratio of the particle [5], as the surface free energy of a molten droplet is less than that of the corresponding solid particle. Although free nanoparticle calorimetry advanced has considerably in recent years [6, 7], most experimental determinations of the melting points of nanoparticles are conducted with supported particles (gold [8], lead [9] and tin [10], for example). The melting of nanoparticles supported is also important in carbon nanotube growth and other catalytic processes [11,12],

Mô hình nhiệt động lực học cho quá trình nóng chảy của các hạt nano kim loại phủ

Tóm tắt

Chúng tôi xây dựng mô hình nhiệt động lực học đơn giản để mô tả quá trình nóng chảy của một hạt nano kim loại phủ với bề mặt tự do hình cầu khi có và không có hiện tượng nóng chảy bề mặt. Chúng tôi sử dụng mô hình để đánh giá kết quả của các mô phỏng động học phân tử gần đây, các mô phỏng này cho rằng nhiệt độ nóng chảy của hạt kim loại phủ bằng nhiệt độ nóng chảy của một hạt hình cầu tự do có cùng độ cong bề mặt. Mô hình của chúng tôi chứng tỏ rằng điều này chỉ đúng khi các góc tiếp xúc của các hạt phủ rấn và lỏng bằng nhau. Điều này cũng đúng ở nhiệt độ bắt đầu quá trình nóng chảy bề mặt.

1. Giới thiệu

Dù trải qua nhiều thập kỉ nghiên cứu, quá trình nóng chảy của các hat nano vẫn được tập trung nghiên cứu ngày càng nhiều [1-4]. Nói chung, người ta thấy nhiệt độ nóng chảy của các hạt nano cầu giảm theo tỷ số diện tích bề mặt-thể tích của hạt [5], vì năng lượng tự do bề mặt của một giọt nóng chảy nhỏ hơn hạt rắn tương ứng. Mặc dù phép đo nhiệt lượng hạt nano tự do đã đạt được những bước tiến đáng kể trong những năm gần đây [6, 7], nhưng trong thực nghiệm người ta thường xác định nhiệt độ nóng chảy của hạt nano bằng các hạt phủ (chẳng hạn vàng [8], chì [9] và thiếc [10]). Quá trình nóng chảy của các hạt nano phủ cũng rất quan trọng trong quá trình hình thành ống nano carbon và các quá trình xúc tác khác [11,12], và cho sư ổn định của các thiết bị cấu thành từ các hạt nano [13, 14]. Do đó, chúng ta cần phải nghiên cứu ảnh hưởng của đế đến nhiệt độ nóng chảy của một hạt nano phủ.

Substrate: đế, nền

and for the stability of devices assembled from nanoparticles [13, 14]. Thus, it is of interest to study the effect of the substrate on the melting point of a supported nanoparticle.

Recent molecular dynamics simulations [15] of supported iron nanoparticles with a strongly interacting substrate found that the melting point of the particles was reduced in inverse proportion to the equilibrium surface curvature that results as they relax to wet the substrate. This statement also holds in the free particle limit because the curvature of a free spherical particle of radius a is proportional to its surface to volume ratio. 3/a. Interestingly, the simulations in [15] found that the constant of proportionality between the decrease in melting point and the surface curvature did not depend on whether the particle was supported or free. In other words, the melting temperature of a supported particle that has a free surface with radius of curvature a. was found to be the same as that of a free spherical particle with the same surface curvature. The simulated nanoparticles in [15] also exhibited surface melting prior to complete Surface melting melting. is а phenomenon thought to occur both on certain bulk metal surfaces [16] and in certain metal nanoparticles [17, 18].

In this paper we use a simple thermodynamic model to investigate the role of the substrate in both melting and surface melting of metal nanoparticles. Our model suggests

that the result in [15], that the relative decrease in melting point is proportional to the solid particle surface curvature, only holds when the contact angles of the supported solid and liquid particles with the substrate are similar. We also show that supported clusters will exhibit surface melting under certain circumstances, and that the surface melting temperature in free and supported particles in clusters with the same surface curvature is the same only when the contact angles of the supported solid and liquid phases coincide.

2. Geometry of supported particles

We start by considering a solid nanoparticle, initially spherical with radius a, that is placed on a flat substrate. We neglect the effect of faceting, curvature dependent surface energies and internal strains due to epitaxial mismatch with the substrate.

Figure 1. The model for the geometry of a supported nanoparticle in equilibrium. We assume that the particle is a spherical cap of height H and radius of curvature R (left-the dashed lines simply illustrate the radius of curvature). At the onset of surface melting, we assume that the geometry is close to that of the solid particle in its equilibrium geometry and that the solid particle (radius of curvature r and height h) is initially wet by a molten layer of uniform thickness & = R - r = H - h(right).

Furthermore, we will assume that the particle has relaxed to its equilibrium geometry i.e. that the nanoparticle

has relaxed to 'wet' the substrate. Provided the nanoparticle is heated sufficiently slowly, the particle should relax to this geometry prior to melting. With these simplifying assumptions, the geometry of the relaxed particle can be approximated by a spherical cap, as shown in with dimensions 1. figure parameterized by either the cap height H, or radius of curvature of the free surface R, which minimizes the surface energy of the nanoparticle and substrate.

The surface energy T of the system can be written as:

T = 2n RHys + n H (2 R - H)(Ysb - Kb) + T (1)

where ys is the surface energy density of the free particle surface, Yb is the surface energy density of the substrate, ysb is the particlesubstrate interfacial energy density and Tb is the total energy of the bare substrate. We will assume that the density of the particle ps does not depend on the contact angle so that the volume of the supported particle remains the same as that of the free particle.

Writing the volume of the particle as a function of H and R, it is then straightforward to show that T is minimized if H = - (AySb/Ys)R where AYsb = Yb - Ys - Ysb. We note that AYsb is often called the spreading parameter in the context of wetting phenomena: if AYsb > 0 then the particle will relax to fully wet the substrate. Here we are interested in the case where the particle does not fully wet the substrate (contact angles greater than zero) i.e. when AYsb < 0 and H/R =

$\Gamma = 2\pi R H \gamma_{\rm s} + \pi H (2R - H)(\gamma_{\rm sb} - \gamma_{\rm b}) + \Gamma_{\rm b}$ (1) $\Gamma^* = 2\pi\gamma_{\rm s} \left(\frac{a}{R^*}\right) a^2 + \Gamma_{\rm b},$ (2)

— AYsb/Ys > 0 at equilibrium. In fact this minimum value of T can be written as

where R* is the corresponding radius of curvature of the supported solid nanoparticle, given by

Thus, T* and R* are the equilibrium surface energy and radius of curvature of the particle respectively. Note that the contact angle of the particle can range from 0° to 180° depending on the value of the spreading parameter AYsb.

3. Melting and surface melting

In what follows we will assume that the density of the solid and liquid phases are identical i.e. ps = pi = p. We first consider the situation in which there is no surface melting. In this case, melting will occur at a temperature when the free energy of the solid particle wetting the substrate is equal to that of the corresponding liquid droplet wetting the substrate. If Y1 is the surface energy density of the free liquid droplet and R* is the corresponding equilibrium radius of curvature, then the difference in free energy between the solid and liquid is

where fs (fl) is the bulk free energy density of the solid (liquid). Now, using fl — fs = pL(1 - T/Tc), where L is the latent heat of melting and Tc is the bulk melting temperature, we find that the melting temperature Tm of the supported particle is given by:

Thus, if $Rs^* = Rl^* = R^*$ then we recover the result of [15], namely

$$R_{\rm s}^* = \left(\frac{2\gamma_{\rm s}}{\Delta\gamma_{\rm sb}}\right)^{2/3} \frac{a}{\left(3 + \Delta\gamma_{\rm sb}/\gamma_{\rm s}\right)^{1/3}}.$$
 (3)

$$\Delta F = \frac{4}{3}\pi a^3 \rho \left(f_{\rm s} - f_{\rm l} + 3\left(\frac{\gamma_{\rm s}}{R_{\rm s}^*} - \frac{\gamma_{\rm l}}{R_{\rm l}^*}\right) \right) \tag{4}$$

$$T_{\rm m} = T_{\rm c} \left(1 - \frac{3}{\rho L} \left(\frac{\gamma_{\rm s}}{R_{\rm s}^*} - \frac{\gamma_{\rm l}}{R_{\rm l}^*} \right) \right)$$
$$= T_{\rm m}^{\rm free} \left(R_{\rm s}^* \right) + \frac{3\gamma_{\rm l}}{\rho R_{\rm s}^* L} \left(1 - \frac{R_{\rm s}^*}{R_{\rm l}^*} \right) T_{\rm c}.$$
(5)

that $Tm = Tmfree(R^*)$. In other words, if the contact angles of the solid and liquid droplets are equal, the melting temperature of the supported particle is the same as that of a free particle with an identical surface curvature, $a = R^*$. However, if the curvature of the supported liquid particle is different from that of the supported solid particle, it can be seen that the melting temperature will deviate from that found in [15]. Now we consider surface melting as illustrated in figure 1 which is thought to occur in many metals prior to melting [16]. We are interested in determining the onset of melting, when the solid particle is wet by a thin layer of melt (thickness &) at the solid-vapour interface. We will assume that this melt forms a layer of uniform thickness with a geometry like that represented in figure 1 with & = R - r = H - h. The total free energy of the surface melted particle is then a function of &: F(&) = ys(&)(fs - f) + Vfl +T(&) where Vs(l) is the volume Figure 2. The melting temperature Tm and critical liquid film thickness for supported Pb clusters as a function of the radius of curvature Rs of the relaxed solid particle for =0.05, 0.10, 0.15 J m-2 and in the case where $\cos 9s = \cos Q$ (vlb ~ 0.13 J m-2). Also shown is the melting temperature of a free particle with radius Rs. Other surface energies used are ysv = 0.61, yv = 0.48, ysl =0.05, yb = 0.25 and Ysb = 0.1 J m-2 giving a contact angle of 75.8° for the solid supported cluster, and contact angles for the liquid droplets ranging from 78.0° to 65.4°

respectively. Other parameters used were % = 0.63 nm, p = 10 950 kg m-3, L = 22 930 J kg-1 and Tc = 600.65 K [9].

of the solid (liquid) and T is the thickness dependent surface energy. In particular

T = n (2RHYI + r(2r - h)ysb + S(2R))-S)Yb + 2rhyA(S))

where ysl(S) = ysl + Ayslexp(-S/%)and % is a correlation length that describes the thickness dependence of the interfacial energy in thin metallic liquid films [16] (in Pb, for example, % has been measured to be ~ 0.6 nm [19]). As the surface melting proceeds, the curvature of the particle will relax to minimize the free energy i.e. $R^* = R^*$ (S) where R* minimizes the free energy F for a given S.

In an isolated spherical nanoparticle of radius a, by minimizing the free energy F (S) with respect to S and setting S = 0, one can show that melting surface begins at a temperature, Ts (a) given by

Aysi 0(Ks ~ Ki) p% L paL

provided Aysl > 0 and a > %(ys yl)/Aysl (if a is less than this, full melting will precede surface melting i.e. Tsfree > Tmree [17], and equation (5) will hold).

For surface melting to occur in a supported solid nanoparticle with equilibrium curvature Rs. a minimum in the free energy F(S)must appear at S = 0. It is straightforward to show that a minimum in F at S = 0 occurs at the temperature Ts:

where Qs and Q are the contact

$$\Gamma = \pi \left(2RH\gamma_{\rm l} + r(2r-h)\gamma_{\rm sb} + \delta(2R-\delta)\gamma_{\rm lb} + 2rh\gamma_{\rm sl}(\delta)\right)$$

$$T_{\rm s}^{\rm free}(a) = T_{\rm c} \left(1 - \frac{\Delta \gamma_{\rm sl}}{\rho \xi L} + 2 \frac{(\gamma_{\rm s} - \gamma_{\rm l})}{\rho a L} \right) \tag{6}$$

$$T_{s}(R_{s}) = T_{s}^{\text{free}}(R_{s}) + \frac{T_{c}}{\rho R_{s}L} \left(\frac{\gamma_{s} \Delta \gamma_{\text{lb}} - \gamma_{l} \Delta \gamma_{sb}}{\Delta \gamma_{sb}}\right)$$
$$= T_{s}^{\text{free}}(R_{s}) + \frac{\gamma_{l}T_{c}}{\rho R_{s}L} \left(\frac{\cos \theta_{s} - \cos \theta_{l}}{1 - \cos \theta_{s}}\right)$$
(7)

angles for the solid particle and liquid particle respectively (defined via Young's relation Ys(l) cosQs(l) = Yb - Ys(i)b). Once again, if the contact angles of the solid and liquid droplets then are equal, the temperature at which surface melting occurs is identical to that of a free particle with the same surface curvature, Rs i.e. Ts = Tsfree(Rs). Furthermore, if $\cos Qs > \cos Ql$, so that the substrate favours contact with the solid over that with the liquid, the corresponding Ts increases and vice versa.

Complete melting will occur once the free energy of the surface melted particle, F(S), equals that of the corresponding liquid droplet, Fx, i.e. at the temperature Tm and liquid film thickness Sm which satisfy F(Sm) = Fx. It is not possible to obtain an analytic expression for Sm or Tm, but numerical solutions to the resulting equations are shown in figure 2 as a function of Rs for Pb particles. The figures clearly show the strong dependence of the melting temperature on the liquid droplet contact angle: a difference of $\sim 10^{\circ}$ in the molten particle contact angle can shift the melting point by ~100 K. Note that the melting point of a free particle with radius Rs no longer coincides with that of a supported particle with radius of curvature Rs when $\cos Qs = \cos Ql$, as in general the radius of curvature of the critical surface melted droplet will not be that of the solid particle (although the curves lie close to each other).

4. Conclusion

We conclude that the melting temperature (and surface melting

temperature, if the particle exhibits supported surface melting) of nanoparticles depends on the radius of curvature (or the contact angle) of both the supported solid and liquid particles. In general, we do not expect these curvatures to be the same: on a non-ideal solid substrate for example, epitaxial effects may favour one phase over the other. It is likely that the ideal substrate used in [15] resulted in very similar solid and liquid particle contact angles. We have shown that it is only in this 'ideal' that the melting case temperature of free and supported particles with the same curvature is coincident, whether they exhibit surface melting or otherwise. Thus, results from free particle melting, where the curvature of the solid and liquid particles remain substantially have only the same. limited applicability to supported particle melting.

