Theo yêu cầu của khách hàng, trong một năm qua, chúng tôi đã dịch qua 16 môn học, 34 cuốn sách, 43 bài báo, 5 sổ tay (chưa tính các tài liệu từ năm 2010 trở về trước) Xem ở đây

DỊCH VỤ DỊCH TIẾNG ANH	Chỉ sau một lần liên lạc, việc dịch được tiến hành
CHUYÊN NGÀNH	Giá cả: có thể giảm đến 10 nghìn/1 trang
NHANH	Chất lượng Tran dựng niềm tin cho
NHĂT VĂ CHÍNH	<u>khách hàng bằng công nghệ</u> 1.Bạn
XÁC NHÁT	thây được toàn bộ bản dịch; 2.Bạn đánh giá chất lượng. 3.Bạn quyết định thanh toán.

Tài liệu này được dịch sang tiếng Việt bởi:

Hướng dẫn truy cập: Ctrl+click vào các link bên dưới

Từ bản gốc:

https://drive.google.com/folderview?id=0B4rAPqlxIMRDUDBEMnZoemFHM00&usp=sha ring

Liên hệ mua:

thanhlam1910_2006@yahoo.com hoặc frbwrthes@gmail.com hoặc số 0168 8557 403

Giá tiền: 1 nghìn/trang đơn (không chia cột); 500 VND/trang song ngữ

Dịch tài liệu của bạn: http://www.mientayvn.com/dich tieng anh chuyen nghanh.html

Phát hiện tín hiệu trong các hệ thống MIMO ghép kênh không gian

Những hệ thống MIMO (SM- MIMO) ghép kênh không gian có thể truyền dữ liệu với tốc độ cao hơn các hệ MIMO sử dụng kỹ thuật phân lập ăng-ten trong Chương 10. Tuy nhiên, sự phân kênh không gian hoặc phát hiện tín hiệu ở phía bộ thu là một nhiệm vụ tương đối khó trong các hệ SM MIMO. Chương này sẽ đề cập đến các kỹ thuật phát hiện tín hiệu trong các hệ thống SM MIMO. Xét hệ MIMO $N_R \times N_T$ trong hình 11.1. Kí hiệu H là ma trận kênh của nó, **entry** thứ (j, i) h_{ji} của độ lợi kênh giữa ăng-ten phát thứ i và ăng ten nhận thứ j, $j = 1, 2, .N_R$ và $i = 1, 2, ..., N_T$. Dữ liệu người dùng ghép kênh không gian và những tín hiệu nhận tương ứng được biểu diễn là $\mathbf{x} = [x_1, x_2, ..., x_{NT}]^T$ và $\mathbf{y} = [y_1, y_2, ..., y_{NR}]^T$, trong đó x_i và y_j lần lượt biểu diễn tín hiệu phát từ ăng-ten phát thứ i và tín hiệu nhận tại ăng-ten nhận thứ j. Giả sử z_j là nhiễu Gauss trắng có phương sai σ_z^2 ở ăng-ten nhận thứ j, và h – chỉ vector cột thứ i của ma trận kênh H. Bây giờ, hệ MIMO $N_R \times N_T$ được biểu diễn dưới dạng

Entry: cổng vào, mục, đối tượng

 $\mathbf{y} = \mathbf{H}\mathbf{x} + \mathbf{z}$ = $\mathbf{h}_1 x_1 + \mathbf{h}_2 x_2 + \dots + \mathbf{h}_{N_T} x_{N_T} + \mathbf{z}$ (11.1) Trong đó $\mathbf{z} = [z_1, z_2, \dots, z_{NR}]^T$

11.1 Phát hiện tín hiệu tuyến tính

Phương pháp phát hiện tín hiệu tuyến tính xem tất cả những tín hiệu phát là nhiễu ngoại trừ luồng tín hiệu mong muốn từ ăng-ten phát mục tiêu. Do đó, tín hiệu nhiễu từ những ăng ten truyền khác được giảm thiểu hoặc vô hiệu hóa trong quá trình phát hiện tín hiệu mong muốn từ các ăng-ten phát mục tiêu. Để tạo điều kiện thuận lợi cho việc phát hiện tín hiệu mong muốn từ mỗi anten, ảnh hưởng của kênh được nghịch đảo bằng ma trận trọng số W sao cho

$$\tilde{\mathbf{x}} = \left[\tilde{x}_1 \tilde{x}_2 \cdots \tilde{x}_{N_T}\right]^T = \mathbf{W} \mathbf{y},\tag{11.2}$$

$$\|\tilde{\mathbf{z}}_{ZF}\|_{2}^{2} = \|(\mathbf{H}^{H}\mathbf{H})^{-1}\mathbf{H}^{H}\mathbf{z}\|^{2}$$

$$= \|(\mathbf{V}\boldsymbol{\Sigma}^{2}\mathbf{V}^{H})^{-1}\mathbf{V}\boldsymbol{\Sigma}\mathbf{U}^{H}\mathbf{z}\|^{2}$$

$$= \|\mathbf{V}\boldsymbol{\Sigma}^{-2}\mathbf{V}^{H}\mathbf{V}\boldsymbol{\Sigma}\mathbf{U}^{H}\mathbf{z}\|^{2}$$

$$= \|\mathbf{V}\boldsymbol{\Sigma}^{-1}\mathbf{U}^{H}\mathbf{z}\|^{2}$$

(11.5)

$$E\left\{ \|\tilde{\mathbf{z}}_{ZF}\|_{2}^{2} \right\} = E\left\{ \left\| \mathbf{\Sigma}^{-1} \mathbf{U}^{H} \mathbf{z} \right\|_{2}^{2} \right\}$$
$$= E\left\{ \operatorname{tr} \left(\mathbf{\Sigma}^{-1} \mathbf{U}^{H} \mathbf{z} \mathbf{z}^{H} \mathbf{U} \mathbf{\Sigma}^{-1} \right) \right\}$$
$$= \operatorname{tr} \left(\mathbf{\Sigma}^{-1} \mathbf{U}^{H} \mathbf{E} \left\{ \mathbf{z} \mathbf{z}^{H} \right\} \mathbf{U} \mathbf{\Sigma}^{-1} \right)$$
$$= \operatorname{tr} \left(\sigma_{z}^{2} \mathbf{\Sigma}^{-1} \mathbf{U}^{H} \mathbf{U} \mathbf{\Sigma}^{-1} \right)$$
$$= \sigma_{z}^{2} \operatorname{tr} \left(\mathbf{\Sigma}^{-2} \right)$$
$$= \sum_{i=1}^{N_{T}} \frac{\sigma_{z}^{2}}{\sigma_{i}^{2}}.$$

 $\mathbf{W}_{MMSE} = \left(\mathbf{H}^{H}\mathbf{H} + \sigma_{z}^{2}\mathbf{I}\right)^{-1}\mathbf{H}^{H}.$ (11.7) $\mathbf{W}_{MMSE} = \left(\mathbf{H}^{H}\mathbf{H} + \sigma_{z}^{2}\mathbf{I}\right)^{-1}\mathbf{H}^{H}.$

$$\mathbf{w}_{i,MMSE} = \underset{\mathbf{w}=(w_{1},w_{2},...,w_{N_{T}})}{\arg\max} \frac{|\mathbf{w}\mathbf{h}_{i}|^{2} \mathsf{E}_{x}}{\mathsf{E}_{x} \sum_{j=1, j \neq i}^{N_{T}} |\mathbf{w}\mathbf{h}_{j}|^{2} + ||\mathbf{w}||^{2}\sigma_{z}^{2}}$$
(11.8)

$$\tilde{\mathbf{x}}_{MMSE} = \mathbf{W}_{MMSE} \mathbf{y}$$

$$= \left(\mathbf{H}^{H}\mathbf{H} + \sigma_{z}^{2}\mathbf{I}\right)^{-1}\mathbf{H}^{H}\mathbf{y}$$

$$= \tilde{\mathbf{x}} + \left(\mathbf{H}^{H}\mathbf{H} + \sigma_{z}^{2}\mathbf{I}\right)^{-1}\mathbf{H}^{H}\mathbf{z}$$

$$= \tilde{\mathbf{x}} + \tilde{\mathbf{z}}_{MMSE}$$
(11.9)

 $\mathbf{\tilde{z}}_{MMSE} = (\mathbf{H}^H \mathbf{H} + \sigma_z^2 \mathbf{I})^{-1} \mathbf{H}^H \mathbf{Z}$

$$\|\tilde{\mathbf{z}}_{MMSE}\|_{2}^{2} = \left\| \left(\mathbf{H}^{H}\mathbf{H} + \sigma_{z}^{2}\mathbf{I} \right)^{-1}\mathbf{H}^{H}\mathbf{z} \right\|^{2}$$

$$= \left\| \left(\mathbf{V}\boldsymbol{\Sigma}^{2}\mathbf{V}^{H} + \sigma_{z}^{2}\mathbf{I} \right)^{-1}\mathbf{V}\boldsymbol{\Sigma}\mathbf{U}^{H}\mathbf{z} \right\|^{2}.$$
(11.10)

$$\left(\mathbf{V}\boldsymbol{\Sigma}^{2}\mathbf{V}^{H}_{+}+\sigma_{z}^{2}\mathbf{I}\right)^{-1}\mathbf{V}\boldsymbol{\Sigma}=\left(\mathbf{V}\boldsymbol{\Sigma}^{2}\mathbf{V}^{H}_{+}+\sigma_{z}^{2}\mathbf{I}\right)^{-1}\left(\boldsymbol{\Sigma}^{-1}\mathbf{V}^{H}\right)^{-1}=\left(\boldsymbol{\Sigma}\mathbf{V}^{H}_{+}+\sigma_{z}^{2}\boldsymbol{\Sigma}^{-1}\mathbf{V}^{H}\right)^{-1},$$

$$\|\tilde{\mathbf{z}}_{MMSE}\|_{2}^{2}=\left\|\left(\boldsymbol{\Sigma}\mathbf{V}^{H}_{+}+\sigma_{z}^{2}\boldsymbol{\Sigma}^{-1}\mathbf{V}^{H}\right)^{-1}\mathbf{U}^{H}\mathbf{z}\right\|^{2}=\left\|\mathbf{V}\left(\boldsymbol{\Sigma}+\sigma_{z}^{2}\boldsymbol{\Sigma}^{-1}\right)^{-1}\mathbf{U}^{H}\mathbf{z}\right\|^{2}$$

$$(11.11)$$

$$\|\mathbf{v}_{MO}^{2}\mathbf{v}_{+}^$$

$$E\left\{ \|\tilde{\mathbf{z}}_{MMSE}\|_{2}^{2} \right\} = E\left\{ \left\| \left(\mathbf{\Sigma} + \sigma_{z}^{2} \mathbf{\Sigma}^{-1} \right)^{-1} \mathbf{U}^{H} \mathbf{z} \right\|^{2} \right\}$$

$$= E\left\{ \operatorname{tr} \left(\left(\mathbf{\Sigma} + \sigma_{z}^{2} \mathbf{\Sigma}^{-1} \right)^{-1} \mathbf{U}^{H} \mathbf{z} \mathbf{z}^{H} \mathbf{U} \left(\mathbf{\Sigma} + \sigma_{z}^{2} \mathbf{\Sigma}^{-1} \right)^{-1} \right) \right\}$$

$$= \operatorname{tr} \left(\left(\mathbf{\Sigma} + \sigma_{z}^{2} \mathbf{\Sigma}^{-1} \right)^{-1} \mathbf{U}^{H} E\left\{ \mathbf{z} \mathbf{z}^{H} \right\} \mathbf{U} \left(\mathbf{\Sigma} + \sigma_{z}^{2} \mathbf{\Sigma}^{-1} \right)^{-1} \right)$$

$$= \operatorname{tr} \left(\sigma_{z}^{2} \left(\mathbf{\Sigma} + \sigma_{z}^{2} \mathbf{\Sigma}^{-1} \right)^{-2} \right)$$

$$= \sum_{i=1}^{N_{T}} \sigma_{z}^{2} \left(\sigma_{i}^{i} + \frac{\sigma_{z}^{2}}{\sigma_{i}} \right)^{-2}$$

$$= \sum_{i=1}^{N_{T}} \frac{\sigma_{z}^{2} \sigma_{i}^{2}}{\left(\sigma_{i}^{2} + \sigma_{z}^{2} \right)^{2}}.$$

$$= \sum_{i=1}^{N_{T}} \frac{\sigma_{z}^{2} \sigma_{i}^{2}}{\left(\sigma_{i}^{2} + \sigma_{z}^{2} \right)^{2}}.$$

$$E\left\{\|\tilde{\mathbf{z}}_{ZF}\|_{2}^{2}\right\} = \sum_{i=1}^{N_{T}} \frac{\sigma_{z}^{2}}{\sigma_{i}^{2}} \approx \frac{\sigma_{z}^{2}}{\sigma_{\min}^{2}} \quad \text{for ZF}$$
(11.13a)

$$E\left\{\left\|\tilde{\mathbf{z}}_{MMSE}\right\|_{2}^{2}\right\} = \sum_{i=1}^{N_{T}} \frac{\sigma_{z}^{2} \sigma_{i}^{2}}{\left(\sigma_{i}^{2} + \sigma_{z}^{2}\right)^{2}} \approx \frac{\sigma_{z}^{2} \sigma_{\min}^{2}}{\left(\sigma_{\min}^{2} + \sigma_{z}^{2}\right)^{2}} \quad \text{for MMSE}$$
(11.13b)

$$\sigma_{min}^2 = min\{\sigma_1^2, \sigma_2^2, \dots, \sigma_{NT}^2\}$$
 So similar house the state of the sta

Nói chung, hiệu suất của các phương pháp

Noi chung, mẹu	i sual cua cac	putong put	ap phat men	tuyen tinn	кет поп
niệu suat cua cao	c ky thuật sự d	ung bo thu	phi tuyen. Ii	uy nhien, ca	
	/			\ \	
	uyên tính khôi			phân cứng	
9		,			
	cải thiện hiệu				g độ phức
2			~ / /		

$$\tilde{\mathbf{y}}_{(1)} = \mathbf{y} - \mathbf{h}_{(1)} \hat{x}_{(1)}
= \mathbf{h}_{(1)} (x_{(1)} - \hat{x}_{(1)}) + \mathbf{h}_{(2)} x_{(2)} + \dots + \mathbf{h}_{(N_T)} x_{(N_T)} + \mathbf{z}.$$
(11.14)

Néu
$$x_{(1)} = \hat{x}_{(1)}$$
 and $\hat{x}_{(1)}$ is the tien trép trong que trinh trèe tinh $x_{(1)}$ is tryp.
The menéu $x_{(1)} \neq \hat{x}_{(1)}$ is the trup endition of the transformation of transformat

$$\operatorname{SINR}_{i} = \frac{\mathsf{E}_{\mathsf{x}} |\mathbf{w}_{i,MMSE} \mathbf{h}_{i}|^{2}}{\mathsf{E}_{\mathsf{x}} \sum_{l \neq i} |\mathbf{w}_{i,MMSE} \mathbf{h}_{l}| + \sigma_{z}^{2} ||\mathbf{w}_{i,MMSE}||^{2}}, \quad i = 1, 2, \dots, N_{T} \quad (11.15)$$

$$\mathbf{H}^{(1)} = [\mathbf{h}_1 \, \mathbf{h}_2 \, \cdots \, \mathbf{h}_{l-1} \, \mathbf{h}_{l+1} \, \cdots \, \mathbf{h}_{N_T}] \tag{11.16}$$

Sol dung phương trình tơi biến hay cho H trong Phương trình (2117) chúng ta tính lại ma trận trong số MMSE. Bây giơ, Thúng ta tính (M_2 -17) giá t**i SINR** ${SINR_i}_{i=l;i\neq l}$ tế chou symbolized SINR cao nhất Chúng ta làp lại tưy trình này vớ

$$\sum_{j=1}^{N_T} j = N_T (N_T + 1)/2.$$

hương pháp 2 (Sắp xếp thủ tự theo SNR) : Khi chúng ta sử dụng trong s trong phương trình (11.3) - Số hàng nhiễu trong phương trình (11.3)

$$\mathbf{y} = \mathbf{H}\mathbf{x} + \mathbf{z} = \mathbf{h}_{1}x_{1} + \mathbf{h}_{2}x_{2} + \dots + \mathbf{h}_{N_{T}}x_{N_{T}} + \mathbf{z} \qquad (11.18)$$

$$\begin{bmatrix} y_{1R} + jy_{1I} \\ y_{2R} + jy_{2I} \end{bmatrix} = \begin{bmatrix} h_{11R} + jh_{11I} & h_{12R} + jh_{12I} \\ h_{21R} + jh_{21I} & h_{22R} + jh_{22I} \end{bmatrix} \begin{bmatrix} x_{1R} + jx_{1I} \\ x_{2R} + jx_{2I} \end{bmatrix} + \begin{bmatrix} z_{1R} + jz_{1I} \\ z_{2R} + jz_{2I} \end{bmatrix}$$
(11.20)
Home dia solution of the formation of the dimension of t

$$\begin{bmatrix} y_{1I} \\ y_{2I} \end{bmatrix} = \begin{bmatrix} h_{11I} & h_{12I} & h_{11R} & h_{12R} \\ h_{21I} & h_{22I} & h_{21R} & h_{22R} \end{bmatrix} \begin{bmatrix} x_{1R} \\ x_{2R} \\ x_{1I} \\ x_{2I} \end{bmatrix} + \begin{bmatrix} z_{1I} \\ z_{2I} \end{bmatrix}.$$
 (11.21b)

$$\underbrace{\begin{bmatrix} y_{1R} \\ y_{2R} \\ y_{1I} \\ y_{2I} \end{bmatrix}}_{\bar{y}} = \underbrace{\begin{bmatrix} h_{11R} & h_{12R} & -h_{11I} & -h_{12I} \\ h_{21R} & h_{22R} & -h_{21I} & -h_{22I} \\ h_{11I} & h_{12I} & h_{11R} & h_{12R} \\ h_{21I} & h_{22I} & h_{21R} & h_{22R} \end{bmatrix}}_{\bar{\mathbf{H}}} \underbrace{\begin{bmatrix} x_{1R} \\ x_{2R} \\ x_{1I} \\ x_{2I} \end{bmatrix}}_{\bar{\mathbf{x}}} + \underbrace{\begin{bmatrix} z_{1R} \\ z_{2R} \\ z_{1I} \\ z_{2I} \end{bmatrix}}_{\bar{\mathbf{z}}}$$
(11.22)

Dói vo \overline{y} \overline{H} \overline{x} va \overline{z} duois limb

Hai phương trình tro Điển thức sau đây l

$$\underset{\bar{\mathbf{x}}}{\arg\min} \left\| \bar{\mathbf{y}} - \bar{\mathbf{H}} \bar{\mathbf{x}} \right\|^{2} = \arg\min_{\bar{\mathbf{x}}} \left(\bar{\mathbf{x}} - \hat{\bar{\mathbf{x}}} \right)^{T} \bar{\mathbf{H}}^{T} \bar{\mathbf{H}} \left(\bar{\mathbf{x}} - \hat{\bar{\mathbf{x}}} \right)$$
(11.23)

rong do $\widehat{x} = (\overline{H}^H \overline{H})^{-1} \overline{H}^H \overline{y}$, do la nghiam không rang buôc của hệ h rong phương trình (chí 22.). Khẳn chứng mình Phương trình (chí 23.) tro

$$\begin{split} \left\| \mathbf{x} - \hat{\mathbf{x}} \right\|^{T} \mathbf{H}^{T} \mathbf{H} \left(\mathbf{\bar{x}} - \hat{\mathbf{x}} \right)^{T} \mathbf{H}^{T} \mathbf{H}^{T} \mathbf{H}^{T} \mathbf{H} \left(\mathbf{\bar{x}} - \hat{\mathbf{x}} \right)^{T} \mathbf{H}^{T} \mathbf{H}^{T} \mathbf{H}^{T} \mathbf{H} \left(\mathbf{\bar{x}} - \hat{\mathbf{x}} \right)^{T} \mathbf{H}^{T} \mathbf{H}^{T} \mathbf{H}^{T} \mathbf{H}^{T} \mathbf{H}^{T} \mathbf{H}^{T} \mathbf{H}^{T} \mathbf{H}^{T$$

Figure 11.5 Illustration of the sphere in sphere decoding.

$$\begin{split} \left\| \mathbf{R}(\bar{\mathbf{x}} - \hat{\mathbf{x}}) \right\|^{2} &= \left\| \begin{bmatrix} r_{11} & r_{12} & r_{13} & r_{14} \\ 0 & 0 & r_{33} & r_{34} \\ 0 & 0 & 0 & r_{44} \end{bmatrix} \begin{bmatrix} \bar{\mathbf{x}} - \hat{\mathbf{x}} \\ \bar{\mathbf{x}} - \hat{\mathbf{x}} \\ \bar{\mathbf{x}} - \hat{\mathbf{x}} \end{bmatrix} \right\|^{2} \\ &= \left| r_{44}(\bar{\mathbf{x}} - \hat{\mathbf{x}}_{4}) \right|^{2} + \left| r_{33}(\bar{\mathbf{x}} - \hat{\mathbf{x}}_{3}) + r_{34}(\bar{\mathbf{x}} - \hat{\mathbf{x}}_{4}) \right|^{2} \\ &+ \left| r_{22}(\bar{\mathbf{x}} - \hat{\mathbf{x}}_{2}) + r_{23}(\bar{\mathbf{x}} - \hat{\mathbf{x}}_{3}) + r_{24}(\bar{\mathbf{x}} - \hat{\mathbf{x}}_{4}) \right|^{2} \\ &+ \left| r_{11}(\bar{\mathbf{x}} - \hat{\mathbf{x}}_{1}) + r_{12}(\bar{\mathbf{x}} - \hat{\mathbf{x}}_{2}) + r_{13}(\bar{\mathbf{x}} - \hat{\mathbf{x}}_{3}) + r_{14}(\bar{\mathbf{x}} - \hat{\mathbf{x}}_{4}) \right|^{2} \\ &+ \left| r_{11}(\bar{\mathbf{x}} - \hat{\mathbf{x}}_{1}) + r_{12}(\bar{\mathbf{x}} - \hat{\mathbf{x}}_{2}) + r_{13}(\bar{\mathbf{x}} - \hat{\mathbf{x}}_{3}) + r_{14}(\bar{\mathbf{x}} - \hat{\mathbf{x}}_{4}) \right|^{2} \\ &+ \left| r_{11}(\bar{\mathbf{x}} - \hat{\mathbf{x}}_{1}) + r_{12}(\bar{\mathbf{x}} - \hat{\mathbf{x}}_{2}) + r_{13}(\bar{\mathbf{x}} - \hat{\mathbf{x}}_{3}) + r_{14}(\bar{\mathbf{x}} - \hat{\mathbf{x}}_{4}) \right|^{2} \\ &+ \left| r_{11}(\bar{\mathbf{x}} - \hat{\mathbf{x}}_{1}) + r_{12}(\bar{\mathbf{x}} - \hat{\mathbf{x}}_{2}) + r_{13}(\bar{\mathbf{x}} - \hat{\mathbf{x}}_{3}) + r_{14}(\bar{\mathbf{x}} - \hat{\mathbf{x}}_{4}) \right|^{2} \\ &+ \left| r_{11}(\bar{\mathbf{x}} - \hat{\mathbf{x}}_{1}) + r_{12}(\bar{\mathbf{x}} - \hat{\mathbf{x}}_{2}) + r_{13}(\bar{\mathbf{x}} - \hat{\mathbf{x}}_{3}) + r_{14}(\bar{\mathbf{x}} - \hat{\mathbf{x}}_{4}) \right|^{2} \\ &+ \left| r_{11}(\bar{\mathbf{x}} - \hat{\mathbf{x}}_{1}) + r_{12}(\bar{\mathbf{x}} - \hat{\mathbf{x}}_{2}) + r_{13}(\bar{\mathbf{x}} - \hat{\mathbf{x}}_{3}) + r_{14}(\bar{\mathbf{x}} - \hat{\mathbf{x}}_{4}) \right|^{2} \\ &= R_{SD}^{2} \end{split}$$

$$\hat{\bar{x}}_{3} - \frac{\sqrt{R_{SD}^2 - \left|r_{44}(\tilde{\bar{x}}_4 - \hat{\bar{x}}_4)\right|^2} - r_{34}(\tilde{\bar{x}}_4 - \hat{\bar{x}}_4)}{r_{33}} \le \bar{x}_3 \le \hat{\bar{x}}_3 + \frac{\sqrt{R_{SD}^2 - \left|r_{44}(\tilde{\bar{x}}_4 - \hat{\bar{x}}_4)\right|^2} - r_{34}(\tilde{\bar{x}}_4 - \hat{\bar{x}}_4)}{r_{33}}$$
(11.30)

$$\left| r_{44} \left(\tilde{\bar{x}}_4 - \hat{\bar{x}}_4 \right) \right|^2 + \left| r_{33} \left(\tilde{\bar{x}}_3 - \hat{\bar{x}}_3 \right) + r_{34} \left(\tilde{\bar{x}}_4 - \hat{\bar{x}}_4 \right) \right|^2 + \left| r_{22} \left(\bar{x}_2 - \hat{\bar{x}}_2 \right) + r_{23} \left(\tilde{\bar{x}}_3 - \hat{\bar{x}}_3 \right) + r_{24} \left(\tilde{\bar{x}}_4 - \hat{\bar{x}}_4 \right) \right|^2 \le R_{SD}^2.$$

$$(11.31)$$

$$\begin{aligned} \left| r_{44} \left(\tilde{\bar{x}}_4 - \hat{\bar{x}}_4 \right) \right|^2 + \left| r_{33} \left(\tilde{\bar{x}}_3 - \hat{\bar{x}}_3 \right) + r_{34} \left(\tilde{\bar{x}}_4 - \hat{\bar{x}}_4 \right) \right|^2 + \left| r_{22} \left(\tilde{\bar{x}}_2 - \hat{\bar{x}}_2 \right) + r_{23} \left(\tilde{\bar{x}}_3 - \hat{\bar{x}}_3 \right) + r_{24} \left(\tilde{\bar{x}}_4 - \hat{\bar{x}}_4 \right) \right|^2 \\ + \left| r_{11} \left(\bar{x}_1 - \hat{\bar{x}}_1 \right) + r_{12} \left(\tilde{\bar{x}}_2 - \hat{\bar{x}}_2 \right) + r_{13} \left(\tilde{\bar{x}}_3 - \hat{\bar{x}}_3 \right) + r_{14} \left(\tilde{\bar{x}}_4 - \hat{\bar{x}}_4 \right) \right|^2 \le R_{SD}^2. \end{aligned}$$

$$(11.32)$$

Figure 11.6 The complexity of SD for 16-QAM, 2×2 MIMO channel, and ZF method for initial radius calculation.

$$R_{SD}^{2} = \sum_{i=1}^{4} \left| \sum_{k=i}^{4} r_{ik} \left(\bar{x}_{k} - \hat{x}_{k} \right) \right|^{2}$$
(11.33)

$$\hat{x} = \hat{x}_{1} \hat{x}_{2} \hat{x}_{3} \hat{x}_{4} + \frac{1}{2} \hat{x}_{1} \hat{x}_{2} \hat{x}_{3} \hat{x}_{4} + \frac{1}{2} \hat{x}_{1} \hat{x}_{1}$$

 Table 11.1
 Complexity of sphere decoding in each step.

	Multiplications	Divisions	Square roots
$\hat{\bar{\mathbf{x}}} = (\bar{\mathbf{H}})^{-1} \bar{\mathbf{y}}$	16	0	0
R_{SD}^2 in Equation (11.33)	14	0	0
Step 1	0	1	1
Step 2-4 each	1	2	1
R_{SD}^2 update	1	0	0

1.5 Phương pháp ORM - MLD

Giả sư số lung-ten phát và thu bằng nhau, xét phân tích QR của ma trá cénh, tức là, H=QR, Thế thì, metric ML trong phương trình (11,19) có thể tiểu điển dưới dạng tương dương là

$$\begin{aligned} \|\mathbf{y} - \mathbf{H}\mathbf{x}\| &= \|\mathbf{y} - \mathbf{Q}\mathbf{R}\mathbf{x}\| \\ &= \|\mathbf{Q}^{H}(\mathbf{y} - \mathbf{Q}\mathbf{R}\mathbf{x})\| \\ &= \|\tilde{\mathbf{y}} - \mathbf{R}\mathbf{x}\|. \end{aligned}$$
(11.35)

$$\|\tilde{\mathbf{y}} - \mathbf{R}\mathbf{x}\|^{2} = \left\| \begin{bmatrix} \tilde{y}_{1} \\ \tilde{y}_{2} \\ \tilde{y}_{3} \\ \tilde{y}_{4} \end{bmatrix} - \begin{bmatrix} r_{11} & r_{12} & r_{13} & r_{14} \\ 0 & r_{22} & r_{23} & r_{24} \\ 0 & 0 & r_{33} & r_{34} \\ 0 & 0 & 0 & r_{44} \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \end{bmatrix} \right\|^{2}$$

$$= |\tilde{y}_{4} - r_{44}x_{4}|^{2} + |\tilde{y}_{3} - r_{33}x_{3} - r_{34}x_{4}|^{2} + |\tilde{y}_{2} - r_{22}x_{2} - r_{23}x_{3} - r_{24}x_{4}|^{2}$$

$$+ |\tilde{y}_{1} - r_{11}x_{1} - r_{12}x_{2} - r_{13}x_{3} - r_{14}x_{4}|^{2}$$

$$(11.36)$$

$$\{\tilde{x}_{4,c,1}\}_{c=1}^{M} = \arg\min_{x_4 \in \mathbb{C}} f_1(x_4)$$

$$k \in \operatorname{Intransitional logical l$$

$$\begin{cases} x_{3} \tilde{x}_{4,c,1} \\ z_{4,c,1} \\ z_{4,c,2} \\ z_{4$$

$$\left\{ \left[\tilde{x}_{3,c,2} \ \tilde{x}_{4,c,2} \right] \right\}_{c=1}^{M} = \underset{x_{3} \in \mathsf{C}, \left\{ \tilde{x}_{4,c,1} \right\}_{c=1}^{M}}{\arg \min_{M} f_{2} \left(x_{3}, \tilde{x}_{4,c,1} \right)}.$$
(11.38)

$$\begin{aligned} &= C \\ &= C$$

$$\left\{ \left[\tilde{x}_{2,c,3} \ \tilde{x}_{3,c,3} \ \tilde{x}_{4,c,3} \right] \right\}_{c=1}^{M} = \underset{x_2 \in \mathsf{C}, \left\{ \left[x_{3,c,2}, x_{4,c,2} \right] \right\}_{c=1}^{M}}{\arg \min_{M}} f_3\left(x_2, \tilde{x}_{3,c,2}, \tilde{x}_{4,c,2} \right).$$
(11.39)

Hur $\{[x_1\tilde{x}_{2,c,3}\tilde{x}_{3,c,3}\tilde{x}_{4,c,3}]\}_{c=1}^M$ for $\{[x_1\tilde{x}_{2,c,3}\tilde{x}_{3,c,3}\tilde{x}_{4,c,3}]\}_{c=1}^M$ for C

 $M \text{ of them that corresponds to } M \text{ smallest values of } f_4(x_1, \tilde{x}_{2,c,3}, \tilde{x}_{3,c,3}, \tilde{x}_{4,c,3}) = |\tilde{y}_4 - r_{44}\tilde{x}_{4,c,3}|^2 + |\tilde{y}_3 - r_{33}\tilde{x}_{3,c,3} - r_{34}\tilde{x}_{4,c,3}|^2 + |\tilde{y}_2 - r_{22}\tilde{x}_{2,c,3} - r_{23}\tilde{x}_{3,c,3} - r_{24}\tilde{x}_{4,c,3}|^2 + |\tilde{y}_1 - r_{11}x_1 - r_{12}\tilde{x}_{2,c,3} - r_{13}\tilde{x}_{3,c,3} - r_{14}\tilde{x}_{4,c,3}|^2.$ Let $\{[\tilde{x}_{1,c,4}, \tilde{x}_{2,c,4}, \tilde{x}_{3,c,4}, \tilde{x}_{4,c,4}]\}_{c=1}^M$ denote those M

(a) A basis vector set with a large condition number

(b) An orthogonal basis vector set

Figure 11.8 Two sets of basis vectors that span the same space.

no ta tro	ng phương	trinh (11.	41). Myc	c tieu cua	chung ta la	xay dựng	mọt
nhương t	rình tương a	irong của	hê được (tăt diều k	iên tốt hơn	nhương trì	nh (
11.41), [onuong trini	n nay co se	dieu kiei	n phụ thu	pe vao K. I	rong phan	tiep
theo, chú	ng ta sẽ áp c	dung thuật	toán LLL	cho một	ma trận 4 x	$4 \mathbf{R} = \mathbf{r}_{\rm H} \mathbf{r}_{\rm H}$	2 I 3
trong	$\{r_{i}\}^{4}$	à các vect	or côt thứ	i otia R			
4 1 110112	$(i)_{i=1}$				and and a local states of the second states of the		
	trân R. Xét		$x 4 \Pi = [$		frong đó {	; } ⁴	ctor

$$\mathbf{r} = \mathbf{I}_{4 \times 4}$$

$$\mu_{1,2} = \left\langle \frac{r_{1,2}}{r_{1,1}} \right\rangle \qquad (11.43)$$

$$\mathbf{r}_{2} \leftarrow \mathbf{r}_{2} - \mu_{1,2} \mathbf{r}_{1}$$

$$\mathbf{r}_{2} \leftarrow \mathbf{r}_{2} - \mu_{1,2} \mathbf{r}_{1}$$

$$\mathbf{r}_{2} \leftarrow \mathbf{r}_{2} - \mu_{1,2} \mathbf{r}_{1}$$

$$\mathbf{r}_{1,1} \leq \mathbf{r}_{1,2}^{2} + \mathbf{r}_{2,2}^{2}$$

$$(11.45)$$

$$\delta r_{1,1}^{2} \leq r_{1,2}^{2} + r_{2,2}^{2}$$

$$(11.45)$$

$$\mathbf{r}_{1} \leftarrow [\mathbf{r}_{2} \mathbf{r}_{1} \mathbf{r}_{3} \mathbf{r}_{4}]$$

$$\mathbf{r}_{2} \leftarrow \Theta_{1} \mathbf{R} \qquad (11.47)$$

$$\mathbf{Q} \leftarrow \mathbf{Q} \Theta_{1}^{T}$$
(11.48)

$$\Theta_{1} = \begin{bmatrix} \alpha_{1} & \beta_{1} & 0 & 0 \\ -\beta_{1} & \alpha_{1} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(11.49)

$$\alpha_{1} = \frac{r_{1,1}}{\sqrt{r_{1,1}^{2} + r_{2,1}^{2}}} \text{ and } \beta_{1} = \frac{r_{2,1}}{\sqrt{r_{1,1}^{2} + r_{2,1}^{2}}}$$
(11.50)

$$\mu_{2,3} = \left\langle \frac{r_{2,3}}{r_{2,2}} \right\rangle$$
(11.51)

$$\mu_{2,3} = \frac{r_{3} - \mu_{2,3} \mathbf{r}_{2}}{\mathbf{r}_{3} - \mu_{2,3} \mathbf{r}_{2}}$$
(11.52)

$$\alpha_{2} = \frac{r_{2,2}}{\sqrt{r_{2,2}^{2} + r_{3,2}^{2}}} \text{ and } \beta_{2} = \frac{r_{3,2}}{\sqrt{r_{2,2}^{2} + r_{3,2}^{2}}}.$$
(11.60)
$$(11.61)$$

$$\mu_{3,4} = \left\langle \frac{r_{3,4}}{r_{3,3}} \right\rangle$$
(11.61)
$$(11.61)$$

$$\mu_{3,4} = \left\langle \frac{r_{2,4}}{r_{2,2}} \right\rangle$$
(11.62)
$$(11.62)$$

$$(11.63)$$

$$(11.63)$$

$$(11.64)$$

, because ching to donb nghĩa $\mu_{1,4}$ là

1610 A Management of Lations in		
Eigure 11.10a.		
	Hình 11.12. Sự phụ thuộc của LLR theo \widetilde{x}_l hoặc \widetilde{x}_R dòi với các r	chòm
	(ín hiléu 16-OAM trong hình 11.10 (a).	
Program 11.18	Chúng ta có thể sử dụng chương trình 11.18 ("soft_hard_SISG	D.m")
("soft hard SISO m") can be	dễ so sánh hiệu suất phát hiện quyết định chính thức và quyế	đinh
used to compare the	na trong dó giệ lự gói tin có độ Hài 1200 hit quố trình đ	
performances of hard-	nulong to dupe chinn xae noa dang ma chap you toe do ma no	a 1/2
decision and soft-decision	và chiếu dài ràng buộc 7, được thực thi bởi các đa thức	sinh
detection where it is assumed	1.001.111 và 11.101.101. Vì vậy, chuỗi dữ liệu mã hóa đượ	c ánh
that a packet has a length of	ral vào 600 symbol, 6-0 AM. Hơn nữa, mỗi symbol, đớc, lớp đ	tóʻi sit
1200 bite torward error	at den Payloighe Hinkelle bien dien aut obenheiten aut	
corrected by convolutional	cae phương pháp phát hiện quyệt định chính thức và quyệt	ainh
coder with a coding rate of	mêm. Rõ ràng phương pháp phát hiện quyết định mêm có c	lộ lợi
1/2 and constraint length of 7,	liëu suất trong lợi lê lỗi gói (PER) lớn hơn đáng kể phương	pháp
mplemented by the generator	auvét dinh chính thức	
polynomials [1001]]] and		
Job Holdan Wie Angel		
[1101101]. Therefore, the		
encoded data sequence is		
mapped into 600 16-OAM		
symbols Furthermore each		
symbols. Further upicet to		
symbol is subject to		
independent Rayleigh fading.		
The performance difference		
between hard-decision and		
soft-decision detection is		
mown in figure 11.15. it is		
clear that solt-decision		
detection provides a		
significant, performance gain		
in the packet error rate (PEP)		
over the many decision one.		
rigure 11.13 Packet érror		
performance for SISO: hard		
decision vs. soft decision		
172 I.R. for Linear		molém
S.ystem		
Linear signal detection in	Mục đích của phát hiện tín hiệu tuyến tính trong. Muc 11.1 k	i tách
Section LL intends to	$\tilde{\mathbf{x}}$	tác b
separate each of fri from the	$(x_i)_{i=1}$	
separate caen or ini itom the	ra viec tinh toan LLR of mur ful for vor mot symbol sê piốn	<u>o nhir</u>

$$\begin{aligned} & \text{ bow letter use discuss the field of the symbol field with with the symbol field with the symbol field with$$

$$\begin{aligned} LLR(b_{I,i}|\mathbf{y}) &\equiv \ln \frac{p(b_{I,i} = 1|\mathbf{y})}{p(b_{I,i} = 0|\mathbf{y})} \\ &\approx \frac{1}{2\sigma_2^2 x \in S_{I_i}} \|\mathbf{y} - \mathbf{H}\mathbf{x}\|^2 - \frac{1}{2\sigma_2^2 x \in S_{I_i}} \min \|\mathbf{y} - \mathbf{H}\mathbf{x}\|^2 \quad (11.106) \\ &= \min_{\mathbf{x} \in S_{I_i}} D(\mathbf{x}) - \min_{\mathbf{x} \in S_{I_i}} D(\mathbf{x}) \\ &= \min_{\mathbf{x} \in S_{I_i}} D(\mathbf{x}) - \min_{\mathbf{x} \in S_{I_i}} D(\mathbf{x}) \\ &= \min_{\mathbf{x} \in S_{I_i}} D(\mathbf{x}) - \min_{\mathbf{x} \in S_{I_i}} D(\mathbf{x}) \\ &= \min_{\mathbf{x} \in S_{I_i}} D(\mathbf{x}) - \min_{\mathbf{x} \in S_{I_i}} D(\mathbf{x}) \\ &= \min_{\mathbf{x} \in S_{I_i}} D(\mathbf{x}) - \min_{\mathbf{x} \in S_{I_i}} D(\mathbf{x}) \\ &= \min_{\mathbf{x} \in S_{I_i}} D(\mathbf{x}) - \min_{\mathbf{x} \in S_{I_i}} D(\mathbf{x}) \\ &= \min_{\mathbf{x} \in S_{I_i}} D(\mathbf{x}) - \min_{\mathbf{x} \in S_{I_i}} D(\mathbf{x}) \\ &= \min_{\mathbf{x} \in S_{I_i}} D(\mathbf{x}) - \min_{\mathbf{x} \in S_{I_i}} D(\mathbf{x}) \\ &= \min_{\mathbf{x} \in S_{I_i}} D(\mathbf{x}) - \min_{\mathbf{x} \in S_{I_i}} D(\mathbf{x}) \\ &= \min_{\mathbf{x} \in S_{I_i}} D(\mathbf{x}) - \min_{\mathbf{x} \in S_{I_i}} D(\mathbf{x}) \\ &= \min_{\mathbf{x} \in S_{I_i}} D(\mathbf{x}) - \min_{\mathbf{x} \in S_{I_i}} D(\mathbf{x}) \\ &= \min_{\mathbf{x} \in S_{I_i}} D(\mathbf{x}) - \min_{\mathbf{x} \in S_{I_i}} D(\mathbf{x}) \\ &= \min_{\mathbf{x} \in S_{I_i}} D(\mathbf{x}) - \min_{\mathbf{x} \in S_{I_i}} D(\mathbf{x}) \\ &= \min_{\mathbf{x} \in S_{I_i}} D(\mathbf{x}) - \min_{\mathbf{x} \in S_{I_i}} D(\mathbf{x}) \\ &= \min_{\mathbf{x} \in S_{I_i}} D(\mathbf{x}) - \min_{\mathbf{x} \in S_{I_i}} D(\mathbf{x}) \\ &= \min_{\mathbf{x} \in S_{I_i}} D(\mathbf{x}) - \min_{\mathbf{x} \in S_{I_i}} D(\mathbf{x}) \\ &= \min_{\mathbf{x} \in S_{I_i}} D(\mathbf{x}) - \min_{\mathbf{x} \in S_{I_i}} D(\mathbf{x}) \\ &= \min_{\mathbf{x} \in S_{I_i}} D(\mathbf{x}) - \min_{\mathbf{x} \in S_{I_i}} D(\mathbf{x}) \\ &= \min_{\mathbf{x} \in S_{I_i}} D(\mathbf{x}) - \min_{\mathbf{x} \in S_{I_i}} D(\mathbf{x}) \\ &= \min_{\mathbf{x} \in S_{I_i}} D(\mathbf{x}) - \min_{\mathbf{x} \in S_{I_i}} D(\mathbf{x}) \\ &= \min_{\mathbf{x} \in S_{I_i}} D(\mathbf{x}) - \min_{\mathbf{x} \in S_{I_i}} D(\mathbf{x}) \\ &= \min_{\mathbf{x} \in S_{I_i}} D(\mathbf{x}) - \min_{\mathbf{x} \in S_{I_i}} D(\mathbf{x}) \\ &= \min_{\mathbf{x} \in S_{I_i}} D(\mathbf{x}) - \min_{\mathbf{x} \in S_{I_i}} D(\mathbf{x}) - \min_{\mathbf{x} \in S_{I_i}} D(\mathbf{x}) \\ &= \min_{\mathbf{x} \in S_{I_i}} D(\mathbf{x}) - \min_{\mathbf{x} \in S_{I_i}} D(\mathbf{x}) \\ &= \min_{\mathbf{x} \in S_{I_i}} D(\mathbf{x}) - \min_{\mathbf{x} \in S_{I_i}} D(\mathbf{x}) \\ &= \min_{\mathbf{x} \in S_{I_i}} D(\mathbf{x}) - \min_{\mathbf{x} \in S_{I_i}} D(\mathbf{x}) \\ &= \min_{\mathbf{x} \in S_{I_i}} D(\mathbf{x}) - \min_{\mathbf{x} \in S_{I_i}} D(\mathbf{x}) \\ &= \min_{\mathbf{x} \in S_{I_i}} D(\mathbf{x}) - \min_{\mathbf{x} \in S_{I_i}} D(\mathbf{x}) \\ &= \min_{\mathbf{x} \in S_{I_i}} D(\mathbf{x}) - \min_{\mathbf{x} \in S_{I_i}} D(\mathbf{x}) \\ &= \min_{\mathbf{x} \in S_{I_i}} D(\mathbf{x}) - \min_{\mathbf{x} \in S_{I_i}} D(\mathbf{x}) \\ &=$$

(11.113) can be truncated by	
an arbitrarily large number T.	
By limiting the ML metric	
value within the threshold, a	
critical performance	i de la companya de la
degradation can be avoided.	i de la companya de la
	i de la constante de
MATLAB Programs: Soft-	Các Chương trình MATLAB: Detector QRM-MLD phát hiện mềm
Decision QRM-MLD	cho hệ MIMO 4x4
Detector for 4x4 MIMO	Chúng ta có thể dùng Chương trình 11.22
System	("QRM_MLD_simulation.m") để đánh giá hiệu suất quyết định
Program 11.22	chính thức/mềm với detector QRM-MLD trong hệ MIMO 4 x 4
("QRM MLD simulation.m"	dùng 16-QAM (M = 16). Nó thực hiện kệnh đa đường với phân bố
) can be used to evaluate the	công suất trễ (PDP) như trong hình 11.15. Hình 11.16 biểu diễn hiểu
performance of hard/soft-	suất của QRM-MLD với quyết định chính thức và mềm. Bảng 11.2
decision with QRM-MLD	tóm tắt các thông số mô phỏng được sử dụng cho các kết quả trong
detector for 4 x 4 MIMO	hình 11.16. Trong ví dụ này, tồn tại $ C \times M = 256$ ứng vector ứng
system using 16-QAM (M =	viên trong B, và các giá trị LLR được tính bằng phương trình
16). It implements the multi-	(11.107). Khi vấn đề 1 xuất hiện, chúng ta sử dụng $T = 2$ làm các
path channel with the power	giá trị metric ML không tồn tại trong mô phỏng.
delay profile (PDP) as given	
in Figure 11.15. Figure 11.16	i de la constante de
shows the performance of	i de la constante de
QRM-MLD with hard	i de la companya de la
decision and soft decision.	i de la companya de la
Table 11.2 summarizes the	i de la companya de la
simulation parameters used	i de la companya de la
for the results in Figure	I contract of the second
11.16. In this example, there	
exists $ C \times M = 256$	
candidate vectors in B, and	
the LLR values are calculated	
using Equation (11.107).	
When Problem 1 occurs, $T =$	
2 has been used as the non-	
existing ML metric values in	
the simulation.	
Table11.2Simulation	Bằng 11.2 Các tham số mô phóng.
parameters.	
Figure 11.15 Power delay	Hình 11.15 Phân bố trễ công suất (PDP) của mô phỏng.
profile (PDP) for simulation.	
Appendix 11.A Derivation of	Phụ lục 11.A Đạo hàm của phương trình (11.23)
Equation (11.23)	Chúng tạ cần chứng minh

