

Tài liệu này được dịch sang tiếng việt bởi:

Tìm bản gốc tại thư mục này (copy link và dán hoặc nhấn Ctrl+Click):

https://drive.google.com/folderview?id=0B4rAPqlxIMRDSFE2RXQ2N3FtdDA&usp=sharing

Liên hệ để mua:

thanhlam1910_2006@yahoo.com hoặc frbwrthes@gmail.com hoặc số 0168 8557 403 (gặp Lâm)

Giá tiền: 1 nghìn /trang đơn (trang không chia cột); 500 VND/trang song ngữ

Dịch tài liệu của bạn: <u>http://www.mientayvn.com/dich_tieng_anh_chuyen_nghanh.html</u>

The effect of ball milling in	Anh hướng của quả trình nghiên	
the microstructure and	bi đên tính chất vi câu trúc và	
magnetic properties of	tính chất từ của hợp chất	
Pr2Fe17 compound	Pr2Fe17	
The effect of a severe	Chúng tôi nghiên cứu ảnh hưởng	
mechanical milling	của quá trình nghiền cơ học	
treatment on the	mãnh liệt đến các tính chất vị	
microstructure magnetic	cấu trúc tích chất từ và từ nhiệt	
and magneto-caloric	của hột $Pr2Fe_i7$ Các kim loại	
properties of Pr2Fe i7	dang khối có cấu trúc tinh thể	
properties of 11210-17	dang hình thai Th27n i7 được	
powders is reported. Bulk	nghiền hị cơ học trong mội	
alloys snowing a	ngnien bi co nọc trong moi	
rnombonedral I n2Zn-1/-	trương khi Ar. Sau 10 giớ	
type crystal structure were	ngnien, cau truc tinh thể này vân	
mechanically ball milled	tôn tại và các giả trị trung bình	
under Ar atmosphere. After	của các tham số mạng hâu như	
10 h of milling this crystal	không đội. Thực hiện cả phép đo	
structure persists and the	kính hiện vi điện tử truyền qua	
mean values of the lattice	và nhiễu xạ bột nơ tron, chúng	
parameters remain almost	tôi thấy kích thước hạt trung	
unchanged. Average grain	bình khoảng 27 nm.	
sizes around 27 nm were		
estimated byboth,		
transmission electron		
microscopyand neutron		
powder diffraction		
measurements. While for	Trong khi đối với các hợp kim	
the starting bulk alloys the	dang khối ban đầu nhiệt đô từ	
low field temperature of the	hóa trường thấp M(T) thể hiện	
magnetization $M(T)$ shows	sự giảm rõ nét ở nhiệt đô Curie	
a well- defined and sharp	TC = 285(2) K trong các mẫu	
decrease at the Curie	được nghiện hị sự dịch chuyển	
temperature $TC = 285(2)$	rông hơn không cho nhén vác	
K in hall milled samples	định chính xác điểm Curie	
the transition becomes		
broad not allowing an		
accurate determination of		
accurate determination of	The second state ± 4 at the second state (1)	
Curie point; in addition, this	i nem vao do, duong như tham	
intrinsic parameter seems to	sô nội tại này dịch chuyên vê	
be shifted toward a higher		

temperature [292(10) K]. The magnetocaloric effect 5T at ^oHmax = was from evaluated the temperature dependence of magnetic entropy change, through the variation of M(H,T) curves. A decrease in the peak value of magnetic entropy change, I^{TM} |, from 5.7 to 3.7 J the kg-1 K-1. and broadening of the maximum is observed for the milled sample respect to the bulk alloy.

Pr2Fe17 is a ferromagnetic compound that crystallizes rhombohedral the in Th2Zn17-type crystal structure (R3m), exhibiting high values of the spontaneous magnetisation and a Curie point, TC, of 283 K [1]. Recently, this material has attracted a renewed interest because combines a significant magneto-caloric effect close to room temperature with low potential production cost due to its high Fe content. A magnetic entropy change value. |ASM|, around 6Jkg-1 K-1 at Ju,0Hmax = 5T has been reported, while the related adiabatic temperature change, ATad, was roughly estimated in 4.1 K [2-4].

phía nhiệt độ cao [292(10) K]. Chúng tôi ước tính hiệu ứng từ nhiệt ở ^ o Hmax = 5T qua sự phụ thuộc nhiệt độ của độ biến thiên entropy từ, thông qua các biến thể của đường cong M (H, T). Sự suy giảm giá trị peak của độ biến thiên entropy từ, I^STM |, từ 5.7 đến 3.7 J kg-1 K-1, và sự mở rộng cực đại xuất hiện ở các mẫu được nghiền so với các hợp kim dạng khối.

Pr2Fe17 là một hợp chất sắt từ kết tinh ở dang cấu trúc tinh thể mặt thoi Th2Zn17 (R3m), có giá tri từ hóa tức thời và điểm Curie TC cao, 283 K [1]. Gần đây, vật liêu này đã được quan tâm trở lai vì nó có nhiều ưu điểm như hiệu ứng từ nhiệt mạnh gần nhiệt độ phòng cũng như giá thành sản xuất thấp do hàm lượng sắt cao của nó. Chúng tôi đã xác định được đô biến thiên entropy từ, ASM |, quanh 6Jkg-1 K-1 tai Ju, 0Hmax = 5T, trong khi sự thay đổi nhiệt đô đoan nhiệt tượng ứng, ATAD, theo ước tính khoång 4,1 K [2-4].

Ball milling has been widely used as a technique for producing nanostructured or new metastable phases from pure elements [5] or bulk stable compounds, exhibiting a rich variety of novel physical properties	Nghiền bi đã được sử dụng rộng rãi như một kỹ thuật để tạo pha cấu trúc nano và siêu bền mới từ các nguyên tố tinh khiết [5] hoặc các hợp chất ổn định dạng khối, thể hiện sự đang dạng về tính chất vật lý so với các vật liệu khối ban đầu [6-8].	
starting material [6-8]. In this report we describe the effect of a severe ball milling treatment on structural, magnetic and magnetocaloric properties of Pr2Fe17 powders. Nearly single-phase Pr2Fe17 alloys were processed by high- energy ball milling during 10 h. A comparative study, by means of neutron powder diffraction (NPD), scanning (SEM) and transmission (TEM) electron microscopy, and magnetization vs. temperature and applied magnetic field measurements, of both, the starting and ball milled (BM) alloy is presented. As-cast pellets of nominal composition Pr2Fei7 were prepared by Ar arc melting from 99.9% pure Fe. To produce a highly pure 2:17 phase alloys were wrapped in tantalum foil, sealed under vacuum in quartz ampoules,	Trong báo cáo này, chúng tôi mô tả ảnh hưởng của phương pháp xử lý nghiền bi mãnh liệt đến đặc tính cấu trúc, từ và từ nhiệt của bột Pr2Fe17. Các hợp kim Pr2Fe17 gần một pha được xử lý bằng phương pháp nghiền bi năng lượng cao trong 10 giờ. Chúng tôi trình bày một nghiên cứu so sánh thông qua các phép đo nhiễu xạ bột neutron (NPD), kính hiển vi điện tử quét (SEM) và kính hiển vi điện tử truyền qua (TEM), và độ từ hóa theo nhiệt độ và từ trường tác đặt vào của cả hợp kim ban đầu và hợp kim nghiền bi (BM).	

and homogenised during	
one week at 1373 K; the	
thermal treatment was	
followed of water	
quenching. Annealed	
samples were broken into	
smaller pieces and manually	
pulverised using an agate	
mortar. The obtained	
powder was sieved using a	
106 ^m pore size metallic	
sieve to be sealed in a	
stainless steel vial under	
argon atmosphere. A ball-	
to-powder weight ratio of	
8:1 was chosen. Powder	
was dry milled during 10 h	
using a high energy Retsch	
PM/400 planetary ball mill.	
The process was carried out	
in successive steps of 5 min	
of milling followed of 5 min	
of break, in order to keep	
low the temperature to	
favour progressive grain	
size diminution.	
Room temperature NPD	
patterns were collected on	
the D1B two- axis neutron	
diffractometer (ILL,	
Grenoble, France) using a	
neutron wavelength of $k =$	
2.52 A.The Rietveld	
analysis of the diffraction	
patterns has been performed	
using the Fullprof package	
[9], in order to make a	
quantitative determination	
of structural parameters and	
phase composition. Powder	

morphology was	
characterised with	
Fig. 1. Experimental (dots)	
and calculated (solid line)	
neutron powder diffraction	
patterns of Pr2Fe17 alloys:	
(a) starting bulk alloy, (b)	
after 10 h of milling.	
Positions of the Bragg	
reflections are represented	
by vertical bars (the first	
vertical row corresponds to	
the crystal structure of	
Pr2Fe17 (see text), while	
the second one is associated	
with a-Fe). The observed-	
calculated difference is	
depicted at the bottom of	
the patterns.	
aJeol modelJSM-6100	
scanning electron	
microscope (SEM), while	
the microstructure of milled	
particles was investigated	
by means of aJeol 2000	
EXII high resolution	
transmission electron	
microscope (TEM).	
Magnetization	
measurements were	
performed in the	
temperature interval of 5-	
350 K, using a Quantum	
Design PPMS-14T platform	
with the vibrating sample	
(VSM) magnetometer	
module. For the	
characterisation of bulk	
alloy a bar-shaped sample	
of around 1 mm x 1 mm x 5	

field $M(T)$ curves were recorded at ^oHext = 5 mT with a temperature heating
recorded at $^{o}Hext = 5 \text{ mT}$ with a temperature heating
with a temperature heating
rate of2K/min.The
measurements were done on
thermally demagnetized
samples. Curie points were
inferred from the minimum
in the dM/dT vs. T curves.
For the determination of the
magnetic entropy change,
ASM, a set of M(H) curves
was measured from 0 to 5 T
in 0.1 T steps from 260 to
340 K. The magnetic
entropy change was
calculated by using the
well-known relation:
Fig. 1 compares the NPD
patterns of homogenized
bulk and as- milled (10 h-
BM) Pr2Fe17 samples. The
patterns have been refined
considering two crystalline
phases: the first one is a
Th2Zn17-type
rhombohedral crystal
structure associated with the
Pr2Fe17 phase and the
second one is related to a
small amount of a-Fe
impurity phase. The
diffraction pattern for the
starting bulk alloy is
characterized by high
intensity and sharp
reflections. As shown in
Fig. 1(b), milling leads to
the significant broadening,

overlapping, and reduction	
in the intensity of	
diffraction peaks; in	
addition, a perceptible	
increase in the background	
baseline of the diffraction	
pattern occurs. These effects	
reflect the disordering	
introduced during the	
milling process, which is	
usually expressed as	
vacancies, dislocations,	
grain boundaries and	
chemical disorder [6,10].	
In Table 1 we report the	
mean cell parameters	
deduced from the profile	
refinement of whole	
diffraction pattern,	
accompanied by a summary	
of magnetic data. The	
values obtained are in	
perfect agreement with	
those reported in [1,11]. The	
R-factors obtained for the	
analysis reflects its	
satisfactory truthfulness	
(around 2% for both bulk	
and milled samples). It must	
be noted that mean cell	
volume has not been altered	
by milling. The amount of	
Fe in the samples was	
estimated in 7(2) %wt., for	
bulk and 10h-BM samples.	
A view to the powder	
morphology at mesoscopic	
scale is given in the SEM	
images of Fig. 2(a). Powder	
is composed of irregularly	

shaped micronic particles	
with a broad size	
distribution showing a slight	
tendency to agglomeration.	
Most of particles seem to be	
in the range of $0.5-5.0$ ^m.	
The higher magnification	
micrograph of the inset	
reveals that particles are in	
fact closed packed	
assemblies of smaller flaky.	
or laminar-like, particles	
whose real size is difficult	
to establish due to the poor	
definition of inter-particle	
boundaries, but it can be	
roughly estimate as 100-400	
nm. Accordingly, in this	
case the construction of a	
particle size distribution is	
nor simple, nor a reliable	
task. Thus, a further study	
of the internal structure of	
such micronic particles was	
carried out by TEM. The	
inset of Fig. 2(b) is a typical	
micrograph of the	
nanostructure of individual	
particles. The grain size	
distribution is typified by	
the histogram presented in	
Fig. 2(b). The average	
crystalline grain size,	
<t>tem, is 27(1) nm, in</t>	
admirable agreement with	
the <t>NPD value of 24(5)</t>	
nm, deduced from the	
Rietveld refinement [12].	
As Pr2Fe17 is a brittle	
intermetallic, the reduction	

in grain size is a natural	
consequence of progressive	
fracturing produced during	
milling process.	
Fig. 3 shows the low-field	
M(T) curve of both	
samples. When temperature	
goes through the magnetic	
transition region a well	
defined and narrow drop in	
M(T) is exhibited by the	
bulk alloy leading to a TC	
value of 285(2) K in	
reasonable accordance with	
the reported value. Despite	
of its iron content, M seeks	
close to zero value. In	
contrast, the milled sample	
is characterised by a	
decrease in M(T) values and	
a substantial broadening in	
the transition. The onset in	
the decrease of M(T) starts	
before, the inflexion is now	
obtained at 292(10) K, and	
the magnetisation over the	
transition region remains	
relatively far from zero. In	
the inset of Fig. 3, the	
normalised $dM/dT(T)$	
curves are plotted. While	
the bulk alloy exhibits a	
narrow minimum in the	
temperature evolution of the	
dM/dT, for the milled alloy	
this minimum is largely	
broadened, indicating that	
the ferro-to-paramagnetic	
transition is not well	
defined, probably due to the	

milling-induced disorder	
that gives rise to a	
distribution of Fe-Fe	
interatomic distances, and	
then spreading out the	
values for the TC.	
In Fig. 4 we plot the	
temperature dependence of	
the magnetic entropy	
change, $ ASM $ at ioH = 5T	
obtained from a series of	
M(H) curves measured	
between 260 and 340 K.	
The maximum value	
achieved for the bulk	
sample, 5.7(1)Jkg-1 K-1, is	
in good agreement with	
previously reported data	
[2,4]. The maximum is well	
defined and approximately	
coincides with the value of	
Tc (see Table 1).	
Furthermore, the milling	
process leads to a reduction	
of the maximum value for	
ASM (3.7J kg-1 K-1),	
undergoing a small shift to	
higher temperature and a	
broadening in the whole	
temperature range (see the	
inset of Fig. 4, where	
ASM/AS{max vs. T/Tc	
curve is represented).	
Hence, the latter must be a	
direct consequence of the	
lack of definition in the	
value of the Tc, shown in	
Fig. 3, due to a broad	
minimum in the dM/dT vs.	
T curve. Finally, it is worth	

to note that even the	
maximum value for the	
magnetic entropy change	
decreases around 40% after	
milling, the temperature	
range in which ASM	
remains with more than the	
90% of its maximum value	
is around 40 K (20 K in the	
case of bulk alloy). This	
large temperature interval	
with almost constant value	
of ASm could be interesting	
for magnetic refrigeration	
applications	
Fig. 4. Temperature	
dependence of the magnetic	
entropy change ASM at	
MoHmax = $5T$ for bulk and	
as-milled Pr2Fei7 alloys.	
The inset shows the curve	
normalized to 4SjJjax and	
TC.	
at room temperature using	
these low-cost intermetallic	
compounds.	
Finally we can summarize	
the following points: (a)	
powders show a non	
homogeneous	
microstructure formed by	
flaky particles of around	
100-400 nm that	
agglomerate forming what	
at a lower magnification	
look like larger particles,	
irregular in shape, showing	
as well a moderate tendency	
to agglomeration; (b)	
internally particles are	

nanostructured with a mean	
grain size of around 27 nm;	
(c) disorder is	
macroscopically expressed	
from the magnetic point of	
view in the broadening of	
the ferro-to-paramagnetic	
transition, a shifting of the	
magnetic phase ordering	
temperature to higher	
temperatures, the reduction	
in the maximum magnetic	
entropy change and the	
broadening of the ASM(T)	
dependence.	