

Tài liệu này được dịch sang tiếng việt bởi:

Tìm bản gốc tại thư mục này (copy link và dán hoặc nhấn Ctrl+Click):

https://drive.google.com/folderview?id=0B4rAPqlxIMRDSFE2RXQ2N3FtdDA&usp=sharing

Liên hệ để mua:

thanhlam1910_2006@yahoo.com hoặc frbwrthes@gmail.com hoặc số 0168 8557 403 (gặp Lâm)

Giá tiền: 1 nghìn /trang đơn (trang không chia cột); 500 VND/trang song ngữ

Dịch tài liệu của bạn: <u>http://www.mientayvn.com/dich_tieng_anh_chuyen_nghanh.html</u>

Electronic Structure	Cấu trúc điện tử và các tính	
and the Properties of Solids	chất của chất rắn	
-		
THE PHYSICS OF THE	CÁC KIẾN THỨC VÂT LÝ	
CHEMICAL BOND	VỀ LIÊN KẾT HÓA HỌC	
Walter A. Harrison	Walter A. Harrison	
Electronic Structure and the	Cấu trúc điên tử và các tính	
Properties of Solids	chất của chất rắn	
ELECTRON STATES	CÁC TRANG THÁI	
	ELECTRON (CÁC TRANG	
	THÁI ĐIÊN TỦ)	
IN THIS PART of the book.	Trong phần này, chúng tôi sẽ	
we shall attempt to describe	cố gắng mô tả chất rắn bằng	
solids in the simplest	những ngôn từ đơn giản nhất.	
meaningful framework.	Chương 1 đề cập đến một phát	
Chapter 1 contains a simple,	biểu ngắn gon về cơ sở cơ học	
brief statement of the	lượng tử cho tất cả những phần	
guantum-mechanical	thảo luân tiếp theo. Chương	
framework needed for all	này nhằm trang bi cho độc giả	
subsequent discussions. Prior	một lượng kiến thức nhất định	
knowledge of quantum	về cơ học lượng tử. Tuy nhiên,	
mechanics is desirable.	để người đọc có được cái nhìn	
However, for review, the	toàn diện, chúng tôi sẽ trình	
premises upon which we will	bày một cách ngắn gọn những	
proceed are outlined here.	tiên để làm cơ sở cho những	
This is followed by a brief	phần tiếp theo. Tiếp theo đó,	
description of electronic	chúng tôi sẽ mô tả cấu trúc	
structure and bonding in	electron và liên kết trong các	
atoms and small molecules,	nguyên tử và phân tử nhỏ,	
which includes only those	những vấn đề mà chúng tôi	
aspects that will be directly	đưa vào chỉ là những khía cạnh	
relevant to discussions of	có liên quan trực tiếp đến thảo	
solids. Chapter 2 treats the	luận về chất rắn. Chương 2 sẽ	
electronic structure of solids	nghiên cứu cấu trúc electron	
by extending the framework	của chất rắn dựa trên việc mở	
established in Chapter 1. At	rộng cơ sở được trình bày	
the end of Chapter 2, values	trong Chương 1. Vào cuối	
for the interatomic matrix	chương 2, chúng tôi giới thiệu	
elements and term values are	giá trị của các số hạng và các	
introduced. These appear also	phần tử của ma trận liên	

in a Solid State Table of the	nguyên tử. Chúng cũng được	
Elements at the back of the	để cập đến trong Bảng Các	
book. These will be used	Nguyên Tô Trạng Thái Rẵn ở	
extensively to calculate	phía sau sách. Những dữ liệu	
properties of covalent and	này được sử dụng rộng rãi đê	
ionic solids.	tính toán các tính chât của các	
	chật răn cộng hóa trị và ion.	
The summaries at the	Phân tóm tăt ở đâu mỗi	
beginnings of all chapters are	chương nhằm giúp người đọc	
intended to give readers a	nhanh chóng có một cái nhìn	
concise overview of the	toàn diện về các chủ đề được	
topics dealt with in each	xét trong mỗi chương. Phần	
chapter. The summaries will	tóm tắt cũng giúp người đọc	
also enable readers to select	lựa chọn những phần nào mình	
between familiar and	cần đọc.	
unfamiliar material.		
CHAPTER I	CHƯỜNG I	
The Quantum- Mechanical	Cơ sở cơ học lượng tử	
Basis		
SUMMARY	TÓM TẮT	
This chapter introduces the	Chương này trình bày các kiến	
quantum mechanics required	thức cơ học lượng tử cần thiết	
for the analyses in this text.	cho các phân tích trong tài liệu	
The state of an electron is	này. Trạng thái của một	
represented by a wave	electron được biểu diễn bằng	
function t/i. Each observable	một hàm sóngMỗi quan sát	
is represented by an operator	được biểu diễn bằng một toán	
0. Quantum theory asserts	tử. Lý thuyết cơ học lượng tử	
that the average of many	khẳng định rằng giá trị trung	
measurements of an	bình trên nhiều lần đo của một	
observable on electrons in a	quan sát trên các electron ở	
certain state is given in terms	một trạng thái nào đó được	
of these by	biểu diễn theo những đại lượng	
	này (ý nói đến hàm sóng và	
The quantization of energy	toán tử) làLượng tử hóa	
follows, as does the	năng lượng cũng giống như	
determination of states from a	xác định trạng thái từ ma trận	
Hamiltonian matrix and the	Haminlton và nghiệm nhiễu	
perturbative solution. The	loạn. Nguyên lý Pauli và sự	
Pauli principle and the time-	phụ thuộc thời gian của trạng	

dependence of the state are	thái được đựa ra dưới dạng	
given as separate assertions.	những tiên đề riêng biệt.	
In the one-electron	Trong phép gần đúng một	
approximation, electron	electron, các orbital trong	
orbitals in atoms may be	nguyên tử có thể được phân	
classified according to	loai theo momen đông lượng.	
angular momentum. Orbitals	Môt cách tương ứng. các	
with zero, one, two, and three	momen không, môt, hai và ba	
units of angular momentum	đơn vị momen đông lượng	
are called s Pf d	được gọi là các orbital s p d	
and/orbitals respectively	và f Các electron ở phân lớp s	
Electrons in the last unfilled	và n ngoài cùng chưa đầy gọi	
shell of s and n electron	là các electron hóa tri Tính	
orbitals are called valence	chất tuần hoàn cơ bản của	
electrons The principal	bảng tuần hoàn chứa các	
periods of the periodic table	nguyên tử có số electron bóo	
contain stoms with differing	tri khác nhau trong cùng một	
numbers of valance electrons	lớp (phân lớp) và các tính chất	
in the same shall and the	lop (phản lop), và các thìn chất của nguyên từ chủ vấu nhu	
In the same shell, and the	của nguyên từ chủ yêu phụ	
properties of the atom depend	thuộc vào nóa trị của nó, chính	
mainly upon its valence,	la so electron noa tri. Cac	
equal to the number of	nguyen to chuyen tiep, co so	
valence electrons. Transition	orbital d knac nnau noạc cac	
elements, having different	orbital f dược lam day xuat	
numbers of d orbitals	hiện giữa các chủ kỳ cơ bản.	
or/orbitals filled, are found	Khi cac nguyen từ den gan	
between the principal periods.	nhau để hình thành các phân	
When atoms are brought	tử, các trạng thải nguyên tử trở	
together to form molecules,	thành kết hợp (tức là, về mặt	
the atomic states become	toán học, chúng được biểu	
combined (that 1s,	diễn bằng các tố hợp tuyên	
mathematically, they are	tính của các orbital nguyên tứ,	
represented by linear	hoặc LCAO) và năng lượng	
combinations of atomic	cua chúng bị dịch chuyên. Sự	
orbitals, or LCAO's) and	kêt hợp của các orbital nguyên	
their energies are shifted. The	từ hóa trị với năng lượng thập	
combinations of valence	hợn được gọi là các orbital liên	
atomic orbitals with lowered	kêt, và chính việc các electron	
energy are called bond	chiêm những orbital này đã	
orbitals, and their occupation	liên kết các phân tử với nhau.	

electrons bonds the by molecules together. Bond orbitals are symmetric or when nonpolar identical atoms bond but become asymmetric or polar if the atoms are different. Simple calculations of the energy levels are made for a series of nonpolar diatomic molecules.

1-A Quantum Mechanics

For the purpose of our discussion, let us assume that only electrons have important quantum-mechanical

behavior. Five assertions about quantum mechanics will enable us to discuss properties of electrons. Along with these assertions, we shall make one or two clarifying remarks and state a few consequences.

Our first assertion is that

Each electron (a) is represented by a wave function, designated as ij/(r). A wave function can have both real and imaginary parts. A parallel statement for light would be that each photon can be represented by an electric field $\langle f(r, t) \rangle$. To say that an electron is represented by a wave function means that specification of the wave function gives all the information that can exist for

Các orbital liên kết có tính chất đối xứng hoặc không có cực khi các nguyên tử giống hệt nhau liên kết nhưng sẽ bất đối xứng hoặc có cực nếu các nguyên tử khác nhau. Việc tính toán đơn giản các mức năng lượng được thực hiện cho một loạt các phân tử hai nguyên tử không có cực.

that electron except information about the electron spin, which will be explained later, before assertion (d). In а mathematical sense, representation of each electron in terms of its own wave function is called a oneelectron approximation.

(b) Physical observables are represented by linear operators on the wave function. The operators corresponding to the two fundamental observables. position and momentum, are position

momentum

where h is Planck's constant. An analogous representation in the physics of light is of the observable, frequency of light: the operator representing the observable is proportional to the derivative (operating on the electric field) with respect to time, d/dt. The operator r in Eq. (1-1) means simply multiplication (of the wave function) by position r. for Operators other observables can be obtained from Eq. (1-1) by substituting operators the these in classical expressions for other observables. For example, potential is energy represented by a

multiplication by y(r). Kinetic energy is represented by p2/2m = - (fi2/2m)v2. A particularly important observable is electron energy, which can be represented by a Hamiltonian operator: (1-2) The way we use a wave function of an electron and the operator representing an observable is stated in a third assertion: The average value of (c)

measurements of an observable 0, for an electron with wave function Ip, is

(If li/ depends on time, then so also will (0).) Even though the wave function describes an electron fully, different values can be obtained from a particular measurement of some observable. The average value of many measurements of the observable 0 for the same I/Iis written in Eq. (1-3) as <0>.

The integral in the numerator on the right side of the equation is a special case of a matrix element; in general the wave function appearing to the left of the operator may be different from the wave function to the right of it. In such а case, the Dirac notation for the matrix element is

similar In way the а denominator on the right side of Eq. (1-3) can be shortened to (ip 11//). The angular brackets also are used separately. The bra (1 I or {vi I means $lAi(r)^*$; the ket 12) or I ij2) means Il/2(r)- (These terms come from splitting the word " bracket.") When they are combined face to face, as in Eq. (1-4), an integration should be performed.

Eq. (1-3) is the principal assertion of the quantum mechanics needed in this book. Assertions (a) and (b) simply define wave functions and operators, but assertion (c) makes a connection with experiment. It follows from Eq. (1-3), for example, that the probability of finding an electron in a small region of space, d3r, is il/*(r)/j(r)d3r. Thus is the probability density for the electron.

It follows also from Eq. (1-3) that there exist electron states having discrete or definite values for energy (or, states with discrete values for any other observable). This can be proved by construction. Since any measured quantity must be real, Eq. (1-3) suggests that the operator 0 is Hermitian. We know from mathematics that it is possible

to construct eigenstates of Hermitian any operator. However, for the Hamiltonian operator, which is а Hermitian operator, eigenstates are obtained as solutions of a differential equation, timethe independent Schroedinger equation, (1-5)

where E is the eigenvalue. It is known also that the existence of boundary conditions (such as the condition that the wave functions vanish outside a given region of space) will restrict the solutions to a discrete set of eigenvalues E, and that these different eigenstates can be taken to be orthogonal to each other. It is important to recognize that eigenstates are wave functions which an electron may or may not have. If an electron has certain a eigenstate, it is said that the corresponding state is occupied by the electron. However, the various states exist whether or not they are occupied.

We see immediately that a measurement of the energy of an electron represented by an eigenstate will always give the value E for that eigenstate, since the

average value of the meansquared deviation from that value is zero:

We have used the eigenvalue equation, Eq. (1-5),to write.....The electron energy eigenstates, or energy levels, will be fundamental in many of the discussions in the book. In most cases we shall discuss that state of some entire system which is of minimum energy, that is, the ground state, in which. therefore, each electron is represented by an energy eigenstate corresponding to the lowest available energy level.

In solving problems in this book. we shall not obtain wave functions by solving differential equations such as Eq. (1-5), but shall instead that assume the wave functions that interest us can be written in terms of a small number of known functions. For example, to obtain the wave function ... for one electron diatomic in a molecule, we can make a linear combination of wave functions and i//2, where 1 and 2 designate energy eigenstates for electrons in the separate atoms that make up the molecule. Thus, (1-7)where Ui and u2 are

constants. The average energy, or energy expectation value for such an electron is	
given by (1-8)	
The states comprising the set	
(nere, represented by (11/1)) and $(\text{III}/2)$ in which the wave	
function is expanded are	
customary to choose the scale	
of the basis states such that they are permetized; that is	
$ (Ai /i) = (.Y2 I ^2) = 1-$	
Moreover, we shall assume that the basis states are	
orthogonal: (ipi I $iI/2$) = 0.	
This may in fact not be true, and in Appendix B we carry	
out a derivation of the energy	
expectation value while retaining overlaps in (vI IYI)-	
It will be seen in Appendix B	
that the corrections can	
parameters of the theory. In	
the interests of conceptual simplicity overlaps are	
omitted in the main text,	
though their effect is indicated at the few places	
where they are of	
consequence. We can use the notation Hii =	
(II/i IHI then Eq. (1-8))	
becomes (Actually, by Hermiticity,	
H21 = H *2 , but that fact is	

not needed here.)

Eq. (1-7) describes only an approximate energy eigenstate, since the two terms on the right side are ordinarily not adequate for exact description. However, within this approximation, the best estimate of the lowest energy eigenvalue can be obtained by minimizing the entire expression (which we call E) on the right in Eq. (1-9) with respect to Ui and u2. In particular, setting the partial derivatives of that expression, with respect to uf and uf, equal to zero leads to the two equations

taking these (In partial derivatives we have treated ul.uf.u2. and u∖ as independent. It can be shown that this is valid, but the proof will not be given here.) Solving Eqs. (1-10) gives two values of £. The lower value is the energy expectation value of the lowest energy state, called the bonding state. It is

.....

An electron in a bonding state has energy lowered by the proximity of the two atoms of a diatomic molecule; the lowered energy helps hold the atoms together in a bond. The

second solution to Eqs. (1-10) gives the energy of another state, also in the form of Eq. (1-7) but with different and u2. This second state is called the antibonding state. Its wave function is orthogonal to that of the bonding state; its energy is given by We may substitute either of these energies, Eb or £a, back into Eqs. (1-10) to obtain values for Uj and u2 for each of the two states. and therefore, also the form of the wave function for an electron in either state. A particularly significant, simple approximation can be made in Eqs. (1-11) or (1-12) when the matrix element H12 is much smaller than the magnitude of the difference I Hn — H221 - Then, Eq. (1-11) or Eq. (1-12) can be expanded in the perturbation Hl2 (and H2I) to obtain (1-13)for the energy of a state near Hill a similar expression may be obtained for an energy near H2 2
These results are part of perturbation theory. ết quả này huyêt nhiêu loan The corresponding result when many terms, rather than only two, are required in the expansion of the wave function is

Similarly, for the state with energy near H1U the coefficient u2 obtained by solving Eq. (1-10) is

The last step uses Eq. (1-13). When H2l is small, u2 is small, and the term $\ll 2 \hat{e} 2(r)$ in Eq. (1-7) is the correction to the unperturbed state, \dot{v}_{i} {ĩ), obtained bv perturbation theory. The wave function can be written first order to in the perturbation, divided by Hn -H22, and generalized to a coupling with many terms as..... (1-16)

The perturbation-theoretic expressions for the electron energy, Eq. (1-14), and wave function, Eq. (1-16), will be useful at many places in this text.

All of the discussion to this point has concerned the spatial wave function ij/(r) of

an electron. An electron also has spin. For any $I^{(r)}$ there are two possible spin states. Thus, assertion (a) set forth earlier should be amended to say that an electron is described by its spatial wave function and its spin state. The term "state" is commonly used to refer to only the spatial wave function, when electron spin is not of interest. It is also frequently used to encompass both wave function and electron spin.

almost In all systems discussed in this book, there will be more than one electron. The individual electron states in the systems and the occupation of those states by electrons will be treated separately. The two aspects cannot be entirely separated because the electrons interact with each other. At various points we shall need to discuss the effects of these interactions.

In discussing electron occupation of states we shall require an additional assertion—the Pauli principle:

(d) Only two electrons can occupy a single spatial state; these electrons must be of

opposite spin. Because of the discreteness of the energy eigenstates discussed above, we can use the Pauli principle to specify how states are filled with electrons to attain a system of lowest energy.

Because we shall discuss states of minimum energy, we shall not ordinarily be interested in how the wave function changes with time. For the few cases in which that information is wanted, a fifth assertion applies:

(e) The time evolution of the wave function is given by the Schroedinger equation, (1-17)

This assertion is not independent of assertion (c); nevertheless, it is convenient to separate them.

At some places, particularly in the discussion of angular momentum in the next section. consequences of these five assertions will be needed which are not immediately obvious. These consequences will be stated

explicitly in the context in which they arise.

1-B Electronic Structure of Atoms

Because the potential energy K(r) of an electron in a free atom is spherically symmetric (or at least we assume it to be), we can expect the angular momentum of an orbiting electron not to change with time. In the quantum-mechanical context this means that electron energy eigenstates can also be chosen be to angular momentum eigenstates. It is convenient to state the result in terms of the square of the magnitude of the angular momentum, L2, which takes on the discrete values L2 = /(/ + 1)h2, (1-18)

where / is an integer greater than or equal to 0. For each value of I there are 2/ + 1different orthogonal eigenstates; that is, the of component angular momentum along any given direction can take on the values mh, with m = -/, -/ +1, ..., I - 1, /ế The spatial wave functions representing these states are called orbitals since we can

imagine the corresponding classical (that is, not quantum-mechanical) electron orbits as having fixed energy and fixed angular momentum around a given axis. The term orbital used will be to refer specifically to the spatial wave function of an electron in an atom or molecule. We will also use the term orbital for electron wave functions representing chemical bonds where the corresponding electron orbits would not be so simple.

The 21 4- 1 orthogonal eigenstates with different m values all have the same energy, because the potential V(r) is spherically symmetric and the energy does not depend upon the orientation of the angular momentum. States of the same energy are said to be degenerate. The angular momentum properties follow from assertions (a), (b), and (c) in Section 1-A but are not derived here. The concept of angular momentum is convenient since it makes it possible to classify all energy eigenstates

trạng thái riêng trực giao với giá trị có tính chất

by means of two quantum numbers, the integers I and m. In the common terminology Theo quy ước chung for states of small angular momentum, the first four-of lượng nhỏ smallest angular momentum-are The first three letters, s, p, and d, were first used nearly a describe century ago to characteristic features of spectroscopic lines and stand for "sharp," "principal," and "diffuse." For any given value of I and m there are many different energy eigenstates; these are numbered by a third integer, ft, in order of increasing energy, starting with n = I + I. This starting point is chosen since, for the hydrogen atom, states of different I but the same n are degenerate; that is, E = (n, l,m/H/n, l, m) depends only on the quantum number n. Thus n is called the

principal quantum number. Only for the hydrogen atom, where the potential is simply - e2/r, does the energy depend on n alone. However, the same numbering system is universally used for all other atoms too. In each state specified by n, I, and m, two electrons can be accommodated, with opposite spins, according to the Pauli principle. These atomic states are the building blocks for description of the electron energies in small molecules, and in solids, as well as in individual atoms. The s orbitals have vanishing angular momentum; I = 0(and m = 0, since I m I < /). The wave function for an s orbital is spherically symmetric, and it is depicted in diagrams as a circle with a dot representing the nucleus at the center (Fig. 1-1). The lowest energy state, n = 1, is called a Is state. Its wave function decreases monotonically with distance from the nucleus. The wave function of the next state, the

2s state, drops to zero, becomes negative, and then decays upward to zero. Each subsequent s orbital has an additional node. (Such forms are in fact necessary if the orbitals are to be orthogonal to each other.)

FIGURE 1-1

This depiction of an 5 orbital will be used frequently in this book.

FIGURE 1-2

The three 5 states of lowest energy for atomic hydrogen. The orbitals, multiplied by r, are plotted as a function of distance from the nucleus.

A plot of the first three s orbitals for a hydrogen atom is given in Fig. 1-2.

The p orbitals have one unit of angular momentum, / = 1; there are three orbitals corresponding to m = -1, m= 0, and m = 1. (See Fig. 1-3.) Any orbital, including those of the p series, can be written as a product of a function of radial distance from the nucleus and one of the spherical harmonics YI, which are functions of angle only (this is explained in Schiff, 1968, p. 79): (1-19)

shown in Fig. 1-4 illustrate the three angular forms.

Except for the different orientations, the orbitals look the same. The wave function is zero in an entire plane perpendicular to the axis of orientation and, at a given radius, the wave function is positive on one side and negative on the other. There are various other ways to visualize such orbitals. Three are compared in Fig. 1-5; Fig. 1-5,c is simplest and most common and, except for the sign of the wave function, is the same as the orbital shown at the left in Fig. 1-4.

The d orbitals have two units of angular momentum, I = 2, and therefore five m values: m = -2, m = -1, m = 0, m = 1, and m = 2. They can be conveniently FIGURE 1-4 Three p orbitals, each directed along a different Cartesian axis.

(a) Fishnet plot

(b) Contour plot	
(c) Schematic representation	
FIGURE 1-5	
Three ways of representing	
atomic p orbitals.	
represented in terms of	
Cartesian coordinates in the	
form	
Fig. 1.6 corresponds to the	
third angular form listed in	
Eq. (1-21).	
A very important feature of d	
orbitals is that they are	
concentrated much more	
closely at the nucleus than are	
s and p orbitals. The physical	
origin of this can be	
FIGURE 1-6	
The d orbiiai corresponding	
to the xy/r2 form in Eq. (1-	
21).	
understood in terms of the n	
-3 state of hydrogen. The	
3s, 3p, and 3d states all have	
the same energy, but of these	
three, the d state corresponds	
classically to an orbit that is	
circular. At lesser angular	
momentum, a classical orbit	
of the same energy reaches	
further into space; this	
corresponds to the great	
spatial extent of the p orbital.	
The s state, which	
corresponds classically to an	
through the nucleus stratches	
avon further from the nucleus	
Therefore d states tend to be	
influenced much loss by	
minuencea much less by	

	-	
neighboring atoms than are s		
and p states of similar energy.		
We shall have little occasion		
to discuss /'orbitals, though		
they are important in studying		
properties of the rare-earth		
metals. The f orbitals are		
even more strongly		
concentrated near the nucleus		
and isolated from neighboring		
atoms than are d orbitals.		
Let us now discuss the		
electronic states in the		
hydrogen atom. As indicated,		
the energy of an electronic		
state for hydrogen depends		
only upon the principal		
quantum number n. In this		
book, atomic energy		
eigenvalues, or other		
eigenvalues measured from		
the same zero of energy, will		
be designated by F. rather		
than E. For hydrogen,		
(1'22)		
where a0 is the Bohr radius,		
0.529 A, e is the magnitude		
of the electron charge, m is		
the electron mass, n is the		
principal quantum number,		
and the unit of energy is the		
electron volt (eV).		
A sketch of the energies of		
the states of hydrogen, the		
energy levels, is given in Fig.		
1-/. In the ground state of the		
hydrogen atom, a single		
electron occupies the Is		
orbital. All of the other states,		
having higher energies,		

represent excited states of the	
system. The electron can be	
transferred from the ground	
state to an excited state by	
exposing it to light of angular	
frequency $CO = AE/h$, where	
AE is the energy difference	
between the two levels.	
Indeed, the most direct	
experimental study of energy	
levels of atoms (also called	
term values) in excited states	
is based upon spectroscopic	
analysis of the corresponding	
light absorption and emission	
lines.	
To understand the electron	
states systematically in	
elements other than	
hydrogen, imagine that the	
charge of the hydrogen	
nucleus is increased element	
by element and, thereby, the	
atomic number, z, is steadily	
increased. At the same time,	
imagine that an electron is	
added each time the nuclear	
charge is increased by one	
unit e. As the nuclear charge	
increases, the entire set of	
states drops in energy,	
relative to hydrogen. In all	
atoms but hydrogen, 5-state	
energies are lower than p-	
state energies of the same	
principal quantum number. In	
Fig. 1-8 is shown the relative	
variation in energy of	
occupied Is, 2s, 2p, 3s, 3p,	
3d, 45, and 4p orbitals as the	

atomic number (equal to the	
number of protons in the	
nucleus) increases.	
In lithium, atomic number 3,	
the Is level has dropped to a	
very low energy and is	
occupied by two electrons.	
The Is orbital is considered	
part of the atomic core of	
lithium; a single electron	
occupies a 2s orbital. In the	
lithium row, all elements, to	
neon, $z=10$, have a "lithium"	
core"; the energy levels in	
successive atoms	
FIGURE 1-7	
Energy-level diagram for	
atomic hydrogen. The lines	
are branched at the right to	
show how many orbitals each	
line represents.	
continue to drop in energy	
and sp splitting (the	
difference in energy between	
levels, or $Elp - \pounds 2s$)	
increases. At neon, both 2s	
and 2p orbitals have become	
filled; starting with the next	
element, sodium, they	
become part of the atomic	
core, since, at sodium, filling	
of the 3s orbital begins, to be	
followed by filling of the 3p	
orbitals. The filling of	
successive levels is the	
essence of periodic variation	
in the properties of elements	
as the atomic number	
increases. The levels are	
filled in each subsequent row	

of the periodic table the same	
way they, are filled in the	
lithium row, but the number	
of states in the atomic core is	
larger in lower rows of the	
table.	
In the potassium row, the	
unoccupied 3d level begins to	
be filled: its energy has	
dropped more slowly than	
that of the 3s and 3p levels.	
but it becomes filled before	
the 4p level begins to fill;	
then in the ground state of	
scandium the 3d level	
becomes occupied with one	
electron. Elements in which	
some d states are occupied	
are called transition metals.	
The 3d states have become	
completely filled when	
copper, atomic number 29, is	
reached. The 3d states	
become part of the atomic	
core as z increases further,	
and the series Cu, Zn, Ga,,	
gains electrons in an order	
similar to that of the series	
Na, Mg, Al, —	
Almost all of the properties of	
elements are determined by	
the occupied levels of highest	
energy; the electrons filling	
the 5 and p levels in each row	
(and sometimes those filling	
d levels) are traditionally	
called valence electrons and	
determine	
FIGURE 1-9	
Periodic chart of the	

elements.	
chemical properties. They	
also have excited states	
available to them within a	
few electron volts. Since	
these energy differences	
correspond to	
electromagnetic frequencies	
in the optical range the	
valence electrons determine	
the optical properties of the	
elements The periodic table	
(Fig. $1-9$) summarizes the	
successive filling of	
electronic levels as the atomic	
number increases	
1- C Electronic Structure	
of Small Molecules	
We have seen how to	
enumerate the electron states	
of single atoms If we	
consider several isolated	
atoms as a system the	
composite list of electron	
states for the system would	
simply be the collection of all	
states from all atoms. If the	
atoms are brought together	
closely enough that the wave	
functions of one atom overlap	
the wave functions of	
another, the energies of the	
states will change, but in all	
cases the number of states	
will be conserved. No states	
disappear or are created. If	
the sum of the energies of the	
occupied states decreases as	
the atoms are brought	
together, a molecule is said to	

additional be bound. An energy must be supplied to separate the atoms. (It should be noted that other terms influence the total energy of a system, and all influences must be considered in evaluating bonding energy. We shall return to this later.) It turns out that the energy of occupied electronic states in small molecules, and indeed in solids, which have large numbers of atoms, can be rather well approximated with linear combinations of atomic orbitals (or LCAO's). Making such approximation an constitutes а very great simplification in the problem of determining molecular energies since, instead of unknown functions. only unknown coefficients appear in the linear combination. The LCAO description of the occupied molecular orbitals is much more accurate if the atomic orbitals upon which the approximation is based differ somewhat from those of the isolated constituent atoms; this complication will not arise in this book since ultimately our calculations will be in terms of matrix elements, not in terms of the orbitals themselves. The smaller the number of atomic orbitals used, the greater will

be the simplification, but the poorer will be the accuracy. For our discussion of solids, a set of orbitals will be chosen that is small enough to enable calculation of a wide range of properties simply. For properties calculations of depending only upon occupied states, the accuracy will be quite good, but for excited states-those electron states which are unoccupied in the ground state of the system—the properties are not accurately calculated. We can make the same choice of orbitals in diatomic molecules that will turn out to be appropriate for solids. In describing states of the small molecule (as well as the solid) the first step is to enumerate each of the electronic states in the atom that will be used in the mathematical expansion of the electron states in the molecule. These become our basis states. We let the index a = 1, 2, 3run from one up to the number of states that are used. Then the molecular state may be written (with the notation discussed in Section 1-A) as where the ua are the coefficients that must be determined. The orbitals I a) representing the basis states

are selected to be normalized,	
(a I a) = 1. We also take them	
(as in Section 1-A) to be	
orthogonal to each other;	
? a = 0 if p =£ a.	
Next, we must find the	
coefficients ua of Eq. (1-23)	
for the electron state of	
lowest energy, by doing a	
variational calculation as	
indicated in Section 1-A. That	
is, we evaluate the variation	
In obtaining the second form,	
we allow the ua to be	
complex, though ordinarily	
for our purposes this would	
not be essential. We also	
make use of the linearity of	
the Hamiltonian operator to	
separate the various terms in	
the expectation value of the	
Hamiltonian. In particular, if	
we require that variations	
with respect to a particular uf	
be zero (as in Eq. 1-10), we	
obtain	
or more simply,	
with E — $(\mathring{y}$ IHI $\hat{e})/(\hat{e}$ I $\hat{e})$.	
(Later, specific eigenvalues	
will be written as e's with	
appropriate subscripts.) There	
is one such equation for each	
p corresponding to a basis	
state.	
We have obtained a set of	
simultaneous linear algebraic	
equations with unknown	
coefficients Ma. Their	
solution gives as many	
eigenvalues E as there are	

equations. The lowest E	
corresponds to the lowest	
electron state; the next	
lowest, to the lowest electron	
state having a wave function	
orthogonal to that of the first,	
and so on. The solution of	
these equations gives the ua	
which, with Eq. (1-23), give	
wave functions for the one-	
electron energy eigenstates	
directly. The eigenvalues	
themselves can also be	
obtained directly from the	
secular equation, familiar	
from ordinary algebra. The	
secular determinant vanishes,	
$det(tf^{-} E \circ p \ll) = 0, \qquad (1-$	
27)	
where "det " means	
"determinant of" and ôpa is	
the unit matrix. We have	
made one further	
simplification of the notation	
in writing Hila = $(p \mid H \mid oc)$.	
We shall see in Section 2-D	
how simple estimates of these	
matrix elements can be made.	
Then, from Eqs. (1-26) and	
(1-27), we can obtain the	
energies and the states	
themselves.	
Let us use the foregoing	
method to describe the states	
in a small molecule. The	
hydrogen molecule, with two	
electrons, is a simple case and	
is more closely related to the	
systems we shall be	
considering than the simpler	

hydrogen molecular ion, H2 • For the hydrogen molecule, we use two orbitals, 11) and 12), which represent Is states and on atoms 1 2 respectively. Eq. (1-26) then becomes where we have made the natural definition of the Is energy $\pounds s = (1|H|1) = (21H12).$ The energy Es is slightly different from what it would be in a free atom, first, because an electron associated with atom 1 has a potential energy lowered by the presence of the second atom, and second, because the energy may be lowered as a result of the choice of a Is function slightly different from that of the free atom. We have defined a matrix element v2 = -- #12 = --H21to correspond to the notation we shall use later. The matrix element v2is called а energy, covalent and is defined to be greater than zero; v2 will generally be used for interatomic matrix elements, in this case between orbitals. All the wave S function coefficients are taken to be real in this case: we may always choose real coefficients but in solids will find it convenient to use complex coefficients. Eq. (1-28) is easily solved to obtain

1 1.1	
a low-energy solution, the	
bonding state, with energy	
as well as a high-energy	
solution, the antibonding	
state, with	
Substituting the eigenvalues	
given in Eqs. (1-29) and (1-	
30) back into Eq. $(1-28)$ gives	
coefficients U1 and u2. For	
the bonding state. $Ui = u2 =$	
$2 \sim 112$ and for the	
antibonding state $Mi = -u^2$	
$= 2^{\circ}1/2$ The conventional	
depiction of these bond	
orbitals and antibond orbitals	
is illustrated in Fig. 1-10.2	
Notice that the use of	
orthogonal aiganfunctions for	
the two stomic states (taking	
the everlap $(112) = 0$ is not	
the overlap $(112) = 0$ is not consistent with Fig. 1 10 h in	
consistent with Fig. 1-10,0, in	
which a clear nonzero overlap	
is shown. The derivation	
made in Appendix B allows	
for a nonzero overlap and	
shows that part of its effect	
can be absorbed by a	
modification of the value of	
v2 and the other part can be	
absorbed in a central- force	
overlap interaction between	
the atoms, which is discussed	
in Chapter 7. Here, for the	
hydrogen molecule, the	
lowering of the energy of the	
molecule, in comparison to	
separated atoms, is only	
approximately accounted for	
by Eq. (1-29). If one wishes	
to describe the total energy as	

a function of the separation between atoms, one cannot simply add the energy of the two electrons in the bonding The central-force state. corrections required by this overlap, as well as other terms, must all be included. Bonding orbital ca Antibonding energy level Kh Bonding energy level (a) Homopolar diatomic molecule Antibonding orbital Bonding orbital diatomic (b) Heteropolar molecule FIGURE 1-10 The formation of bonding and antibonding combinations of atomic orbitals in diatomic molecules. and the corresponding energy-level diagrams. Although it is possible to understand the hydrogen molecule in terms of the ideas we have discussed, hydrogen has only limited relevance to the problems we will be considering. In fact, it is not the most satisfactory way to describe hydrogen the molecule itself. In the equilibrium configuration for hydrogen, the two protons are so close together that a much better model is one in which the two protons are thought of as being superimposed; that
is, we consider the nucleus to be that of the helium atom. Once this is understood, one can make corrections for the fact that in hydrogen the two are protons actually separated. Such an approach is more in tune with the spirit of this text: we will always seek the simplest description appropriate to the system we are interested in, and make corrections afterward. It has been argued that this united atom approach, treating H2 as a correction applied to He, is inappropriate when the protons are far apart. That is indeed true, but we are ultimately interested in H2 at equilibrium spacing. We will therefore simply restate our results for H2 in the terminology to be used later and move on. We found that hydrogen Is levels are split into bonding and antibonding levels when the two atoms form the molecule. The separation of those two levels is 2V2, where v2 is the covalent energy. To find the total energy of this system it is necessary to add a number of corrections to the simple sum of energies of the electrons. It will be convenient to postpone consideration of such corrections until

systematic treatment in Chapter 7. Hydrogen is a very special case also when it is a part of other molecules. We saw that in the lithium row and in the sodium row of the periodic table both a valence s state and a valence p state are present. We will see that when these atoms form molecules, the bond orbitals are mixtures of both s and p orbitals. There is no valence p state in hydrogen, and its behavior is quite different. In many ways the hydrogen proton may be regarded as a loose positive charge that keeps a molecule neutral rather than as an atom that forms a bond in the same
Chapter 7. Hydrogen is a very special case also when it is a part of other molecules. We saw that in the lithium row and in the sodium row of the periodic table both a valence s state and a valence p state are present. We will see that when these atoms form molecules, the bond orbitals are mixtures of both s and p orbitals. There is no valence p state in hydrogen, and its behavior is quite different. In many ways the hydrogen proton may be regarded as a loose positive charge that keeps a molecule neutral rather than as an atom that forms a bond in the same
Hydrogen is a very special case also when it is a part of other molecules. We saw that in the lithium row and in the sodium row of the periodic table both a valence s state and a valence p state are present. We will see that when these atoms form molecules, the bond orbitals are mixtures of both s and p orbitals. There is no valence p state in hydrogen, and its behavior is quite different. In many ways the hydrogen proton may be regarded as a loose positive charge that keeps a molecule neutral rather than as an atom that forms a bond in the same
case also when it is a part of other molecules. We saw that in the lithium row and in the sodium row of the periodic table both a valence s state and a valence p state are present. We will see that when these atoms form molecules, the bond orbitals are mixtures of both s and p orbitals. There is no valence p state in hydrogen, and its behavior is quite different. In many ways the hydrogen proton may be regarded as a loose positive charge that keeps a molecule neutral rather than as an atom that forms a bond in the same
other molecules. We saw that in the lithium row and in the sodium row of the periodic table both a valence s state and a valence p state are present. We will see that when these atoms form molecules, the bond orbitals are mixtures of both s and p orbitals. There is no valence p state in hydrogen, and its behavior is quite different. In many ways the hydrogen proton may be regarded as a loose positive charge that keeps a molecule neutral rather than as an atom that forms a bond in the same
in the lithium row and in the sodium row of the periodic table both a valence s state and a valence p state are present. We will see that when these atoms form molecules, the bond orbitals are mixtures of both s and p orbitals. There is no valence p state in hydrogen, and its behavior is quite different. In many ways the hydrogen proton may be regarded as a loose positive charge that keeps a molecule neutral rather than as an atom that forms a bond in the same
sodium row of the periodic table both a valence s state and a valence p state are present. We will see that when these atoms form molecules, the bond orbitals are mixtures of both s and p orbitals. There is no valence p state in hydrogen, and its behavior is quite different. In many ways the hydrogen proton may be regarded as a loose positive charge that keeps a molecule neutral rather than as an atom that forms a bond in the same
table both a valence s state and a valence p state are present. We will see that when these atoms form molecules, the bond orbitals are mixtures of both s and p orbitals. There is no valence p state in hydrogen, and its behavior is quite different. In many ways the hydrogen proton may be regarded as a loose positive charge that keeps a molecule neutral rather than as an atom that forms a bond in the same
and a valence p state are present. We will see that when these atoms form molecules, the bond orbitals are mixtures of both s and p orbitals. There is no valence p state in hydrogen, and its behavior is quite different. In many ways the hydrogen proton may be regarded as a loose positive charge that keeps a molecule neutral rather than as an atom that forms a bond in the same
present. We will see that when these atoms form molecules, the bond orbitals are mixtures of both s and p orbitals. There is no valence p state in hydrogen, and its behavior is quite different. In many ways the hydrogen proton may be regarded as a loose positive charge that keeps a molecule neutral rather than as an atom that forms a bond in the same
when these atoms form molecules, the bond orbitals are mixtures of both s and p orbitals. There is no valence p state in hydrogen, and its behavior is quite different. In many ways the hydrogen proton may be regarded as a loose positive charge that keeps a molecule neutral rather than as an atom that forms a bond in the same
molecules, the bond orbitals are mixtures of both s and p orbitals. There is no valence p state in hydrogen, and its behavior is quite different. In many ways the hydrogen proton may be regarded as a loose positive charge that keeps a molecule neutral rather than as an atom that forms a bond in the same
are mixtures of both s and p orbitals. There is no valence p state in hydrogen, and its behavior is quite different. In many ways the hydrogen proton may be regarded as a loose positive charge that keeps a molecule neutral rather than as an atom that forms a bond in the same
orbitals. There is no valence p state in hydrogen, and its behavior is quite different. In many ways the hydrogen proton may be regarded as a loose positive charge that keeps a molecule neutral rather than as an atom that forms a bond in the same
state in hydrogen, and its behavior is quite different. In many ways the hydrogen proton may be regarded as a loose positive charge that keeps a molecule neutral rather than as an atom that forms a bond in the same
behavior is quite different. In many ways the hydrogen proton may be regarded as a loose positive charge that keeps a molecule neutral rather than as an atom that forms a bond in the same
many ways the hydrogen proton may be regarded as a loose positive charge that keeps a molecule neutral rather than as an atom that forms a bond in the same
proton may be regarded as a loose positive charge that keeps a molecule neutral rather than as an atom that forms a bond in the same
loose positive charge that keeps a molecule neutral rather than as an atom that forms a bond in the same
keeps a molecule neutral rather than as an atom that forms a bond in the same
rather than as an atom that forms a bond in the same
forms a bond in the same
sense that heavier atoms do
Thus we can think of
methane CH4 as " neon "
with four protons split off
from the nucleus just as we
can think of H2 as "helium"
with a split nucleus
1- D The Simple Polar
Bond
In the H2 molecule just
discussed the two hydrogen
atoms brought together were
identical and their two
energies Ss were the same.
We shall often be interested
in systems in which the
diagonal energies ifn and H22
(that is diagonal elements of

the Hamiltonian matrix) are	
different; such molecules are	
said to have a hetero- polar or	
simply polar bond. Let us use,	
as an example, the molecule	
LiH. We expect the linear	
combinations to be those of	
the hydrogen Is orbitals and	
lithium 2s orbitals, though as	
we indicated at the end of the	
preceding section, special	
con-siderations govern	
molecules involving	
hydrogen.	
In calculating the energy of	
heteropolar bonds, Eqs. (1-	
28) must be modified so that	
£s is replaced by two	
different energies, \pounds^* for the	
low-energy state (for the	
energy of the anion) and fij	
for the high-energy state (for	
the energy of the cation).	
The value of one half of the	
anion cation energy-	
difference is the polar energy:	
It is convenient to define the	
average of the cation and	
anion energy, written as	
Then Eqs. (1-31) become	
The solution of Eqs. (3-34) is	
trivial:	
£b and £a are bonding and	
antibonding energies,	
respectively. The splitting of	
these levels is shown in Fig.	
1-10,b. In looking at the	
energy-level diagram of that	
figure, imagine that the	

interaction between the two	
atomic levels, represented by	
v2, pushes the levels apart.	
This is the qualitative result	
that follows also from the	
perturbation-theoretic	
expression, Eq. (1-14).	
It is also shown in the figure	
that the charge density	
associated with the bonding	
state shifts to the low-energy	
side of the molecule (the	
direction of the anion). This	
means that the molecule has	
an electric dipole; the	
molecule is said to have a	
polar bond. Polarity of	
bonding is an important	
concept in solids and it is	
desirable to introduce the	
notion here briefly; it will be	
examined later, more fully, in	
discussion of solids. To	
describe polarity	
mathematically, first we	
obtain and u2 values for the	
bonding state by substituting	
£b for the energy E in Eqs.	
(1-34), the first equation of	
which can then be rewritten	
as	
(1-36)	
Second, if the individual	
atomic wave functions do not	
overlap, the probability of	
finding the electron on atom 1	
will be $ui /(uI + ui)$ and the	
probability of finding it on	
atom 2 will be ui/iui + ui).	
This follows from the	

average-value theorem, Eq.	
(1-3). Manipulation of Eq. (1-	
36) leads to the result that the	
probability of the electron	
appearing on atom 1 is $(1 +$	
0Cp)/2 and the probability of	
finding it on atom 2 is $(1 - $	
ap)/2, where ap is the polarity	
defined by	
We can expect the dipole of	
the bond to be proportional to	
u = bcp. The polarity of	
the bond and the resulting	
dipole are central to an	
understanding of partially	
covalent solids.	
Another useful concept is the	
complementary quantity,	
covalency, defined by	
1- E Diatomic Molecules	
In Section 1-C we noted that	
molecular hydrogen is unique	
in that a single atomic state,	
the Is state, dominates its	
bonding properties. In the	
bonding of other diatomic	
molecules, valence s states	
and p states are important,	
and this will be true also in	
solids. Only aspects of	
diatomic molecules that have	
direct relevance to solids will	
be taken up here. A more	
complete discussion can be	
found in Slater (1968) or	
Coulson (1970).	
Homopolar Bonds	
Specific examples of	
homopolar diatomic	
molecules are Li 2, Be2, B2,	

c2, N2, 02, and F2, though, as seen in Fig. 1-8, variation in energy of the s and p electron states is very much the same in other series of the periodic table as it is for these elements. Four valence states for each atom must be considered—a single s state and three p states. It might seem first that the at mathematical expansion of each molecular electronic state would require a linear combination of all of these valence states; however, the matrix elements between some sets of orbitals can be seen by symmetry to vanish, and the problem of determining the states separates into two simpler problems. Fig. 1-11 indicates schematically which orbitals are coupled. The matrix elements between other orbitals than those indicated by a connecting line are zero. The Py orbitals of atoms 1 and 2 are coupled only to each other. They form simple bonding and antibonding combinations just as in the hydrogen molecule. In a similar way, the Pz orbitals form bonding and combinations. antibonding The four resulting p-orbital combinations are called n states, by analogy with p

states because each has one	
unit of angular momentum	
around the molecular avia	
The Tt states are also	
The It states are also	
irequently distinguished by a	
g, for gemde (German for	
even "), or	
The coupling of atomic	
orbitals in lithium-row	
diatomic molecules, and the	
resultant bond designations	
(at right).	
u, for ungerade (" odd "),	
depending on whether the	
wave function of the orbital is	
even or odd when inverted	
through a point midway	
between the atoms. For %	
orbitals, the bonding	
combination is ungerade a n	
orbital that is gerade (ng) is	
zero on the plane bisecting	
the bond.	
A feature of homopolar	
diatomic molecules is that s	
states and px states are also	
coupled, and all four states	
are required in the expansion	
of the corresponding	
molecular orbitals called O	
states The bonding	
combination for a orbitals is	
gerade (Gg) The s and n	
states are hybridized in the	
molecule (The corbital	
combinations have no angular	
momentum around the	
momentum around the	
indictular axis.) However, it	
is not necessary to solve four	
simultaneous equations;	

instead, construct gerade and	
ungerade combinations of s	
states and of p states. There	
are no matrix elements of the	
Hamiltonian between the	
gerade and ungerade	
combinations, so the	
calculation of states again	
reduces to the solution of	
quadratic equations, as in the	
case of the hydrogen	
molecule. Notice that the two	
pairs of coupled s and p states	
have matrix elements of	
opposite sign (Vspa, - Vspa)	
because of the difference in	
the sign of the p lobe in the	
two cases. The general	
convention for signs will be	
specified in Section 2-D.	
FIGURE 1-12	
The development of	
molecular energy levels as a	
pair of lithium-row atoms is	
brought together (that is,	
internuclear distance d	
decreases from left to right).	
Let us trace the changes in	
energy that occur as a pair of	
identical atoms from the	
lithium row come together.	
Qualitatively these changes	
are the same for any of the	
elements and they are	
illustrated schematically in	
Fig. 1-12. On the left,	
corresponding to large	
separations of the atoms, the	
energy levels have simply the	
atomic energies £s (one s	

orbital for each atom) and fip (three p orbitals for each atom, px, Py, and pz). As the atoms are brought together, the electron levels split (one energy going down and the other, up) and bonding and antibonding pairs are formed. The n orbitals oriented along the y-axis have the same energies as those oriented along the z-axis. The bonding and antibonding combinations for these are indicated by 1 nl§ and lng, respectively. The number one indicates the first combination of that symmetry in order of increasing energy. Each corresponds to two orbitals and is drawn with double lines. At large separation the O orbitals are, to a good approximation, a bonding combination of s states and an antibonding combination of s states, and a bonding combination of px states and an antibonding combination of px states, in order of increasing energy. The of energies the intermediate levels, indicated by $2\sigma_{11}$, and $3\sigma_{22}$ in the figure, comparable become and should be thought of as and antibonding bonding combinations of sp-hybrids, mixtures of s states and p states. Their ordering is as

1		
	shown, and is the same for all	
	the diatomic molecules of the	
	lithium row (Slater, 1968, pp.	
	451 and 452).	
	A particularly significant	
	aspect of the energy levels	
	seems to apply to all of these	
	simple diatomic molecules:	
	the energy of the low-lying	
	antibonding state $2 < 7$, is	
	never greater than that of	
	either of the two high-energy	
	bonding states 3 og and \nu.	
	(The latter two can occur in	
	either order, as suggested in	
	the figure.) Such crossings of	
	bonding and antibonding	
	levels do occur in solids and	
	are an essential feature of the	
	electronic structure of what	
	are called covalent solids.	
	The Occupation of Levels	
	As indicated in Section 1-A,	
	the energy of electron states	
	and their occupation by	
	electrons are quite separate	
	topics. For example, it is	
	possible to specify the energy	
	values at an observed	
	spacing, as in Fig. 1-12, and	
	then to assign to them, in	
	order of increasing energy,	
	whatever electrons are	
	available, ignoring any effect	
	that an electron in one level	
	may have on an electron in	
	another level. More precisely,	
	the energy of a state in any	
	system is defined to be the	
	negative of the energy	

required to move a single electron from the designated state to an infinitely distant loca-tion, without changing the number of electrons in the other states. Most theoretical calculations of energy levels determine what that energy is for each state, since this information is closely related to wide variety of a When properties. we calculate the total energy of will solids. we consider corrections to the sum of these energies; for the present, it is satisfactory to think of these energy levels as remaining fixed in energy as electrons are added to them. If two atoms forming a diatomic molecule are both lithium, there are only two valence electrons. which would be put in the 2og bonding state; the qualitative picture of electronic structure and binding of Li 2 is exactly the same for H2; the levels deriving from the valence p state of lithium may disregarded. If be the molecule were Be2. there would be four electrons in the molecule; two would occupy the 2og bonding state, and the other two would occupy the 2<r,, antibonding state. The greater energy of the antibonding electrons (in

comparison to the atomic levels) would tend to cancel the energy of the bonding electrons, and hence, bonding would be expected to be weak, though Be2 is found in nature. As the atomic number of the constituents increases. bonding and antibonding states are filled in succession. F2 would have enough electrons to fill all but the highest antibonding state, 3ou. A pair of neon atoms would have enough electrons fill all bonding to and antibonding states and, like Be2, would not be bound at all. In 02, when the last levels to be filled are degenerate, a special situation occurs. Only two electrons occupy the lng state though there are states to

accommodate four. There are different ways the state could be filled, and Hund's rule tells us which arrangement will have lowest energy. It states that when there is orbital degeneracy, the electrons will be arranged to maximize the total spin. This means that each electron added to a set of degenerate levels will have the same (parallel) spin, if possible, as the electron which preceded it. The physical origin of this rule is the fact that two

electrons of the same spin can never be found at precisely the same place, for basically the same reason that leads to the Pauli principle. Thus electrons of the same spin avoid each other, and the repulsive Coulomb interaction energy between them is smaller than for electrons of opposite spin. The corresponding lowering in energy per electron for parallel-spin electrons, compared to antiparallel-spin electrons, is called exchange energy. It tends to be small enough that it is dominant only when there is orbital degeneracy, as in the case of 02, or very near orbitaldegeneracy. The dominance of exchange energy is the origin of the spin alignment in ferromagnetic metals. (A more complete discussion of exchange energy appears in Appendixes A and c.) In 02, the two degenerate lng states take one electron in a py state and one in a pz state. As a result, the charge density around the 02 molecule has cylindrical symmetry, though there is a net spin from the two electrons. In contrast, if both electrons were in py states, they would necessarily also have opposite spin. This would lead to a flattened

charge distribution around the	
molecule. Hund's rule tells us	
that the former arrangement	
has lower energy because of	
the exchange energy.	
In the same sense that H2 is	
like He (as mentioned at the	
end of Section 1-C), the	
molecule C2H4 is like 02,	
except that the two hydrogen	
protons are outside the carbon	
nucleus rather than inside.	
The number of electrons is	
the same in both C2H4 and	
02 and essentially the same	
classification of electron	
levels can be made. However,	
if the protons in C2H4 are all	
placed in the same plane, the	
Inu state oriented in that plane	
will have lower energy than	
that oriented perpendicular to	
the plane. The orbital energy	
will then be lowered if the	
first orbital is occupied with	
electrons with both spins.	
This planar form in fact gives	
the stable ground-state	
arrangement of nuclei and	
electrons in ethylene. If it	
were possible to increase the	
exchange energy it would	
eventually become	
energetically tavorable to	
occupy one Py state and one	
pz state of parallel spin. Then	
the electron density would be	
cylindrically symmetric as in	
oxygen, and the protons	
would rotate into	

perpendicular planes in order to attain lower Coulomb interaction energy. C2H4 illustrates several points of interest. First, any elimination of orbital degeneracy will tend to override the influence of exchange energy. Second, atoms (in this case, protons) can arrange themselves in such a way as to eliminate degeneracy; this creates an asymmetric electron density that stabilizes the new arrangement. Through this self-consistent, cooperative arrangement, electrons and atoms minimize their mutual This energy. same cooperative action is often responsible for the spatial arrangement of atoms in solids. Once that arrangement is specified in solids, a particular conception of the electronic structure becomes appropriate, just as in the case of C2H4. Furthermore, that conception can be quite different from solid to solid. depending on which stable configuration of atoms is present. To make the discussion of the electronic structure of diatomic molecules quantitative, it is necessary to have values for the various matrix elements. It will be solids. found that for a

reasonably good	
approximation of the	
interatomic matrix elements	
can be obtained from the	
formula vih = flip $h2/(md2)$,	
where d is the internuclear	
distance and values for tlijx	
are four universal constants	
for SSO, spa, ppo, and ppn	
matrix elements, as given in	
the next chapter (Table 2-1).	
Furthermore, atomic term	
values (given in Table 2-2)	
can be used for Ep and fis.	
Applying such an	
approximation to the well-	
understood diatomic	
molecules will not reveal	
anything about those	
molecules, but can tell	
something about the	
reliability of the	
approximations that will be	
used in the study of solids.	
The necessary quadratic	
equations can be solved to	
obtain the molecular orbital	
energies in terms of the	
matrix elements and values	
for all matrix elements can be	
obtained from Tables 2-1 and	
2-2. This gives the one-	
electron energies listed in	
Table 1-1, where the bond	
lengths (distance between the	
two nuclei) are also listed.	
For comparison with these	
values, results of full-scale	
self-consistent molecular	
orbital calculations are listed	

in parentheses. The solid state matrix elements give a very good semiquantitative account of the occupied states (which lie below the shaded area) for the entire range of homopolar molecules; there are major errors only for the ĩog levels in 02 and F2. The empty levels above (shaded) are not well given. Neither will the empty levels be as well given as the occupied ones in the description of solids in terms of simple LCAO theory. This degree of success in applying solid state matrix elements outside the realm of solids, to diatomic molecules, gives confidence in their application in a wide range of solid state problems. Heteropolar Bonds Bonding of diatomic molecules in which the constituent atoms are different can be analyzed very directly, and only one or two points need be made. The n states in heteropolar diatomic bonding are calculated just as the simple polar bond was. In each case only one orbital on each atom is involved. A polarity can be assigned to these bonds, just as it was in Section I'D. TABLE 1-1 One-electron energies in diatomic homopolar

molecules, as obtained by	
using solid state matrix	
elements Values in	
parentheses are from accurate	
molecular orbital	
calculations Shading denotes	
empty orbitals Energies are	
in eV	
SOURCES of data in	
parentheses: Li2 Be2 c2 Ni	
and F2 from Ransil (1960) :	
B2 from Padgett and Griffing	
(1959): 02 from Kotani	
Mizuno Kayama and	
Ishiguro (1057): all reported	
in Slater (1968)	
There is however a	
complication in the treatment	
of the \vec{O} bonds. Because the	
states are no longer purely	
gerade and ungerade the four	
simultaneous equations	
cannot be reduced to two sets	
of two In a diatomic	
molecule this would not be	
much of a complication but it	
is very serious in solids	
Fortunately for many solids	
containing a bonds hybrid	
basis states can be made from	
s and p states, and these can	
be treated approximately as	
independent pairs. which	
reduces the prob-lem to that	
of finding two unknowns for	
each bond. In other cases,	
solutions can be	
approximated by use of	
perturbation theory. The	
approximations that are	

· · · · · · · · · · · · · · · · · · ·	
appropriate in solids will	
often be very different from	
those appropriate for diatomic	
molecules. Therefore, we will	
not discuss the special case of	
o-bondeđ hetero- polar	
molecule.	
PROBLEM 1-1 Elementary	
quantum mechanics	
An electron in a hydrogen	
atom has a potential energy,	
- e2/V. The wave function	
for the lowest energy state is	
$j/(r) = Ae \sim rla^{\circ}$	
where a0 is the Bohr radius,	
a0 = h2/me2, and A is a real	
constant.	
(a) Obtain A such that the	
wave function is normalized,	
$(\hat{e} I \hat{e}) = 1.$	
(b) Obtain the expectation	
value of the potential energy,	
(ệ∖ VịìI∕).	
(c) Calculation of the	
expectation value of the	
kinetic energy,	
K.E.^I^VI^X	
is trickier because of the	
infinite curvature at $/ \bullet = 0$. By	
partial integration in Eq. (1-	
3), an equivalent form is	
obtained:	
Evaluate this expression to	
obtain K.E.	
(d) Verify that the	
expectation value of the total	
energy, $\langle // $ viii1} + K.E. is a	
minimum with respect to	
variation of 00. Thus a	
variational solution of the	

form e~',r would have given	
the correct wave function.	
(e) Verify that this $i//(r)$ is	
a solution of Eq. (1-5).	
PROBLEM 1-2 Atomic	
orbitals	
The hydrogen 2s and 2p	
orbitals can be written	
and	
(see Schiff, 1968, p. 94), and	
p orbitals can also be written	
with X replaced by V and by	
z. All four hydrogen orbitals	
have the same energy, —	
e2/(8flc).	
Approximate the lithium 2,5	
and 2p orbitals by the same	
functions and approximate	
the lithium potential by —	
$e^{2/r} + ucore(r)$, where	
Calculate the expectation	
value of the energy of the 2s	
and 2p orbitals. The easiest	
way may be to calculate	
corrections to the $- e2/(8a0)$	
value.	
This gives the correct	
qualitative picture of the	
lithium valence states but is	
quantitatively inaccurate.	
Good quantitative results can	
be obtained by using forms	
such as are shown above and	
varying the parameters in the	
exponents. Such variational	
forms are called "Slater	
orbitals."	
PROBLEM 1-3 Diatomic	
molecules	
For c2, obtain the O states for	

the homopolar diatomic	
molecule (see Fig. 1-11), by	
using the matrix elements	
from the Solid State Table, at	
the back of the book, or from	
Tables 2-1 and 2-2, in	
Chapter 2. Writing	
the equations analogous to	
Eq. (2-2) become	
Solutions will be even or odd,	
by symmetry, so there can be	
solutions with $u^2 = U_1^i$ and	
w4 = -u3, and the above	
reduce to two equations in	
two unknowns. Solve them	
for E. Then, solve again with	
If $2 = -$ III and $\ll 4 = u3$.	
Confirm the values of these	
energies as given in Table 1-1	
for c2.	
The lowest state contains	
comparable contributions	
from the s and p orbitals.	
What is the fraction of s	
character, that is, $(ui + uiyiui)$	
+uį +uį +ul)1	
CHAPTER 2	
Electronic Structure of Solids	
SUMMARY	
In solids, atomic valence	
levels broaden into bands	
comprising as many states as	
there are atoms in the solid.	
Electrons in these band states	
are mobile, each electron	
state being characterized by a	
momentum p or wave number	
k = p/tt that is restricted to a	
Brillouin Zone. If each atom	
in the solid has only four	

neighboring atoms. the atomic valence orbitals can be combined to form bond orbitals between each set of neighbors, and two electrons per bond can stabilize such an arrangement of atoms. In such covalent structures. bands of states based upon the bond orbitals will be fully occupied by electrons but other bands will be empty. The bonds may be symmetric The polar. covalent or structure will not be stable if there are not two electrons per bond, if the bond energy is too small, or if the bond is polar. Under too these circumstances the lattice will tend to collapse to a denser structure. It may be an ionic crystal, which is a particularly stable arrangement, if by redistributing the electrons it can leave every atomic shell full or empty. Otherwise it will be metallic, having bands of states that only are partially occupied. If the electron states are represented bv linear combinations of atomic orbitals, the electron energy bands are found to depend on a set of orbital energies and interatomic matrix elements. Fitting these to accurate bands suggests that atomic term values suffice for the

orbital energies and that nearest-neighbor interatomic matrix elements scale with bond- length d from system to system as d~2. This form, and approximate coefficients, all follow from the observation that the bands are also approximately given by a free-electron approximation. Atomic term values and coefficients determining interatomic matrix elements are listed in the Solid State Table and will be used in the study of covalent and ionic solids. In this chapter we give a very brief description of solids, which is the principal subject of the book. The main goal is to fit solids into the context of atoms and molecules. In addition, we shall carefully formulate the energy band in the simplest possible case and study the behavior of electrons in energy bands. A Energy Bands 2-When many atoms are brought together to form a solid, the number of electron states is conserved, just as in the formation of diatomic molecules. Likewise, as in diatomic molecules, the oneelectron states for the solid reasonable can, to a approximation, be written as LCAO's. However, in solids,

the number of basis states is great. A solid cube one centimeter on an edge may contain 1023 atoms, and for each, there is an atomic s orbital and three p orbitals. At first glance it might seem that such a problem, involving some 4 X 1023 equations, could not be attacked. However, the simplicity of the crystalline solid system allows us to proceed effectively and accurately. As the atoms are brought together, the atomic energy levels split into bands, which are analogous to the states illustrated for diatomic molecules in Fig. 1-12. The difference is that rather than splitting into a single bonding and a single antibonding state, the atomic levels split into an entire band of states distributed between extreme bonding and antibonding limits. To see how this occurs, let us simplest consider the interesting that of case. cesium chloride. The structure of CsCl is shown in Fig. 2-1,a. The chlorine atoms, represented by open circles, appear on the comers of a cube, and this cubic array is repeated throughout the entire crystal. At the center of each cube is a cesium atom (at the body-center position ill the cube). Cesium chloride is very polar, so the occupied orbitals lie almost entirely upon the chlorine atoms. As a first approximation we can say that the cesium atom has given up a valence electron to (a) Crystal structure (b) Brillouin Zone FIGURE 2-1

(a) A unit cube of the cesium chloride crystal structure, and(b) the corresponding Brillouin Zone in wave number space.

fill the shell of the chlorine atom, which becomes а charged atom, called an ion. Thus we take chlorine 3s orbitals and 3p orbitals as the basis states for describing the occupied states. Furthermore, the chlorine ions are spaced far enough apart that the s and p states can be considered separately, as was true at large inter- nuclear distance d in Fig. 1-12. Let us consider first the electron states in the crystal that are based upon chlorine the atomic 38 orbitals. We define an index i that numbers all of the chlorine

ions in the crystal. The chlorine atomic s state for each ion is written I Si). We can approximate a crystalline state by

The variational calculation	
then leads immediately to a	
set of equations, in analogy to	
Eq. (1-26):	
It is convenient at this stage	
to avoid the complications	
that arise from consideration	
of the crystalline surface, by	
introducing periodic	
boundary conditions. Imagine	
a crystal of chlorine ions that	
is Ni ions long in the x-	
direction, N2 long ill the ^-	
direction, and N3 long in the	
z-direction. The right surface	
of the crystal is connected to	
the left, the top to the bottom,	
and the front to the back. This	
is difficult to imagine in three	
dimensions, but in one	
dimension such a structure	
corresponds to a ring of ions	
rather than a straight segment	
with two ends. Closing the	
ring adds an Hij matrix	
element coupling the states	
on the end ions. Periodic	
boundary conditions greatly	
simplify the problem	
mathematically; the only	
error that is introduced is the	
neglect of the effect of	
surfaces, which is beyond the	
scope of the discussion here.	
of the crystalline state Eq. (2)	
1) contains a basis set of Np	
- N1N2 N3 states (for the Nn	
pairs of ions) and there are	
Nn solutions of Fa (2.2)	
Type solutions of Eq. (2^{-2}) .	

These solutions can be	
written down directly and	
verified by substitution into	
Eq. (2-2). To do this we	
define a wave number that	
will be associated with each	
state:	
(2-3)	
where lĩi, n2, and n3 are	
integers such thatNi/2	
<nx< 2,and="" and<="" ni="" td="" x,="" y,=""><td></td></nx<>	
are units vectors in the	
three perpendicular	
directions, as indicated in Fig.	
2-1,b. Then for each k	
allowed by Eq. (2-3), we can	
write the coefficient Uj in the	
form	
Here the $r7- = (ml X + m2y +$	
m3 z)a are the positions of	
the ions. We see immediately	
that there are as many values	
of k as there are chlorine	
ions; these correspond to the	
conservation of chlorine	
electron states. We also see	
that the wave functions for	
states of different k are	
orthogonal to each other.	
Values for k run almost	
continuously over a cubic	
region of wave number space,	
- n/a < kx < n/a, - n/a < ky	
< n/a, and — n/a < kz < %/a.	
This domain of k is called a	
Brillouin Zone. (The shape of	
the Brillouin Zone, here	
cubic, depends upon the	
crystal structure.) For a	
macroscopic crystal the Ni	

are very large, and the change	
in wave number for unit	
change in «j is very tiny. Eq.	
(2-4) is an exact solution of	
Eq. (2-2); however, we will	
show it for only the simplest	
approximation, namely, for	
the assumption that the sf)	
are sufficiently localized that	
we can neglect the matrix	
element Hji = $ S()$ unless (1)	
two states in question are the	
same $(/' = j)$ or (2) they are	
from nearest-neighbor	
chlorine ions. For these two	
cases, the magnitudes of the	
matrix elements are, in	
analogy with the molecular	
case,	
In cesium chloride the main	
contribution to v2 comes	
from cesium ion states acting	
as intermediaries in a form	
that can be obtained from	
perturbation theory. We need	
not be further concerned here	
with the origin of v2. (We	
shall discuss the ionic crystal	
matrix elements in Chapter	
14.) For a particular value of j	
in Eq. (2-2), there are only	
seven values of i that	
contribute to the sum: i=j	
numbered as 0, and the six	
nearest-neighbor chlorine s	
states. The solution (valid for	
any i) is	
This energy varies with the	
wave number over the entire	
Brillouin Zone of Fig. 2-l,b.	

The results are customarily	
displayed graphically along	
certain lines within that	
Brillouin Zone. For example,	
Fig. 2-2,a shows a variation	
along the lines rx and TK of	
Fig. 2-1,b.	
The calculation of bands	
based on p states proceeds in	
much the same way. In	
particular, if we make the	
simplest possible	
assumption—that each px	
orbital is coupled by a matrix	
element V'2 only to the px	
orbitals on the nearest	
neighbors in the x-direction	
and to no other p orbitals, and	
similarly for the py and pz	
orbitals— then the calculation	
can be separated for the three	
types of states. (Otherwise it	
would be necessary to solve	
three simultaneous equations	
together.) For the states based	
upon the px orbitals,	
For py orbitals and pz	
orbitals, the second term is	
2V2 COS kya and 1V'2 COS	
kza, respectively. The three	
corresponding p bands are	
also shown in Fig. 2-2,a. In	
later	
discussions we shall see that	
by the addition of matrix	
elements between orbitals	
that are more distant it is	
possible to obtain as accurate	
a description of the true bands	
as we like; for the present,	

crude approximations are	
sufficient to illustrate the	
method.	
Can we construct other bands,	
for other orbitals, such as the	
cesium s orbital? It turns out	
that states that are not	
occupied in the ground state	
of the crystal are frequently	
not well described in the	
simplest LCÀO descriptions,	
but an approximate	
description can be made in	
the same way.	
How would the simple bands	
change if we could somehow	
slowly eliminate the strong	
atomic potentials that give	
rise to the atomic states upon	
which the bands are based?	
The answer is given in Fig. 2-	
2,b. The gaps between bands	
decrease, including the gap	
between the cesium bands	
(not shown in Fig. 2-2,a) and	
the chlorine bands. The	
lowest bands have a	
recognizable similarity to	
each other in these two	
extreme limits. The limit	
shown in Fig. 2-2,b is in fact	
the limit as the electrons	
become completely free; the	
lowest band there is given by	
the equation for free-electron	
kinetic energy, E —	
$t_{12K2/2m}$. The other bands in	
Fig. 2-2,b are also free-	
electron bands but are	
centered at different wave	

numbers (e.g., as $E = h2(k - $	
q)2/2m), in keeping with the	
choice to represent all states	
by wave numbers in the	
Brillouin Zone. Such free-	
electron descriptions will be	
appropriate later when we	
discuss metals; for cesium	
chloride, these descriptions	
are not so far from LCAO	
descriptions as one might	
have thought, and in fact the	
similarity will provide us, in	
Section 2-D, with	
approximate values for	
interatomic matrix elements	
such as v2 and V'l.	
Since there are as many states	
in each band as there are	
chlorine ions in the crystal,	
the four bands of Fig. 2-2,a,	
allowing both spins in each	
spatial state, can	
accommodate the seven	
chlorine electrons and one	
cesium electron. All states	
will be filled. This is the	
characteristic feature of an	
insulator; the state of the	
system cannot be changed	
without exciting an electron	
with several electron volts of	
energy, thus transferring it to	
one of the empty bands of	
greater energy. For that	
reason, light with frequency	
less than the difference	
between bands, divided by h,	
cannot be absorbed, and the	
crystal will be transparent.	

Similarly, currents cannot be induced by small applied voltages. This absence of electrical conductivity results from the full bands, not from any localization of the electrons at atoms or in bonds. It is important to recognize that bands exist in crystals and that the electrons are in states of the crystal just as. in the molecule 02. electrons form bonding and antibonding molecular states, rather than atomic states at the individual atoms. If, on the other hand, the bands of cesium chloride were as in Fig. 2-2,b, the eight electrons of each chlorine-cesium atom pair would fill the states only to the energy Ep shown in the figure; this is called the Fermi energy. Each band would only be partly filled, a feature that, as we shall see, is characteristic of a metal. 2-**B** Electron Dynamics In circumstances where the electron energy bands are neither completely full nor completely empty, the behavior of individual electrons in the bands will be of interest. This is not the principal area of concern in this text, but it is important to understand electron dynamics because this provides the link

between the band properties	
and electronic properties of	
solids.	
Consider a Brillouin Zone,	
such as that defined for CsCl,	
and an energy band E(k),	
defined within that zone.	
Further, imagine a single	
electron within that band. If	
its wave function is an energy	
eigenstate, the time-	
dependent Schroedinger	
equation, Eq. (1-17), tells us	
that	
The magnitude of the wave	
function and therefore also	
the probability density at any	
point do not change with	
time. To discuss electron	
dynamics we must consider	
linear combinations of energy	
eigenstates of different	
energy. The convenient	
choice is a wave packet. In	
particular, we construct a	
packet, using states with	
wave numbers near k0 and	
parallel to it in the Brillouin	
Zone:	
Taking the form of (i) from	
Eqs. (2-1) and (2-3), and	
treating k - k0 as small, a	
little algebra shows that at $t =$	
0, Eq. (2-8) corresponds to	
the state iI/ko modulated by a	
gaussian peak centered at $r =$	
0. Furthermore, writing $f(k)$	
$= E(k0) + (dE/dk) \bullet (k - k0),$	
we may see that the center of	

the gaussian moves with a	
velocity	
Thus it is natural to associate	
this velocity with an electron	
in the state Ijjko. Indeed, the	
relation is consistent with the	
expectation value of the	
current operator obtained for	
that state.	
We are also interested in the	
effects of small applied	
fields: imagine the electron	
wave packet described above,	
but now allow a weak, slowly	
varying potential F(r) to be	
present. The packet will work	
against this potential at the	
rate V \cdot dv/dr. This energy	
can only come from the band	
energy of the electron,	
through a change, with time,	
of the central wave number	
k0 of the packet:	
This is consistent with the	
relation	
This can, in fact, be	
generalized to magnetic	
forces by replacing —dv/dx	
by the Lorenz force, — e[—	
$\{ = (v/c) X H \},$	
Eqs. (2-9) and (2-11)	
completely describe the	
dynamics of electrons in	
bands wherever it is possible	
to think in terms of wave	
packets; that is, whenever the	
fields are slowly varying	
relative to interatomic	
spacings. Notice that if we	
think of fik as the canonical	

momentum, then the band	
energy, written in terms of p	
= hk, plus the potential	
energy, F(r), play precisely	
the role of the classical	
Hamiltonian, since with these	
definitions, Eqs. (2-9) and (2-	
11), are precisely Hamilton's	
equations. Thus, in terms of	
the energy bands E(k), we	
may proceed directly by	
using kinetic theory to	
examine the transport	
properties of solids, without	
thinking again of the	
microscopic theory that led to	
those bands. We may go even	
further and use this classical	
Hamiltonian to discuss a	
wave function for the packet	
itself, just as we constructed	
wave functions for electrons	
in Chapter 1. This enables us	
to treat band electrons bound	
to impurities in the solid with	
methods similar to those used	
to treat electrons bound to	
free atoms; however, it is	
imperative to keep in mind	
that the approximations are	
good only when the resulting	
wave functions vary slowly	
with position, and therefore	
their usefulness would be	
restricted to weakly bound	
impurity states.	
Let us note some qualitative	
aspects of electron dynamics.	
If the bands are narrow in	
energy, electron velocities	

will be small and electrons will behave like heavy particles. These qualities are observed in insulator valence bands and in transition-metal d bands. In simple metals and semiconductors the bands tend to be broader and the electrons are more mobile; in metals the electrons typically behave as free particles with masses near the true electron mass.

One question that might be asked is: what happens when an electron is accelerated into the Brillouin Zone surface? The answer is that it jumps across the zone and appears on the opposite face. It is not difficult to see from Eq. (2-3) that if, for example, m; is changed by Ni (corresponding to going from a wave number on one zone face to a wave number on the opposite face) the phase factors change by e2"; the states are therefore identical. In general, equivalent states are found on opposite zone faces. and an electron accelerated into one face will appear at the opposite face and continue to change its wave number according to Eq. (2-11). 2-C Characteristic Solid Types Before discussing in detail

It jumps a appears It is not Eq. (2-3) e, m; is Ni bing from one zone ber on the e phase e2"'; the identical. ent states site zone electron face will site face hange its ording to
the various categories of solids, it is helpful to survey them in general terms. This is conveniently done by conceptually constructing the semiconductor silicon from free atoms. In the course of this, it will become apparent how the metallicity of a semiconductor varies with row number in the periodic table. With the general model as a basis we can also construct compounds of increasing polarity, starting with silicon or germanium and moving outward in the same row of the periodic table. Metallicity and polarity are the two principal trends shown by compounds and will provide a suitable framework for the main body of our discussions. Imagine silicon atoms arranged as in a diamond crystal structure but widely spaced. This structure will be discussed in the next chapter; a two-dimensional analogue of it is shown in Fig. 2-3. At large internuclear distance, two electrons are on each individual atom in s states and two are in p states. As the atoms are brought together, the atomic states broaden into bands, as we have indicated. (There are complications, unimportant here, if one goes

beyond a one-electron	
picture.) The s bands are	
completely full, whereas the p	
bands can accommodate six	
electrons per atom and are	
only one third full. This	
partial filling of bands is	
characteristic of a metal. As	
the atoms are brought still	
closer together, the	
broadening bands finally	
reach each other, as shown in	
Fig. 2-3, and a new gap opens	
up with four bands below and	
four above. The bonding	
bands below (called valence	
bands) are completely full	
and the antibonding bands	
above (called con-duction	
bands) are completely empty;	
now the system is that of an	
insulator or, when the gap is	
small, of a semiconductor. In	
Chapter 1, it was noted that a	
crossing of bonding and	
antibonding states does not	
occur in the simple diatomic	
molecules, but that it can in	
larger molecules and in	
solids, as shown here.	
The qualitative change in	
properties associated with	
such crossing is one of the	
most important concepts	
necessary for an	
understanding of chemical	
bonding, yet	
I ne formation of bands in a	
nomopolar tetrahedral	

semiconductor as the atoms	
are brought together.	
Internuclear distance	
decreases to the right.	
it has not been widely	
examined until recently.	
Particular attention has been	
brought by Woodward and	
Hoffmann (1971) in their	
discussion of reactions	
between molecules. In that	
context, Woodward and	
Hoffmann found that when	
bonding and antibonding	
states are equally occupied, as	
in Be2, discussed earlier, no	
bonding energy is gained and	
the atoms repel each other.	
Only when the atoms are	
close enough that upper	
bonding levels can surpass or	
cross the energy of the lower	
antibonding levels above can	
bonding result. In some such	
cases (not Be2) a stably	
bonded system can be	
formed, but an energy barrier	
must be overcome in order to	
cause the atoms to bond.	
Reactions in which energy	
barriers must be overcome	
are called symmetry	
Torbidden reactions. (See	
woodward and Hoffmann,	
19/1, p. IOII, for a discussion	
$01 2C2H4 \rightarrow C4H8.)$ The harrian managing in fact when	
there is no symmetry.	
siliaon illustrated in Fig. 2.2	
the areasing ecourt because	
the crossing occurs because	

high symmetry is assumed to	
exist in the atomic	
arrangement. Because of this	
symmetry, the matrix	
elements of the Hamiltonian	
are zero between wave	
functions of states that are	
dropping in energy and those	
that are rising (ultimately to	
cross each other) If instead	
the silicon atoms were to	
come	
■ <i>Increasing</i> interstomic	
distance (d)	
FIGURE 2 A	
The variation of anarou of	
two levels which cross as a	
function of atomic spacing d	
in a symmetric situation but	
do not cross when there is not	
do not cross when there is not	
sufficient symmetry.	
together as a distorted fattice	
with no symmetry, the	
corresponding matrix	
elements of the Hamiltonian	
would not be zero, and	
decreasing and increasing	
energy levels would not cross	
(see Fig. 2-4).	
In an arrangement of high	
symmetry, a plotting of total	
energy as a function of d may	
show a cusp in the region	
where electrons switch from	
bonding to antibonding states;	
a clear and abrupt qualitative	
change in behavior coincides	
with this cusp region. In an	
unsymmetric arrangement,	
change in total energy as a	

function of d is gradual but at small or at large internuclear distances. energies are indistinguishable from those observed in symmetric arrangements. Thus, though the crossing is artificial (and dependent on path), the qualitative difference, which we associate with covalent bottcling, is not. For this reason. absolutely it is essential to know on which side of a diagram such as Fig. 2-3 or Fig. 2-4 a particular system lies. For example, in covalent silicon, bondingantibonding splitting is the large term and the sp splitting is the small one. That statement explains why there is a gap between occupied states and unoccupied states, which makes covalent silicon a semiconductor. and knowing this guides us in numerical approximations. Similarly, in metals, bondingantibonding splitting is the small term and the sp splitting the large term; this explains why it is a metal and guides our numerical approximations in metals. If we wished to make full. accurate machine calculations we would never need to make this distinction; we could simply look at the results of the full calculation to check

for the presence of an energy gap. Instead, our methods are designed to result in intuitive understanding and approximate calculations of properties, which will allow us to guess trends without calculations in some cases. and which will allow us to treat complicated compounds that would otherwise be intractable by full, accurate calculation in other cases. The diagram at the bottom of Fig. 2-3 was drawn to represent silicon but also, surprisingly, illustrates the homopolar series of semiconductors c, Si, Ge, and Sn. The internuclear distance smallest diamond, is in corresponding to the largest gap, far to the right in the figure. The internuclear distance becomes larger element by element down the series, corresponding to progression leftward in the figure to tin, for which the gap is zero. (Notice that in a plot of the bands, as in Fig. 2-2, the gap can vary with wave number. In tin it vanishes at only one wave number, as will be seen in Chapter 6, in Fig. 6-10.) Nonetheless we must regard each of these semiconductors-even tinas a covalent solid in which the dominant energy is the

bonding-antibonding	
splitting. We can define a	
"metallicity" that increases	
from c to Sn, reflecting a	
decreasing ratio of bonding-	
antibonding splitting to sp	
splitting; nevertheless, if the	
structure is tetrahedral, the	
bonding-antibonding splitting	
has won the contest and the	
system is covalent.	
The discussion of Fig. 2-3 fits	
well with the LCAO	
description but the degree to	
which a solid is covalent or	
metallic is independent of	
which basis states are used in	
the calculation. Most of the	
analysis of covalent solids	
that will be made here will be	
based upon linear	
combinations of atomic	
orbitals, but we also wish to	
understand them in terms of	
free-electron-like behavior.	
(These two extreme	
approaches are illustrated for	
cesium chloride in Fig. 2-2.)	
Free-electron-like behavior is	
treated in Chapter 18, where	
two physical parameters will	
be designated, one of which	
dominates in the covalent	
solid and one of which	
dominates in the metallic	
solid. It can be useful here to	
see now these parameters	
correspond to the concepts	
discussed so far.	
In Fig. 2-2, the width of the	

bands, approximately Ep —	
Es, corresponds to the kinetic	
energy, £F, of the highest	
filled states. The bonding-	
antibonding splitting	
similarly corresponds to the	
residual splitting between	
bands which was suppressed	
completely in Fig. 2-2,b. For	
metals, this residual splitting	
is described by a	
pseudopotential. In metals,	
the small parameter is the	
pseudopotential divided by	
the Fermi energy	
(corresponding to the ratio of	
bonding-antibonding splitting	
to sp splitting, or the	
reciprocal of the metallicity).	
In the covalent solids, on the	
other hand, we would say that	
the pseudopotential is the	
dominant aspect of the	
problem and the kinetic	
energy can be treated as the	
small correction. In fact, in	
Chapter 18 the	
pseudopotential approach will	
be applied to simple	
tetrahedral solids; there,	
treating kinetic energies as	
small compared to the	
pseudopotential leads to a	
simple description of the	
covalent bond in which a one-	
to-one correspondence can be	
obtained between matrix	
elements of the	
pseudopotential (that is,	
between plane waves) and	

matrix elements of the	
Hamiltonian between atomic	
states. The correspondence	
between these two opposite	
approaches is even more	
remarkable than the similarity	
between the LCAO and free-	
electron bands in Fig. 2-2,	
though it is the latter	
similarity which will provide	
us with LCAO matrix	
elements.	
Now, as an introduction to	
polar semiconductors, let us	
follow the variation of	
electronic structure,	
beginning with an elemental	
semiconductor and moving to	
more polar solids. For this,	
germanium is a better starting	
point than silicon, and in	
order of increasing polarity	
the series is Ge, GaAs, ZnSe,	
and CuBr. The total number	
of electrons in each of these	
solids is the same (they are	
isoelectronic) and the	
structure is the same for all;	
they differ in that the nuclear	
charge increases on one of the	
atoms (the anion) and	
decreases on the other (the	
cation). The qualita-	
FIGURE 2-5	
Change in the bands as a	
homopolar semiconductor is	
made increasingly polar, and	
then as the two atom types	
are made more alike without	
broadening the levels.	

tive variation in electronic structure in this series is illustrated in Fig. 2-5,a. Bear in mind that even in nonpolar solids there are two types of atomic sites, one to the right and one to the left of the horizontal bonds in the figure. In polar solids the nuclear charge on the atom to the right is increased, compound by compound. This will tend to displace the bond charges (electron density) toward the atom with higher nuclear charge (center diagram in Fig. 2-5,a) and, in fact, the corresponding transfer of charge in most cases is even larger than the change in nuclear charge, so the atom with greater nuclear charge should be thought of as negative; hence, the term anion is used to denote the nonmetallic atom. At high polarities most of the electronic charge may be thought of as residing on the nonmetallic atom, as shown. The most noticeable change in the energy bands of Fig. 2-5,b, as polarity increases, is the opening up of a gap between the valence bands as shown. There is also а widening of the gap between valence and conduction bands and some broadening of the valence band. In extremely polar solids, at the center of the figure, the valence band, to a first approximation, has split into an anion s band and three narrow anion p bands. The conduction bands in this model—the unoccupied bands—also split into s bands and p bands, but in a real crystal of high polarity, the bands for unoccupied orbitals remain very broad and even free-electron-like.

We can complete the sequence of changes in the model shown in Fig. 2-5 by pulling the atoms apart to obtain isolated free atom energies. Perhaps the simplest path is that shown on the right side of Fig. 2-5, where the metallic and nonmetallic atoms become more alike and where the individual energy bands remain narrow. Where the levels cross, electrons of fill the anion available orbitals of the cation; the crossing results in a reduction of the atomic charges to zero. By comparing Fig. 2-5 with Fig. 2-3, we can see that there is no discontinuous change in the qualitative nature of the electronic structure in going from homopo- lar to highly polar solids of the same crystal structure (Fig. 2-5), but that discontinuity is encountered in going from the atomic electronic

structure to the covalent one (Fig. 2-3). Properties vary smoothly with polarity over the entire range. This feature has been apparent for a long time and led Pauling to define ionicity in terms of energies of formation in order to provide a scale for the trend (Pauling, 1960). Coulson et al. (1962) redefined ionicity in terms of an LCAO description much like the one we shall use in Chapter 3. Phillips (1970) gave still a third definition in terms of the dielectric constant. The formula for polarity of a simple bond, introduced in Eq. (1-37), is essentially equivalent to the ionicity defined by Coulson, but the ionicities defined by Pauling and by Phillips are to a first approximation proportional to the square of that polarity. We will use the term polarity to describe a variation in electronic structure in covalent solids. and the particular values defined by Eq. (1-37) will directly enter the calculation of some properties. We do not use polarity to interpolate properties from one material to another. However, such interpolative approaches are commonly used, and degree of ionicity or polarity is

frequently used to rationalize	
trends in properties.	
Therefore it is best to	
examine that approach	
briefly The distinction	
between these two	
approaches is subtle but of	
fundamental importance	
We have seen that there are	
trends with polarity and with	
metallicity among the	
tetrahedral solids. One of the	
trends is the decrease with	
increasing metallicity and	
increasing polarity of the	
angular rigidity that stabilizes	
the open tetrahedral structure	
Thus if either increases too	
far the structure collapses to	
form a close- packed	
structure. When this happens.	
the new system has a	
qualitatively different	
electronic structure and	
different concepts and	
approximations become	
appropriate. We may think of	
this as analogous to a phase	
diagram, as illustrated in Fig.	
2-6. If a combination of	
atoms (e.g., lithium and	
flourine) is too polar, a close-	
packed rocksalt structure is	
formed. LiF is an ionic	
crystal and most frequently	
the best initial approximation	
to the electronic structure is	
based on independent ions,	
which we used in the	
discussion of the cesium	

chloride energy bands. Ionic	
solids can be distinguished	
from covalent solids by their	
characteristic crystalline	
structures, a topic that will be	
taken up later.	
When the metallicity is too	
great, a close-packed	
structure again becomes more	
Polarity	
FIGURE 2-6	
A schematic phase diagram	
indicating the three	
qualitatively different types	
of solids discussed in the	
book. The phase boundaries	
are topologically correct but	
details of shape are only	
schematic.	
Stable. In this case the	
electronic structure ordinarily	
approximates that of a free-	
electron gas and may be	
analyzed with methods	
appropriate to free-electron	
gases. Again, the crystal	
structure is the determining	
feature for the classification.	
When tin has a tetrahedral	
structure it is a covalent solid;	
when it has a close- packed	
white-tin structure, it is a	
metal. Even silicon and	
germanium, when melted,	
become close-packed and	
liquid metals.	
To complete the " phase	
diagram," there must also be	
a line separating metallic and	
ionic systems. Materials near	

this line are called	
intermetallic compounds;	
they can lie on the metallic	
side (an example is Mg2Pb)	
or on the ionic side (for	
example, CsAu).	
Consideration of intermetallic	
compounds takes the trends	
far beyond the isoelectronic	
series that we have been	
discussing.	
The sharp distinction between	
ionic and covalent solids is	
maintained in a	
rearrangement of the periodic	
table of elements made by	
Pantelides and Harrison	
(1975). In this table, the alkali	
metals and some of their	
neighbors are transferred to	
the right (see Fig. 2-7). The	
elements of the carbon	
column (column 4) and	
compounds made from	
elements to either side of that	
column (such as GaAs or	
CdS) are covalent solids with	
tetrahedral structures.	
Compounds made from	
belium column of rore coord	
(such as KC1 or CaO) are	
ionic compounds with	
characteristic ionic structures	
A few ionic and covalent	
compounds do not fit this	
correlation: notably. MgO.	
AgF, AgCl, and AgBr are	
ionic compounds, and MgS	
and MgSe can occur in either	

ionic or covalent structures. (Notice that Mg is found both in column 2 and column 10). The interesting isoelectronic series for ionic compounds will be those such as Ar, KC1, CaS, and ScP, obtained from argon by transferring protons between argon nuclei. In this case the ion receiving the proton is the metallic ion and the electronic structure is thought of as a slightly distorted rare gas structure. This model leads to a theory of ionic-compound bonding that is even simpler than the bonding theory for covalent solids. The Pantiledes-Harrison rearrangement of the periodic table is used as the format for the Solid State Table, where the parameters needed for the calculation of properties have been gathered. 2-D Solid State Matrix Elements Almost all of the discussion of covalent and ionic solids in this book is based upon descriptions of electron states as linear combinations of atomic orbitals. In order to obtain numerical estimates of properties we need numerical values for the matrix elements giving rise to the covalent and polar energies for the properties being

considered. There is no best choice for these parameters since a trade-off must be made between simplicity (or universality) of the choice and accuracy of the predictions that result when they are used. Clearly if different values are used for each property of each material, exact values of the properties can be accommodated. We shall follow a procedure near the opposite extreme, bv introducing four universal parameters in terms of which interatomic all matrix elements between s and p states for all systems can be estimated. We shall also use a single set of atomic s and p orbital energies throughout. These are the principal parameters needed for the entire range of properties, though the accuracy of the corresponding predictions is limited. One might at first think that interatomic matrix elements could be calculated by using tabulated atomic wave functions and potentials estimated for the various solids. Such approaches have a long history of giving poor numerical results and have tended to discredit the LCAO method itself. However, the

difficulty seems to be that	
though true atomic orbitals do	
not provide a good basis for	
describing electronic	
structure, there are atomiclike	
orbitals that can provide a	
very good description. One	
can therefore obtain a useful	
theory by using LCAO	
formalism but obtaining the	
necessary matrix elements by	
empirical or semiempirical	
methods.	
One of the oldest and most	
familiar such approaches is	
the "Extended Hueckel	
Approximation" (Hoffman,	
1963.) Let us take a moment	
to examine this approach,	
though later we shall choose	
an alternative scheme.	
Detailed rationalizations of	
the approach are given in	
Blyholder and Coulson	
(1968), and in Gilbert (1970,	
p. 244); a crude intuitive	
derivation will suffice for our	
purposes, as follows. We seek	
matrix elements of the	
Hamiltonian between atomic	
orbitals on adjacent atoms,	
$(p\H\cc)$. If I a) were an	
eigenstate of the Hamiltonian,	
we could replace HI a) by	
Ea a), where £a is the	
eigenvalue. Then if the	
overlap (,P\oc) is written	
Spa, the matrix element	
becomes EaSpa. This,	
however, treats the two	

orbitals differently, so we	
might use the average instead	
of Ea. Finding that this does	
not give good values, we	
introduce a scale factor G, to	
be adjusted to fit the	
properties of heavy	
molecules; this leads to the	
extended Hueckel formula:	
(.PiHiù) = GSpa(ep + ea)/2.	
(2-12)	
These matrix elements are	
substituted into the	
Hamiltonian matrix of Eq. (2-	
2) for a molecule, or a cluster	
of atoms, and the matrix is	
diagonalized. A value of $G =$	
1.75 is usually taken; the	
difference from unity	
presumably, arises from the	
peculiar manner in which	
nonorthogonality is	
incorporated.	
The Extended Hueckel	
Approximation and a wide	
range of methods that may be	
considered as descendents of	
it (e.g., the CNDO method—	
Complete Neglect of	
Differential Overlap) have	
enjoyed considerable success	
in theoretical chemistry.	
Some machine calculation is	
required, first in determining	
the parameters s from	
tabulated wave functions or	
numerical approximations to	
them, and second in solving	
the resulting simultaneous	
equations, as at Eq. (2-2).	

This difficulty is exacerbated by the fact that s drops rather slowly with increasing distance between atoms, so a very large number of matrix elements are required. The computation required for any given system is very small, however, in comparison with what is required to obtain more accurate solutions. Once an Extended Hueckel Approximation has been made, direct machine computations of any property can be made and alternatives to the simplest approximations-e.g., Eq. (2-12)— can be made which improve agreement with the experimental values. Such improvements are described in detail by Pople and Beveridge (1970). Combining descriptions of electronic structure that are essentially correct, with the use of highspeed computers, and the results of a number of years of trial and error in correcting the simplest approximations, probably provide the most accurate predictions of the diverse properties of complex systems that are presently available. For isolated properties, such as the energy bands of solids. other computer methods are much more reliable and accurate.

The approach that will be used in this text is different, in that the description of electronic structures is greatly simplified to provide a more vivid understanding of the properties: numerical estimates of properties will be obtained with calculations that can be carried through by hand rather than machine. We shall concentrate on the "physics" of the problem. In this context a semiempirical determination of matrix elements is appropriate. The first attempt at this (Harrison, followed 1973c) **Phillips** (1970)in obtaining the principal matrix element v2 from the measured dielectric constant. A second attempt (Harrison and Ciraci, 1974) used the principal peak in the optical reflectivity of the covalent solids, which we shall come to later, as the basis for the principal matrix element; this led to the remarkable finding that v2 scaled from material to material quite accurately as the inverse square of the interatomic distance, the bond length d, between atoms. A subsequent study of the detailed form of valence bands (Pantelides and Harrison, 1975), combined with v2 determined from the

noals in optical reflectivity	
peak in optical reflectivity,	
gave a complete set of	
interatomic matrix elements	
for covalent solids with the	
finding that all of them varied	
approximately as d~2 from	
material to material.	
The reason for this	
dependence recently became	
very clear in a study of the	
bands of covalent solids by	
Froyen and Harrison (1979).	
They took advantage of the	
similarity of the LCAO bands	
and free-electron bands,	
noted in Fig. 2-2. By equating	
selected energy differences	
obtained in the two limits,	
they derived formulae that	
had this dependence for all of	
the interatomic matrix	
elements. We may in fact see	
in detail how this occurs by	
considering Fig. 2-2. The	
lowest band, labelled s in Fig.	
2-2 a was given by Eq. (2-5)	
For k in an x-direction it	
becomes $E(k) = es - 4V2$	
$2V2 \cos ka$ varving by $4V7$.	
from r (where $k = 0$) to X	
(where $k = \%/a$). The free-	
electron energy in Fig 2-2 h	
varies by $(h2/2m)(n/a)^2$ over	
the same region of wave	
number space for the lowest	
band. Thus, if both limiting	
models are to be appropriate	
and therefore consistent with	
each other it must follow that	
$v^2 = t lh^2/(ma^2)$ with ri -	
they derived formulae that had this dependence for all of the interatomic matrix elements. We may in fact see in detail how this occurs by considering Fig. 2-2. The lowest band, labelled s in Fig. 2-2,a, was given by Eq. (2-5). For k in an x-direction, it becomes $E(k) = es - 4V2 - 2V2$ cos ka, varying by 4VZ from r (where k = 0) to X (where k = %/a). The free- electron energy in Fig. 2-2,b varies by (h2/2m)(n/a)2 over the same region of wave number space for the lowest band. Thus, if both limiting models are to be appropriate, and therefore consistent with each other, it must follow that y2 = tlb2/{ma2} with ri =	

7t2/8 = 1.23. This predicts the dependence upon the inverse square of interatomic distance and a coefficient that depends only upon crystal structure. A similar comparison of the second band gives the same form with different a coefficient for the matrix element v'2 between p states. This simplest model is not so relevant, but it illustrates the point nicely. Before going to more relevant systems we must define more precisely the notation to be used for general interatomic matrix elements. These matrix elements will be important throughout the text; specified they are here following the conventions used by Slater and Koster (1954) and used earlier while discussing the diatomic molecule. In general, for a matrix element < a |//|/j >between orbitals on different atoms we construct the vector d, from the nucleus of the atom of which I a) is an orbital (the "left" atom) to that of the atom of which I/?) is an orbital (the "right" Then atom). spherical coordinate systems are constructed with the z-axes parallel to d, and with origins at each atom; the angular form of the orbitals can be

taken as Y?(9, ê) for the left	
orbital and VI! (O', Ô) for the	
right orbital. The angular	
factors depending upon ê	
combine to (Notice that the	
wave function (a L is the	
complex conjugate of I a))	
The integration over â gives	
zero unless m' – m Then all	
matrix elements (a H S)	
vanish unless $rri - m$ and	
these are labelled by \vec{O} n or	
\dot{O} (in analogy with s p d) for	
(m analogy with s, p, d) for $m = 1$, 1, and 2 respectively	
III = I). I, and 2 respectively.	
alament Vspa corresponds to	
element v spa corresponds to $1 = 0$ L = 1 m = 0. Slatar and	
I = 0, I = I, III = 0. State and Koster (1054) designated	
matrix alamants by analoging	
the indiana within	
neranthasas: thus the alamant	
VWm used in this book and	
their (Wm) are the same.	
We saw how formulae for the	
matrix elements can be	
obtained by equating band	
energies from LCAO theory	
and from free-electron theory	
in Fig. 2-2. Froye.1 and	
Harrison (1979) made the	
corresponding treatment of	
the tetrahedral solids, again	
including only matrix	
elements between nearest-	
neighbor atoms. The form of	
their results is just as found	
for the simple cubic case	
Notice that the subscript m is	
a quantum number but the m	
in the denominator	

Dimensionless coefficients in	
F_{q} (2-13) determining	
approvimate interatomic	
matrix alamants	
The arctical values	
Coefficient Simple subject	
Coefficient Simple Cubic	
structure letranedral	
structure Adjusted value*	
NOTE: Theoretical values	
(Froyen and Harrison, 1979)	
were obtained by equating	
band energies from I ($\setminus 0$ and	
free-eiectron theory, as	
described in the text.	
Adjusted values (Harrison,	
1976b, 1977a) were obtained	
by fitting tile energy bands of	
silicon and germanium; the	
adjusted values appear in the	
Solid State Table.	
is the electron mass. The	
length d is the internuclear	
distance, equal to a in the	
simple cubic structure. If d is	
given in angstroms, this form	
is easily evaluated, using	
h2/m = 7.62 eV-Å2. In Table	
2-1 we give the values of the	
dimensionless cnefficients	
obtained by Froyen and	
Harrison for both the simple	
cubic and Id rahedral	
structures. The calculation is	
closely related to that just	
carried through for the bands	
of Fig. 2-2, and in fact, the	
VSS <j element="" for="" matrix="" td="" the<=""><td></td></j>	
simple cubic case is just the	
negative of the v2 value	
evaluated there, leading to the	

t]ssa =7t2/8. wv shall see	
in Section 18-A exactly how	
the other theoretical	
coefficients listed were	
obtained.	
Motice that the coefficients	
obtained for the tetrahedral	
structure differ from those	
obtained for the simple cubic	
structure and indeed the	
coefficients for any mu;	
structure depend somewhat	
upon which band energies are	
used. However, the	
differences are not great and	
we shall neglect them. The	
coefficients we shall use are	
close to those given by	
Froyen and Harrison (1979)	
for the tetrahedral structure,	
but were obtained somewhat	
earlier by Harrison (1976b),	
who adjusted tliL'm to give	
the interatomic matrix	
elements found by Chadi and	
Cohen (1975) in fitting the	
known energy bands of	
silicon and germanium. The	
average of the coefficients so	
obtained for silicon and	
germanium is listed in Table	
"A diusted " and these are the	
Aujusted, and these are the	
Table and used throughout	
this text Also listed in the	
Solid State Table are forms	
lor predicting matrix elements	
involving atomic d states	
formulae which will be	

developed in Chapter 20.	
The coefficients in Table 2-1	
have been obtained entirely in	
the context of nearest-	
neighbor coupling between	
states. They would have been	
different if a	
*For recent developments.	
see the Preface to the Dover	
Edition.	
TABLE 2-2	
Atomic term values from	
Herman and Skillman (196.Í).	
or extrapolated from their	
values.	
Atomic term value (eV)	
second-neighbor LCAO fit	
had been used, for example,	
and it would not therefore be	
appropriate to use them if the	
description of the bands were	
to be extended to second-	
neighbor interactions.	
It will ordinarily be more	
convenient in solids to use the	
forms for angular	
dependence, x/r , y/r , and z/r ,	
as in Eq. (1-20), rather than	
the forms $Y''i(0, . Then in$	
order to obtain matrix	
elements involving these	
orbitals, we need to expand	
the	
NOTE: These values appear	
also in the Solid State Table.	
p orbital in question in terms	
of 17, which are defined with	
respect to the coordinate	
system discussed above. For	
p orbitals this is quite simple.	

For the simplest geometries it leads to the identification of matrix elements shown in the upper four diagrams of Fig. 2-8. For arbitrary geometries the result depends upon the direction cosines giving the vector d in the coordinate system of X, y, and z; this is illustrated at the bottom in Fig. 2-8. The corresponding transformations for d FIGURE 2-8

The four types of interatomic matrix elements entering the study of s- and p-bonded systems are chosen as for diatomic molecules as shown in Fig. 1-11. Approximate values for each are obtained from the bond length, or internuclear distance, i/, by Vfj — riijtS/md2, with tiij taking values given in Table 2-1 and in the Solid State Table at the back of the book. When p orbitals are not oriented simply as shown ill the upper diagrams, they may be decomposed geometrically as vectors in order to evaluate matrix elements as illustrated in the bottom diagrams. It can be seen that the interatomic matrix element at the bottom right consists of cancelling the contributions that lead to a vanishing matrix element. orbitals as well as p orbitals will be given in detail in

Table 20-1, but for s and p	
orbitals the simple vector	
transformations illustrated in	
Fig. 2-8 should be sufficient;	
the results can be checked	
with Table 20-1.	
When we give the Froyen-	
Harrison analysis in Chapter	
18-A, we shall see that the	
same procedure can give an	
estimate of the energy	
difference Ep — £s. It is of	
the correct general magnitude	
but fails to describe the	
important trend in the energy	
bands among the covalent	
solids c, Si, Ge, and Sn.	
Furthermore, it does not	
provide a means of estimating	
term-value differences such	
as scp — e" in polar solids.	
Thus, for these intra-atomic	
parameters we shall use	
calculated atomic term	
values, which are listed in	
Table2-2.Acomparison	
shows them to be roughly	
consistent with term values	
obtained in the fit to known	
bands done by Chadi and	
Cohen (1975) for the polar	
semiconductors as well as for	
silicon and germanium.	
This particular set of	
calculated values (by Herman	
and Skillman, 1963) was	
cnosen since the	
approximations used in the	
calculation were very similar	
to those used in determining	

the energy bands that led to	
the parameters in Table 2-1.	
The values would not have	
differed greatly if they were	
taken from Hartree-Fock	
calculations (such values are	
tabulated in Appendix A).	
Values based on Hartree-	
Fock calculations have the	
advantage of giving good	
values for d states. Therefore,	
though the calculations in this	
book are based upon the	
Herman-Skillman values, for	
some applications the	
Hartree-Fock values may be	
better suited.	
Notice that as absolute	
numbers the atomic energy	
values have only limited	
meaning in any case.	
Imagine, for example, that the	
value Ep for oxygen correctly	
gives the energy required to	
remove an electron from an	
isolated oxygen atom in	
space. If this atom is brought	
close to the surface of a metal	
(or, almost equivalently, to	
the surface of a covalent solid	
with a large dielectric	
constant) but not close	
bonding to take place how	
much energy is now required	
to remove the electron from	
the oxygen? One way to	
calculate this is to move the	
neutral atom to infinity. with	
no work required, remove the	

electron requiring tp, and	
then return the oxygen ion to	
its initial position; as it	
returns it gains an energy	
e2/4d from the image field,	
where d is the final distance	
from the surface. The	
resultant correction of fip,	
with d equal to $2 \hat{A}$, is 1.8 eV ,	
far from negligible. The	
precise value is uncertain	
because of the dielectric	
approximation the	
uncertainty in the d used and	
other effects, but we may	
expect that significant	
corrections of the absolute	
energies are needed relative	
to the values in vacuum. The	
reason that the values are	
neworthalass usaful as	
nevertileless userul as	
parameters is that in solids	
such corrections are similar	
for all atoms involved and the	
relative values are	
meaningful.	
How do the values obtained	
from Tables 2-1 and 2-2	
compare with the values	
obtained directly by fitting	
energy bands? This	
comparison is made in Table	
2-3 for the covalent systems	
studied by Chadi and Cohen.	
Agreement is semiquantita-	
tive throughout and all trends	
are reproduced except the	
splitting of values for VsptT	
in the compounds. The	
discrepancies are comparable	

to the differences between different fits (the most recent fits are used here), thus justifying the use of the simple forms in our studies. Significantly different values are obtained if one includes a greater number of matrix elements in the fit (Pandey, 1976) and would be appropriate if we were to include these matrix elements in the calculation of properties other than the bands themselves. Significantly different values have also been given by Levin (1974). The coefficients from Table 2-1 and atomic term values from Table 2-2 will suffice for calculation of an extraordinarily wide range of properties of covalent and ionic solids using only a standard hand-held calculator. This is impressive testimony to the simplicity of the electronic structure and bonding in these systems. Indeed the same parameters semiquantitative gave a prediction of the one-electron energy levels of diatomic molecules in Table 1-1. However. that theory is intrinsically approximate and always subject not to successive correc-TABLE 2-3

Matrix elements from the	
Solid State Table, compared	
with values (in parentheses)	
from fits to individual bands.	
All values are in eV.	
SOURCES of data in	
parentheses: c from Chadi	
and Martin (1976): Si and Ge	
from Chadi and Cohen	
(1975): GaAs and ZnSe from	
Chadi and Martin (1976).	
NOTE: Where two values of	
Vspr are given for	
compounds, the first value is	
for an s state in the	
nonmetallic atom and p state	
in the metallic atom. States	
are reversed for the second	
value. Where two values of	
((p - cs)/4 are listed, the	
first value is for the metallic	
atom, the second for the	
nonmetallic atom.	
tions and improvements. In	
most cases our predictions of	
properties will be accurate on	
a scale reflected in Table 2-3,	
and though the introduction	
of further parameters allows a	
more accurate fit to the data,	
it may be that improvements	
at a more fundamental level	
are required for a more	
realistic treatment and that	
these improvements cannot	
be made without sacrificing	
the conceptual and	
computational simplicity of	
the picture that will be	
constructed in the course of	

this book.	
Before proceeding to	
quantitative studies of the	
covalent solids it is	
appropriate to comment on	
the concept of	
"electronegativity,"	
introduced by Pauling to	
denote the tendency of atoms	
to attract electrons to	
themselves (discussed	
recently, for example, by	
Phillips, 1973b, p. 32). It may	
be an unfortunate term since	
the positive terminal of a	
battery has greater	
electronegativity than the	
negative terminal.	
Furthermore, it was defined	
to be dimensionless rather	
than to have more natural	
values in electron volts. It	
would be tempting to take the	
hybrid energy values of Table	
2-2 as the definition of	
electronegativity, but it will	
be seen that in some	
properties the energy Ep is a	
more appropriate measure.	
Therefore it will be a wiser	
choice to use the term only	
qualitatively. Then from	
Table 2-2 (or from Fig. 1-8)	
we see that the principal trend	
is an increase in	
electronegativity with	
increasing atomic number	
proceeding horizontally from	
one inert gas to the next (e.g.,	
from neon, Na, Mg, Al, Si, p,	

	s, and Cl to argon). In
	addition, the elements
	between helium and neon
	have greater electronegativity
	than the heavier elements. It
	is useful to retain "
	electronegativity " to describe
	these two qualitative trends.
	2- E Calculation of
	Spectra
	We have seen that in solids,
	bands of electron energies
	exist rather than the discrete
	levels of atoms or molecules.
	Similarly there are bands of
	vibration frequencies rather
	than discrete modes. Thus, to
	show electron eigenvalues, a
	curve was given in Fig. 2-2
	rather than a table of values.
	However, a complete
	specification of the energies
	within the bands for a three-
	dimensional solid requires a
	three-dimensional plot and
	that cannot be made; even in
	two dimensions an attempt is
	of limited use. Instead, a
	convenient representation of
	electronic structure can be
	made by plotting the number
	function of energy. This la
	the information of energy. This loses
	ule information about, for
	since that requires
	knowledge of energy as a
	function of wave number
	However it is all that is
	needed to sum the energies of
	Similarly there are bands of vibration frequencies rather than discrete modes. Thus, to show electron eigenvalues, a curve was given in Fig. 2-2 rather than a table of values. However, a complete specification of the energies within the bands for a three- dimensional solid requires a three-dimensional plot and that cannot be made; even in two dimensions an attempt is of limited use. Instead, a convenient representation of electronic structure can be made by plotting the number of states, per unit energy, as a function of energy. This loses the information about, for example, electron velocity, since that requires a knowledge of energy as a function of wave number. However, it is all that is needed to sum the energies of

the electrons for given atomic arrangements. Calculation of such a spectrum might seem straightforward, but if done
arrangements. Calculation of such a spectrum might seem straightforward, but if done
Calculation of such a spectrum might seem straightforward, but if done
spectrum might seem straightforward, but if done
straightforward, but if done
by compling it requires on
by sampling, it requires an
inordinate amount of
calculation. For example, to
produce a plot we might
divide the energy region of
interest into one thousand
intervals and then evaluate
the energies (as we did in
Section 2-A) over a closely
spaced grid in the Brillouin
Zone, keeping track of the
number of eigenvalues
obtained in each interval A
great increase in efficiency
can be obtained by noting that
the energy bands have the full
symmetry of the Brillouin
Zone—in the case of CsCl_a
cube—so that the entire
Brillouin Zone need not be
sampled One could sample
one half the zone and
multiply the results by two
one eighth and multiply by
eight or in fact for a cube
one forty-eighth suffices
However even in a sample of
thousands of values the
resulting histogram shows
large statistical fluctuations
Therefore an alternative
approach is required.
The approach most
commonly used, and used
extensively in the curves in
this book, is the Gilat-

Raubenheimer scheme
(Raubenheimer and Gilat,
1966). In this scheme, the
idea is to replace the true
bands by approximate bands,
but then to calculate the
density of levels for that
spectrum accurately. This is
done by dividing up the
Brillouin Zone, or a forty-
eighth of the zone for cubic
symmetry, into cells; of the
order of fifty may be
appropriate; Raubenheimer
and Gilat used cells in the
shape of cubes. They then fit
each band in each cell by a
linear expression, $Ek = E0 +$
A1 kx + A2ky + A3kz, with k
measured from the center of
the cell. Then the energy
region of interest for the
system is divided into some
1000 energy intervals and the
contribution to each of these
intervals is accurately and
analytically obtained from the
linear values of the bands in
each cell. This is illustrated
for one dimension in Fig. 2-9.
We see that the distribution of
the approximate bands is
obtained exactly. This turns
out to eliminate most of the
statistical error and to give
very good results.
In the Gilat-Raubenheimer
scheme it is inconvenient to
obtain the necessary values of

the gradient of the energy	
with respect to wave number	
in each cell and the cubes do	
not fit the Brillouin Zone	
not in the bimouni zone	
section exactly, so more and	
problems in calculating the	
energy at the sufface of the	
Section. For this reason	
Jepsen and Andersen (1971)	
and later, independently,	
Lenman and rau $(19/2)$	
replaced	
(c) Number of states	
contributed in each interval	
FIGURE 2-9	
A schematic representation of	
the Gilat-Raubenheimer	
scheme for calculating	
densities of states. The energy	
bands (a) are replaced by	
linear bands (b) in each cell.	
The contribution by each cell	
to each of a set of small	
energy intervals (c) is then	
obtained analytically.	
cubes by tetrahedra and wrote	
the distribution of energies in	
terms of the values at the four	
comers. A clear description of	
this much simpler approach is	
given by Rath and Freeman	
(19/5), who include the	
necessary formulae. It is also	
helpful to see one manner in	
which the Brillouin Zone can	
be divided into cells. This is	
shown in Fig. 2-10, This	
procedure has been discussed	
also by Gilat and Bharatiya	
(19/5). Another scheme,	

utilizing a more accurate	
anneximation to the hands	
approximation to the bands,	
has been considered recently	
by Chen (1976).	
In some sense this is a	
computational detail, but the	
resulting curves are so	
essential to solid state	
properties that the detail is	
important. Once a program	
has been written for a given	
Brillouin Zone, any of the	
spectra for the corresponding	
structure can be efficiently	
and accurately obtained from	
the bands themselves.	
PROBLEM 2-1 Calculating	
one-dimensional energy	
bands	
Let us make an elementary	
calculation of energy bands.	
using the notation of LCAO	
theory For many readers the	
procedure will be familiar	
Consider a ring of N atoms	
each with an s orbital We	
seek an electronic state in the	
form of an LCAO	
where the integers a number	
the atoms We can evaluate	
the expectation value of the	
energy considering all atoms	
to be identical so (a I HI a) $-$	
\mathbf{R} is the same for all a Wa	
an also noglast all matrix	
can also neglect all matrix algorate $(a \mathbf{H} n')$ as a set if a	
elements $(a(\pi)p)$, except II a and (2) differ by one we write	
that	
EICUDE 2 10	
FIGURE 2-10	
(a) The body-centered-	

cubic Brillouin Zone is	
divided into 48 equivalent	
pyramidal segments. (Two	
such pyramids are required	
for face-centered cubic	
zones.) (b) The pyramid is cut	
by equally spaced planes	
parallel to the base, (c) Most	
of the slab may be subdivided	
into triangular prisms. An	
edge is left over on the right	
which can be divided into	
triangular prisms with one	
tetrahedron left over. Each	
triangular prism	
(d) may finally be divided	
into three tetrahedra, (e). This	
divides the Brillouin Zone	
entirely into tetrahedra of	
equal volume. The bands are	
taken to be linear in wave	
number within each	
tetrahedron.	
We shall treat the uj as	
independent of ua and	
minimize the expression with \tilde{r}	
respect to UI, giving a linear	
algebraic equation for each a.	
(a) Show that for any	
integer it there is a solution	
for all of these equations of	
the form	
(b) Give the energy as a	
function of n, and sketch it as	
a function of n/N for large N.	
include positive and negative	
$\begin{bmatrix} II.\\ (a) & Obtain the value of A \end{bmatrix}$	
(c) Obtain the value of A	
that normalizes the electron	
state.	

(d) Show that for an n	
outside the range — $N/2 < n <$	
N/2, the electron state	
obtained is identical to that	
for some n within this range	
(within the Brillouin Zone). It	
suffices to prove that for	
given n the ua are unchanged	
by the addition of N to n.	
PROBLEM 2-2 Electron	
dynamics	
Consider an electron in a one-	
dimensional energy band	
given by $E(k) = -y2 COS$	
ka in a Brillouin Zone, —n/a	
< k $<$ n/a. At time t = 0, with	
the electron having wave	
number $k = 0$, apply an	
electric field ê.	
Obtain the energy, the speed,	
and the position of the	
electron as a function of time.	
The behavior will be	
oscillatory. It can be thought	
of as acceleration of the	
electron followed by gradual	
diffraction caused by the	
lattice.	
How many lattice distances	
(each distance $a = 2 A$) does	
the electron go if $v^2 = 2 eV$	
and the field is 100 volts per	
centimeter?	

FIGURE 1-4

Three p orbitals, each directed along a different Cartesian axis.

- (a) Fishnet plot
- (b) Contour plot
- (c) Schematic representation

FIGURE 1-5

Three ways of representing atomic p orbitals.

represented in terms of Cartesian coordinates in the form

Fig. 1.6 corresponds to the third angular form listed in Eq. (1-21).

A very important feature of d orbitals is that they are concentrated much more closely at the nucleus than are s and p orbitals. The physical origin of this can be

FIGURE 1-6

The d orbital corresponding to the xy/r2 form in Eq. (1-21).

understood in terms of the n — 3 state of hydrogen. The 3s, 3p, and 3d states all have the same energy, but of these

three, the d state corresponds classically to an orbit that is circular. At lesser angular momentum, a classical orbit of the same energy reaches further into space; this corresponds to the great spatial extent of the p orbital.

The state, which S Corresponds classically to an electron vibrating radially through the nucleus, stretches even further from the nucleus. Therefore, d states tend to be influenced much less by neighboring atoms than are s and p states of similar energy. We shall have little occasion to discuss /'orbitals, though they are important in studying properties of the rare-earth metals. The f orbitals are even more strongly concentrated near the nucleus and isolated from neighboring atoms than are d orbitals.

Let us discuss the now electronic states in the hydrogen atom. As indicated, the energy of an electronic state for hydrogen depends upon only the principal quantum number n. In this book, atomic energy

where a0 is the Bohr radius, 0.529 Å, e is the magnitude of the electron charge, m is the electron mass, n is the principal quantum number, and the unit of energy is the electron volt (eV).

A sketch of the energies of the states of hydrogen, the energy levels, is given in Fig. 1-7. In the ground state of the hydrogen atom, a single electron occupies the Is orbital. All of the other states, having higher energies, represent excited states of the system. The electron can be transferred from the ground state to an excited state by exposing it to light of angular frequency CO = AE/h, where AE is the energy difference between the two levels. the Indeed. most direct experimental study of energy levels of atoms (also called term values) in excited states is based upon spectroscopic analysis of the corresponding light absorption and emission lines.

To understand the electron systematically states in elements other than hydrogen, imagine that the the charge of hydrogen nucleus is increased element by element and, thereby, the atomic number, z, is steadily increased. At the same time, imagine that an electron is added each time the nuclear charge is increased by one unit e. As the nuclear charge increases, the entire set of drops energy, states in relative to hydrogen. In all atoms but hydrogen, 5-state energies are lower than pstate energies of the same principal quantum number. In Fig. 1-8 is shown the relative variation in energy of occupied Is, 2s, 2p, 3s, 3p, 3d, 45, and 4p orbitals as the atomic number (equal to the number of protons in the nucleus) increases.

In Litium, atomic number 3, the Is level has dropped to a very low energy and is occupied by two electrons. The Is orbital is considered part of the atomic core of Litium; a single electron occupies a 2s orbital. In the Litium row, all elements, to

neon, z=10, have a "Litium" core"; the energy levels in successive atoms

FIGURE 1-7

Energy-level diagram for atomic hydrogen. The lines are branched at the right to show how many orbitals each line represents.

continue to drop in energy splitting and (the sp difference in energy between levels, or Elp — £2s) increases. At neon, both 2s and 2p orbitals have become filled; starting with the next sodium. element. they become part of the atomic core, since, at sodium, filling of the 3s orbital begins, to be followed by filling of the 3p filling The orbitals. of successive levels is the essence of periodic variation in the properties of elements the atomic as number increases. The levels are filled in each subsequent row of the periodic table the same way they, are filled in the Litium row, but the number of states in the atomic core is larger in lower rows of the table.

In the potassium row, the unoccupied 3d level begins to be filled; its energy has dropped more slowly than that of the 3s and 3p levels, but it becomes filled before the 4p level begins to fill; then in the ground state of scandium the 3d level becomes occupied with one electron. Elements in which some d states are occupied are called transition metals. The 3d states have become completely filled when copper, atomic number 29, is reached. The 3d states become part of the atomic core as z increases further, and the series Cu, Zn, Ga,..., gains electrons in an order similar to that of the series Na, Mg, Al, — Almost all of the properties of

elements are determined by the occupied levels of highest energy; the electrons filling the 5 and p levels in each row (and sometimes those filling d levels) are traditionally called valence electrons and determine

FIGURE 1-9

Periodic chart of the elements. chemical properties. They also have excited states available to them within a

electron volts. Since few differences these energy correspond to electromagnetic frequencies in the optical range, the valence electrons determine the optical properties of the elements. The periodic table (Fig. 1-9) summarizes the successive filling of electronic levels as the atomic number increases.

1- C Electronic Structure of Small Molecules

We have how seen to enumerate the electron states of single atoms. If we consider several isolated atoms as a system, the composite list of electron states for the system would simply be the collection of all states from all atoms. If the atoms are brought together closely enough that the wave functions of one atom overlap the wave functions of another, the energies of the states will change, but in all cases the number of states will be conserved. No states disappear or are created. If the sum of the energies of the occupied states decreases as the atoms are brought together, a molecule is said to be bound.

An additional energy must be supplied to separate the atoms. (It should be noted that other terms influence the total energy of a system, and influences all must be considered in evaluating bonding energy. We shall return to this later.)

It turns out that the energy of occupied electronic states in small molecules, and indeed in solids, which have large numbers of atoms, can be rather well approximated with linear combinations of atomic orbitals (or LCAO's). Making such approximation an constitutes а very great simplification in the problem determining molecular of energies since, instead of unknown functions, only unknown coefficients appear in the linear combination. The LCAO description of the occupied molecular orbitals is much more accurate if the atomic orbitals upon which the approximation is based differ somewhat from those of the isolated constituent atoms; this complication will not arise in this book since ultimately our calculations will be in terms of matrix

elements, not in terms of the orbitals themselves. The smaller the number of atomic orbitals used, the greater will be the simplification, but the poorer will be the accuracy. For our discussion of solids, a set of orbitals will be chosen that is small enough to enable calculation of a wide range of properties simply. For of calculations properties depending only upon occupied states, the accuracy will be quite good, but for excited states-those electron states which are unoccupied in the ground state of the system—the properties are not accurately calculated. We can make the same choice of orbitals in diatomic molecules that will turn out to be appropriate for solids.

In describing states of the small molecule (as well as the solid) the first step is to enumerate each of the electronic states in the atom that will be used in the mathematical expansion of the electron states in the molecule. These become our basis states.

We let the index a = 1, 2,3run from one up to the number of states that are used. Then the molecular state may be written (with the notation discussed in Section 1-A) as

where the ua are the coefficients that must be determined. The orbitals I a) representing the basis states are selected to be normalized, (a I a) = 1. We also take them (as in Section 1-A) to be orthogonal to each other; </?|a> = 0 if $p = \pounds a$.

Next, we must find the coefficients ua of Eq. (1-23) for the electron state of lowest energy, by doing a variational calculation as indicated in Section 1-A. That is, we evaluate the variation

In obtaining the second form, we allow the ua to be complex, though ordinarily for our purposes this would not be essential. We also make use of the linearity of the Hamiltonian operator to separate the various terms in the expectation value of the Hamiltonian. In particular, if we require that variations

with respect to a particular uf be zero (as in Eq. 1-10), we obtain

or more simply,

with E — (\dot{y} IHI \dot{e})/(\dot{e} I \dot{e}). (Later, specific eigenvalues will be written as e's with appropriate subscripts.) There is one such equation for each p corresponding to a basis state.

We have obtained a set of simultaneous linear algebraic equations with unknown coefficients Ma. Their solution gives as many eigenvalues E as there are equations. The lowest Ε corresponds to the lowest electron state: the next lowest, to the lowest electron state having a wave function orthogonal to that of the first, and so on. The solution of these equations gives the ua which, with Eq. (1-23), give wave functions for the oneelectron energy eigenstates directly. eigenvalues The themselves can also be obtained directly from the secular equation, familiar from ordinary algebra. The secular determinant vanishes,

energy $\pounds s = (1|H|1) = (21H12).$ The energy Es is slightly different from what it would be in a free atom, first, because electron an associated with atom 1 has a potential energy lowered by the presence of the second atom, and second, because the energy may be lowered as a result of the choice of a Is function slightly different from that of the free atom. We have defined a matrix element v2 = --#12 = --H21to correspond to the notation we shall use later. The matrix element v2 is called а covalent energy, and is defined to be greater than zero; v2 will generally be used for interatomic matrix elements, in this case between s orbitals. All the wave function coefficients are taken to be real in this case; we may always choose real coefficients but in solids will find it convenient to use complex coefficients.

Eq. (1-28) is easily solved to obtain a low-energy solution, the bonding state, with energy as well as a high-energy solution, the antibonding state, with

diagrams. Although it is possible to understand the hydrogen molecule in terms of the ideas we have discussed, hydrogen has only limited relevance to the problems we will be considering. In fact, it is not the most satisfactory way to describe the hydrogen molecule itself. In the equilibrium configuration for hydrogen, the two protons are so close together that a much better model is one in which the two protons are thought of as being superimposed; that is, we consider the nucleus to be that of the helium atom. Once this is understood, one can make corrections for the fact that in hydrogen the two protons are actually separated. Such an approach is more in tune with the spirit of this text: we will always seek the simplest description appropriate to the system we are interested in, and make corrections afterward.

It has been argued that this united atom approach, treating H2 as a correction applied to He, is inappropriate when the protons are far apart.

That is indeed true, but we are ultimately interested in H2 at equilibrium spacing. We will therefore simply restate our results for H2 in the terminology to be used later and move on.

We found that hydrogen Is levels are split into bonding and antibonding levels when the two atoms form the molecule. The separation of those two levels is 2V2, where v2 is the covalent energy. To find the total energy of this system it is necessary to add a number of corrections to the simple sum of energies of the electrons. It will be convenient to postpone consideration of until such corrections systematic treatment in Chapter 7.

Hydrogen is a very special case also when it is a part of other molecules. We saw that in the Litium row and in the sodium row of the periodic table both a valence s state and a valence p state are present. We will see that when these atoms form

molecules, the bond orbitals are mixtures of both s and p orbitals.

There is no valence p state in hydrogen, and its behavior is quite different. In many ways the hydrogen proton may be regarded as a loose positive charge that keeps a molecule neutral rather than as an atom that forms a bond in the same sense that heavier atoms do.

Thus we can think of methane, CH4, as "neon" with four protons split off from the nucleus, just as we can think of H2 as "helium" with a split nucleus.

1- D The Simple Polar Bond

In the H2 molecule just discussed, the two hydrogen atoms brought together were identical. and their two energies Ss were the same. We shall often be interested in systems in which the diagonal energies ifn and H22 (that is, diagonal elements of the Hamiltonian matrix) are different; such molecules are said to have a hetero- polar or simply polar bond. Let us use, as an example, the molecule

£b and £a are bonding and antibonding energies, respectively. The splitting of these levels is shown in Fig. 1-10,b. In looking at the energy-level diagram of that figure, imagine that the interaction between the two atomic levels, represented by v2, pushes the levels apart. This is the qualitative result that follows also from the perturbation-theoretic expression, Eq. (1-14).

It is also shown in the figure that the charge density associated with the bonding state shifts to the low-energy side of the molecule (the direction of the anion). This means that the molecule has electric dipole; an the molecule is said to have a Polarity polar bond. of bonding is an important concept in solids and it is desirable to introduce the notion here briefly; it will be examined later, more fully, in discussion of solids.

To describe polarity mathematically, first we obtain and u2 values for the bonding state by substituting £b for the energy E in Eqs. (1-34), the first equation of which can then be rewritten as

(1-36)

Second. if the individual atomic wave functions do not overlap, the probability of finding the electron on atom 1 will be $u_i /(u_i + u_i)$ and the probability of finding it on atom 2 will be ui/iui + ui). This follows from the average-value theorem, Eq. (1-3). Manipulation of Eq. (1-36) leads to the result that the probability of the electron appearing on atom 1 is (1 +(0Cp)/2 and the probability of finding it on atom 2 is (1 ap)/2, where ap is the polarity defined by

We can expect the dipole of the bond to be proportional to $u \setminus ---u = bcp$. The polarity of the bond and the resulting dipole are central to an understanding of partially covalent solids.

Another useful concept is the complementary quantity, covalency, defined by

1- E Diatomic Molecules

In Section 1-C we noted that molecular hydrogen is unique in that a single atomic state, the Is state, dominates its bonding properties.

In the bonding of other diatomic molecules, valence s states and p states are important, and this will be true also in solids. Only aspects of diatomic molecules that have direct relevance to solids will be taken up here. A more complete discussion can be found in Slater (1968) or Coulson (1970).

Homopolar Bonds

Specific examples of diatomic homopolar molecules are Li 2, Be2, B2, c2, N2, 02, and F2, though, as seen in Fig. 1-8, variation in energy of the s and p electron states is very much the same in other series of the periodic table as it is for these elements. Four valence states for each atom must be considered-a single s state and three p states. It might seem at first that the mathematical expansion of molecular each electronic

state would require a linear combination of all of these valence states; however, the elements matrix between some sets of orbitals can be seen by symmetry to vanish, and the problem of determining the states separates into two simpler problems. Fig. 1-11 indicates schematically which orbitals are coupled. The matrix elements between other orbitals than those indicated by a connecting line are zero.

The Py orbitals of atoms 1 and 2 are coupled only to each other. They form simple and bonding antibonding combinations just as in the hydrogen molecule. In a similar way, the Pz orbitals form bonding and combinations. antibonding The four resulting p-orbital combinations are called n states, by analogy with p states, because each has one unit of angular momentum around the molecular axis. The Tt states are also frequently distinguished by a g, for gemde (German for " even"), or

The coupling of atomic orbitals in Litium-row diatomic molecules, and the resultant bond designations (at right).

u, for ungerade (" odd "), depending on whether the wave function of the orbital is even or odd when inverted through a point midway between the atoms. For % orbitals, the bonding combination is ungerade a n orbital that is gerade (ng) is zero on the plane bisecting the bond.

feature of homopolar Α diatomic molecules is that s states and px states are also coupled, and all four states are required in the expansion of the corresponding molecular orbitals, called O The states. bonding combination for a orbitals is gerade (Gg). The s and p states are hybridized in the molecule.

(The σ -orbital combinations have no angular momentum around the molecular axis.) However, it is not necessary to solve four simultaneous equations; instead, construct gerade and ungerade combinations of s states and of p states. There are no matrix elements of the

Hamiltonian between the gerade and ungerade combinations. SO the calculation of states again reduces to the solution of quadratic equations, as in the case of the hydrogen molecule. Notice that the two pairs of coupled s and p states have matrix elements of opposite sign (Vspa, - Vspa) because of the difference in the sign of the p lobe in the cases. The two general convention for signs will be specified in Section 2-D.

FIGURE 1-12

The development of molecular energy levels as a pair of Litium-row atoms is brought together (that is, internuclear distance d decreases from left to right).

Let us trace the changes in energy that occur as a pair of identical atoms from the Litium row come together. Qualitatively these changes are the same for any of the elements and they are illustrated schematically in On the Fig. 1-12. left. corresponding to large separations of the atoms, the energy levels have simply the atomic energies £s (one s orbital for each atom) and fip

(three p orbitals for each atom, px, Py, and pz). As the atoms are brought together, the electron levels split (one energy going down and the other, up) and bonding and antibonding pairs are formed.

The n orbitals oriented along the y-axis have the same energies as those oriented along the z-axis. The bonding and antibonding combinations for these are indicated by 1 nl§ and lng, respectively. The number one indicates the first combination of that symmetry in order of increasing energy. Each corresponds to two orbitals and is drawn with double lines. large At separation the O orbitals are, to a good approximation, a bonding combination of s states and an antibonding combination of s states, and a bonding combination of px states and an antibonding combination of px states, in order of increasing energy. The energies of the intermediate levels, indicated by $2\sigma_{11}$, and $3\sigma_{22}$ in the figure, become comparable and should be thought of as

bonding and antibonding combinations of sp-hybrids, mixtures of s states and p states. Their ordering is as shown, and is the same for all the diatomic molecules of the Litium row (Slater, 1968, pp. 451 and 452).

A particularly significant aspect of the energy levels seems to apply to all of these simple diatomic molecules: the energy of the low-lying antibonding state 2 < 7,, is never greater than that of either of the two high-energy bonding states $3\sigma g$ and \nu.

(The latter two can occur in either order, as suggested in the figure.) Such crossings of bonding and antibonding levels do occur in solids and are an essential feature of the electronic structure of what are called covalent solids.

The Occupation of Levels As indicated in Section 1-A, the energy of electron states and their occupation by electrons are quite separate topics. For example, it is

possible to specify the energy values at an observed spacing, as in Fig. 1-12, and then to assign to them, in order of increasing energy, whatever electrons are available, ignoring any effect that an electron in one level may have on an electron in another level. More precisely, the energy of a state in any system is defined to be the negative of the energy required to move a single electron from the designated state to an infinitely distant loca-tion, without changing the number of electrons in the other states. Most theoretical calculations of energy levels determine what that energy is for each state, since this information is closely related to a wide variety of properties.

When we calculate the total energy of solids, we will consider corrections to the sum of these energies; for the present, it is satisfactory to think of these energy levels as remaining fixed in energy as electrons are added to them.

If two atoms forming a

diatomic molecule are both Litium, there are only two valence electrons. which would be put in the 2og bonding state; the qualitative picture of electronic structure and binding of Li 2 is exactly the same for H2; the levels deriving from the valence p state of Litium may be disregarded. If the molecule were Be2, there would be four electrons in the molecule; two would occupy the 2og bonding state, and the other two would occupy the 2<r,, antibonding state. The of the greater energy antibonding electrons (in comparison to the atomic levels) would tend to cancel the energy of the bonding electrons, and hence, bonding would be expected to be weak, though Be2 is found in nature. As the atomic number of the constituents increases, bonding and antibonding states are filled in succession. F2 would have enough electrons to fill all but the highest antibonding state, 3ou. A pair of neon atoms would have enough electrons to fill all bonding and antibonding states and, like Be2, would not be bound at all.

In 02, when the last levels to be filled are degenerate, a special situation occurs. Only two electrons occupy the lng state though there are states to accommodate four. There are different ways the state could be filled, and Hund's rule tells us which arrangement will have lowest energy. It states that when there is orbital degeneracy, the electrons will be arranged to maximize the total spin.

This means that each electron added to a set of degenerate levels will have the same (parallel) spin, if possible, as the electron which preceded it. The physical origin of this rule is the fact that two electrons of the same spin can never be found at precisely the same place, for basically the same reason that leads to the Pauli principle. Thus electrons of the same spin avoid each other, and the repulsive Coulomb

interaction energy between them is smaller than for electrons of opposite spin. The corresponding lowering in energy per electron for parallel-spin electrons, compared to antiparallel-spin electrons, is called exchange energy. It tends to be small enough that it is dominant only when there is orbital degeneracy, as in the case of 02, or very near orbitaldegeneracy.

The dominance of exchange energy is the origin of the spin alignment in ferromagnetic metals. (A more complete discussion of exchange energy appears in Appendixes A and c.)

In 02, the two degenerate lng states take one electron in a py state and one in a pz state. As a result, the charge density around the 02 molecule has cylindrical symmetry, though there is a net spin from the two electrons. In contrast, if both electrons were in py states, they would necessarily also have opposite spin. This would lead to a flattened charge distribution around the molecule. Hund's rule tells us that the former arrangement has lower energy because of the exchange energy.

In the same sense that H2 is like He (as mentioned at the end of Section 1-C), the molecule C2H4 is like 02. except that the two hydrogen protons are outside the carbon nucleus rather than inside. The number of electrons is the same in both C2H4 and 02 and essentially the same classification electron of levels can be made. However. if the protons in C2H4 are all placed in the same plane, the lnu state oriented in that plane will have lower energy than that oriented perpendicular to the plane.

The orbital energy will then be lowered if the first orbital is occupied with electrons with both spins. This planar form in fact gives the stable ground-state arrangement of nuclei and electrons in ethylene.

If it were possible to increase the exchange energy it would eventually become energetically favorable to occupy one Py state and one pz state of parallel spin. Then the electron density would be

cylindrically symmetric as in oxygen, and the protons would rotate into perpendicular planes in order attain lower Coulomb to interaction energy. C2H4 illustrates several points of interest. First, any elimination of orbital degeneracy will tend to override the influence of exchange energy. Second, atoms (in this case, protons) can arrange themselves in such a way as to eliminate degeneracy; this creates an asymmetric electron density stabilizes that the new arrangement. Through this self-consistent, cooperative arrangement, electrons and atoms minimize their mutual energy.

This same cooperative action is often responsible for the spatial arrangement of atoms solids. Once in that arrangement is specified in solids, a particular conception of the electronic structure becomes appropriate, just as case in the of C2H4. Furthermore, that conception can be quite different from solid to solid, depending on which stable configuration of atoms is present.

To make the discussion of the electronic structure of diatomic molecules quantitative, it is necessary to have values for the various matrix elements. It will be found that for solids, a reasonably good of approximation the interatomic matrix elements can be obtained from the formula vih = flip h2/(md2), where d is the internuclear distance and values for tlijx are four universal constants for SSO, spa, ppo, and ppn matrix elements, as given in the next chapter (Table 2-1). Furthermore, atomic term values (given in Table 2-2) can be used for Ep and fis.

Applying such an approximation to the wellunderstood diatomic molecules will not reveal anything about those molecules, tell but can something about the of reliability the approximations that will be used in the study of solids. The necessary quadratic equations can be solved to obtain the molecular orbital

energies in terms of the matrix elements and values for all matrix elements can be obtained from Tables 2-1 and 2-2. This gives the oneelectron energies listed in Table 1-1, where the bond lengths (distance between the two nuclei) are also listed. For comparison with these values, results of full-scale self-consistent molecular orbital calculations are listed in parentheses. The solid state matrix elements give a very good semiquantitative account of the occupied states (which lie below the shaded area) for the entire range of homopolar molecules; there are major errors only for the ĩơg levels in 02 and F2. The empty levels above (shaded) are not well given. Neither will the empty levels be as well given as the occupied ones in the description of solids in terms of simple LCAO theory.

This degree of success in applying solid state matrix elements outside the realm of solids, to diatomic molecules, gives confidence in their application in a wide range of solid state problems.

Bonding of diatomic molecules in which the constituent atoms are different can be analyzed very directly, and only one or two points need be made. The heteropolar n states in diatomic bonding are calculated just as the simple polar bond was. In each case only one orbital on each atom is involved. A polarity can be assigned to these bonds, just as it was in Section I'D.

TABLE 1-1

One-electron energies in diatomic homopolar molecules, as obtained by using solid state matrix elements. Values in parentheses are from accurate molecular orbital calculations. Shading denotes empty orbitals. Energies are in eV.

SOURCES of data in parentheses: Li2, Be2, c2, Nj,

and F2 from Ransil (1960); B2 from Padgett and Griffing (1959); 02 from Kotani, Mizuno, Kayama, and Ishiguro (1957); all reported in Slater (1968).

There is. however. а complication in the treatment of the O bonds. Because the states are no longer purely gerade and ungerade, the four simultaneous equations cannot be reduced to two sets of two. In a diatomic molecule this would not be much of a complication, but it is very serious in solids. Fortunately, for many solids containing a bonds, hybrid basis states can be made from s and p states, and these can be treated approximately as independent pairs, which reduces the prob-lem to that of finding two unknowns for each bond.

In other cases, solutions can be approximated by use of perturbation theory. The approximations that are appropriate in solids will often be very different from those appropriate for diatomic molecules.

Therefore, we will not discuss	
the special area of a handed	
hotore release of 0-0011ded	
netero- polar molecule.	
PROBLEM 1-1 Elementary	
quantum mechanics	
An electron in a hydrogen	
atom has a potential energy,	
- e2/V. The wave function	
for the lowest energy state is	
$i/(r) = Ae \sim r la^{\circ}$	
where a0 is the Bohr radius.	
$a0 = h^2/me^2$ and A is a real	
constant	
(a) Obtain A such that the	
wave function is normalized	
$(\hat{a} \mid \hat{a}) = 1$	
$(\dot{v} + \dot{v}) = 1.$	
(b) Obtain the expectation	
$\langle \hat{a} \rangle$ Vist (
$(\mathbf{c} \setminus \mathbf{v}_{\mathbf{H}})$.	
(c) Calculation of the	
expectation value of the	
kinetic energy,	
is trickier because of the	
infinite curvature at $/ \bullet = 0$. By	
partial integration in Eq. (1-	
3), an equivalent form is	
obtained:	
Evaluate this expression to	
obtain K.E.	
(d) Verify that the	
expectation value of the total	
energy, $\langle // $ viii1} + K.E. is a	

minimum with respect to	
variation of 00. Thus a	
variational solution of the	
form e~',r would have given	
the correct wave function.	
(e) Verify that this $i//(r)$ is	
a solution of Eq. (1-5).	
PROBLEM 1-2 Atomic	
orbitals	
The hydrogen 2s and 2p	
orbitals can be written	
and	
(see Schiff, 1968, p. 94), and	
p orbitals can also be written	
with X replaced by V and by	
z. All four hydrogen orbitals	
have the same energy, —	
e2/(8flc).	
Approximate the Litium 2,5	
and 2p orbitals by the same	
functions and approximate	
the Litium potential by —	
$e^{2/r} + ucore(r)$, where	
Calculate the expectation	
value of the energy of the 2s	
and 2p orbitals. The easiest	
way may be to calculate	
corrections to the $- \frac{e^2}{(8a0)}$	
value.	
This gives the correct	
qualitative picture of the	
Litium valence states but is	
quantitatively inaccurate.	
Good quantitative results can	
be obtained by using forms	
such as are shown above and	
varying the parameters in the	
exponents. Such variational	
forms are called "Slater	
orbitals."	

PROBLEM 1-3 Diatomic	
molecules	
For c2, obtain the O states for	
the homopolar diatomic	
molecule (see Fig. 1-11), by	
using the matrix elements	
from the Solid State Table, at	
the back of the book, or from	
Tables 2-1 and 2-2, in	
Chapter 2. Writing	
the equations analogous to	
Eq. (2-2) become	
Solutions will be even or odd,	
by symmetry, so there can be	
solutions with $u^2 = U_1$ and	
w4 = -u3, and the above	
reduce to two equations in	
two unknowns. Solve them	
for E. Then, solve again with	
If $2 =$ III and $\ll 4 = u3$.	
Confirm the values of these	
energies as given in Table 1-1	
for c2.	
The lowest state contains	
comparable contributions	
from the s and p orbitals.	
What is the fraction of s	
character, that is, $(ui + uiyiui)$	
+uį + uį + ul)1	
CHAPTER 2	
Electronic Structure of Solids	
SUMMARY	
In solids, atomic valence	
levels broaden into bands	
comprising as many states as	
there are atoms in the solid.	
Electrons in these band states	
are mobile, each electron	
state being characterized by a	
momentum p or wave number	

k = p/tt that is restricted to a Brillouin Zone. If each atom in the solid has only four neighboring atoms. the atomic valence orbitals can be combined to form bond orbitals between each set of neighbors, and two electrons per bond can stabilize such an arrangement of atoms. In such covalent structures. bands of states based upon the bond orbitals will be fully occupied by electrons but other bands will be empty. The bonds may be symmetric or polar. The covalent structure will not be stable if there are not two electrons per bond, if the bond energy is too small, or if the bond is polar. Under these too circumstances the lattice will tend to collapse to a denser structure. It may be an ionic crystal, which is a particularly stable arrangement, if by redistributing the electrons it can leave every atomic shell full or empty. Otherwise it will be metallic, having bands of states that are only partially occupied. If the electron states are by represented linear combinations atomic of orbitals, the electron energy bands are found to depend on a set of orbital energies and interatomic matrix elements.

Fitting these to accurate bands suggests that atomic term values suffice for the energies and orbital that nearest-neighbor interatomic matrix elements scale with bond- length d from system to system as d~2. This form, and approximate coefficients, all follow from the observation that the bands are also approximately given by a free-electron approximation. Atomic term values and coefficients determining interatomic matrix elements are listed in the Solid State Table and will be used in the study of covalent and ionic solids. In this chapter we give a very brief description of solids, which is the principal subject of the book. The main goal is to fit solids into the context of atoms molecules. and In addition, we shall carefully formulate the energy band in the simplest possible case and the study behavior of electrons in energy bands. 2-A Energy Bands When many atoms are brought together to form a solid, the number of electron states is conserved, just as in the formation of diatomic molecules. Likewise, as in diatomic molecules, the oneelectron states for the solid

reasonable can. to а approximation, be written as LCAO's. However, in solids, the number of basis states is great. A solid cube one centimeter on an edge may contain 1023 atoms, and for each, there is an atomic s orbital and three p orbitals. At first glance it might seem that such a problem, involving some 4 X 1023 equations, attacked. could not be However, the simplicity of the crystalline solid system allows us to proceed effectively and accurately. As the atoms are brought together, the atomic energy levels split into bands, which are analogous to the states illustrated for diatomic molecules in Fig. 1-12. The difference is that rather than splitting into a single bonding a single antibonding and state, the atomic levels split into an entire band of states distributed between extreme bonding and antibonding limits. To see how this occurs, let us consider the simplest interesting that of case. cesium chloride. The structure of CsCl is shown in Fig. 2-1.a. The chlorine atoms, represented by open circles, appear on the comers of a cube, and this cubic array

is repeated throughout the	
entire crystal. At the center of	
each cube is a cesium atom	
(at the body-center position	
ill the cube). Cesium chloride	
is very polar, so the occupied	
orbitals lie almost entirely	
upon the chlorine atoms. As a	
first approximation we can	
say that the cesium atom has	
given up a valence electron to	
(a) Crystal structure (b)	
Brillouin Zone	
FIGURE 2-1	
(a) A unit cube of the cesium	
chloride crystal structure, and	
(b) the corresponding	
Brillouin Zone in wave	
number space.	
fill the shell of the chlorine	
atom, which becomes a	
charged atom, called an ion.	
Thus we take chlorine 3s	
orbitals and 3p orbitals as the	
basis states for describing the	
occupied states. Furthermore,	
the chlorine ions are spaced	
far enough apart that the s	
and p states can be considered	
separately, as was true at	
large inter- nuclear distance d	
in Fig. 1-12. Let us consider	
first the electron states in the	
crystal that are based upon	
the chlorine atomic 3s	
orbitals.	
We define an index i that	
numbers all of the chlorine	
ions in the crystal. The	
chlorine atomic s state for	

1		1	
	each ion is written I Si). We		
	can approximate a crystalline		
	state by		
	The variational calculation		
	then leads immediately to a		
	set of equations, in analogy to		
	Eq. (1-26):		
	It is convenient at this stage		
	to avoid the complications		
	that arise from consideration		
	of the crystalline surface, by		
	introducing periodic		
	boundary conditions. Imagine		
	a crystal of chlorine ions that		
	is Ni ions long in the x-		
	direction, N2 long ill the ^-		
	direction, and N3 long in the		
	z-direction. The right surface		
	of the crystal is connected to		
	the left, the top to the bottom,		
	and the front to the back. This		
	is difficult to imagine in three		
	dimensions, but in one		
	dimension such a structure		
	corresponds to a ring of ions		
	rather than a straight segment		
	with two ends. Closing the		
	ring adds an Hij matrix		
	element coupling the states		
	on the end ions. Periodic		
	boundary conditions greatly		
	simplify the problem		
	mathematically; the only		
	error that is introduced is the		
	neglect of the effect of		
	surfaces, which is beyond the		
	scope of the discussion here.		
	The approximate description		
	of the crystalline state, Eq. (2-		
	1), contains a basis set of Np		

= N1N2 N3 states (for the Np	
pairs of ions), and there are	
Np solutions of Eq. (2-2).	
These solutions can be	
written down directly and	
verified by substitution into	
Eq. (2-2). To do this we	
define a wave number that	
will be associated with each	
state:	
(2-3)	
where lĩi, n2, and n3 are	
integers such that —Ni/2	
<nx $<$ Ni/2,and X, y, and	
are units vectors in the	
three perpendicular	
directions, as indicated in Fig.	
2-1,b. Then for each k	
allowed by Eq. (2-3), we can	
write the coefficient U _j in the	
form	
Here the $r7- = (ml X + m2y +$	
m_{3} z)a are the positions of	
the ions. We see immediately	
that there are as many values	
of k as there are chlorine	
ions; these correspond to the	
conservation of chlorine	
electron states. We also see	
that the wave functions for	
states of different k are	
orthogonal to each other.	
Values for k run almost	
continuously over a cubic	
region of wave number space,	
-n/a < kx < n/a, -n/a < ky	
< n/a, and - n/a < kz < %/a.	
This domain of k is called a	
Brillouin Zone. (The shape of	
the Brillouin Zone, here	

autio demanda unan the	
cubic, depends upon the	
crystal structure.) For a	
macroscopic crystal the Ni	
are very large, and the change	
in wave number for unit	
change in «i is very tiny. Eq.	
(2-4) is an exact solution of	
F_{α} (2-2): however we will	
show it for only the simplest	
approximation namely for	
the accumption that the left	
the assumption that the st	
are sufficiently localized that	
we can neglect the matrix	
element Hji = $ S() $ unless (1)	
two states in question are the	
same $(/' = j)$ or (2) they are	
from nearest-neighbor	
chlorine ions. For these two	
cases, the magnitudes of the	
matrix elements are, in	
analogy with the molecular	
case,	
In cesium chloride the main	
contribution to v2 comes	
from cesium ion states acting	
as intermediaries in a form	
that can be obtained from	
perturbation theory. We need	
not be further concerned here	
with the origin of v^2 . (We	
shall discuss the ionic crystal	
matrix elements in Chapter	
14) For a particular value of i	
in Eq. $(2-2)$ there are only	
$\begin{bmatrix} 11 & Lq. & (2-2), \\ ceven & values of i that \end{bmatrix}$	
contribute to the sum: i-i	
numbered as 0 and the size	
numbered as 0, and the SIX	
states. The solution (valid for	
states. The solution (valid for	
any 1) 18	

This success in 141, 41	
Inis energy varies with the	
wave number over the entire	
Brillouin Zone of Fig. 2-l,b.	
The results are customarily	
displayed graphically along	
certain lines within that	
Brillouin Zone. For example,	
Fig. 2-2,a shows a variation	
along the lines rx and TK of	
Fig. 2-1,b.	
The calculation of bands	
based on p states proceeds in	
much the same way. In	
particular, if we make the	
simplest possible	
assumption—that each px	
orbital is coupled by a matrix	
element V'2 only to the px	
orbitals on the nearest	
neighbors in the x-direction	
and to no other p orbitals, and	
similarly for the py and pz	
orbitals— then the calculation	
can be separated for the three	
types of states. (Otherwise it	
would be necessary to solve	
three simultaneous equations	
together.) For the states based	
upon the px orbitals,	
For py orbitals and pz	
orbitals, the second term is	
2V2 COS kya and 1V'2 COS	
kza, respectively. The three	
corresponding p bands are	
also shown in Fig. 2-2.a In	
later	
discussions we shall see that	
by the addition of matrix	
elements between orbitals	
that are more distant it is	
For py orbitals and pz orbitals, the second term is 2V2 COS kya and 1V'2 COS kza, respectively. The three corresponding p bands are also shown in Fig. 2-2,a. In later discussions we shall see that by the addition of matrix elements between orbitals that are more distant it is	

possible to obtain as accurate a description of the true bands as we like; for the present, crude approximations are sufficient to illustrate the method.

Can we construct other bands. for other orbitals, such as the cesium s orbital? It turns out that states that are not occupied in the ground state of the crystal are frequently not well described in the simplest LCÀO descriptions, but approximate an description can be made in the same way.

How would the simple bands change if we could somehow slowly eliminate the strong atomic potentials that give rise to the atomic states upon which the bands are based? The answer is given in Fig. 2-2,b. The gaps between bands decrease, including the gap between the cesium bands (not shown in Fig. 2-2,a) and the chlorine bands. The lowest bands have a recognizable similarity to each other in these two extreme limits. The limit shown in Fig. 2-2,b is in fact the limit as the electrons become completely free; the lowest band there is given by the equation for free-electron kinetic energy, Ε tĩ2k2/2m. The other bands in

Fig. 2-2,b are also free-	
electron bands but are	
centered at different wave	
numbers (e.g., as $E = h2(k - $	
q)2/2m), in keeping with the	
choice to represent all states	
by wave numbers in the	
Brillouin Zone. Such free-	
electron descriptions will be	
appropriate later when we	
discuss metals; for cesium	
chloride, these descriptions	
are not so far from LCAO	
descriptions as one might	
have thought, and in fact the	
similarity will provide us, in	
Section 2-D, with	
approximate values for	
interatomic matrix elements	
such as v2 and V'l.	
Since there are as many states	
in each band as there are	
chlorine ions in the crystal,	
the four bands of Fig. 2-2,a,	
allowing both spins in each	
spatial state, can	
accommodate the seven	
chlorine electrons and one	
cesium electron. All states	
will be filled. This is the	
characteristic feature of an	
insulator; the state of the	
system cannot be changed	
without exciting an electron	
with several electron volts of	
energy, thus transferring it to	
one of the empty bands of	
greater energy. For that	
reason, light with frequency	
less than the difference	

between bands, divided by h, cannot be absorbed, and the crystal will be transparent. Similarly, currents cannot be induced by small applied voltages. This absence of electrical conductivity results from the full bands, not from any localization of the electrons at atoms or in bonds. It is important to recognize that bands exist in crystals and that the electrons are in states of the crystal just as, in the molecule 02, electrons form bonding and antibonding molecular states, rather than atomic states at the individual atoms. If, on the other hand, the bands of cesium chloride were as in Fig. 2-2,b, the eight electrons of each chlorine-cesium atom pair would fill the states only to the energy Ep shown in the figure; this is called the Fermi energy. Each band would only be partly filled, a feature that, as we shall see, is characteristic of a metal. 2-**B** Electron Dynamics In circumstances where the electron energy bands are neither completely full nor completely empty, the behavior of individual electrons in the bands will be of interest. This is not the principal area of concern in this text, but it is important to understand electron dynamics because this provides the link between the band properties and electronic properties of solids.

Consider a Brillouin Zone, such as that defined for CsCl, and an energy band E(k), defined within that zone. Further, imagine a single electron within that band. If its wave function is an energy eigenstate, the timedependent Schroedinger equation, Eq. (1-17), tells us that

The magnitude of the wave function and therefore also the probability density at any point do not change with time. To discuss electron dynamics we must consider linear combinations of energy eigenstates of different energy. The convenient choice is a wave packet. In particular, we construct a packet, using states with wave numbers near k0 and parallel to it in the Brillouin Zone: Taking the form of i h from Eqs. (2-1) and (2-3), and treating k - k0 as small, a little algebra shows that at t =0, Eq. (2-8) corresponds to the state iI/ko modulated by a gaussian peak centered at r =

0. Furthermore, writing $\pounds(k)$	
$= E(k0) + (dE/dk) \bullet (k - k0),$	
we may see that the center of	
the gaussian moves with a	
velocity	
Thus it is natural to associate	
this velocity with an electron	
in the state Ijjko. Indeed, the	
relation is consistent with the	
expectation value of the	
current operator obtained for	
that state.	
We are also interested in the	
effects of small applied	
fields: imagine the electron	
wave packet described above,	
but now allow a weak, slowly	
varying potential F(r) to be	
present. The packet will work	
against this potential at the	
rate V • dv/dr . This energy	
can only come from the band	
energy of the electron,	
through a change, with time,	
of the central wave number	
k0 of the packet:	
This is consistent with the	
relation	
This can, in fact, be	
generalized to magnetic	
forces by replacing —dv/dx	
by the Lorenz force, $-e[-$	
$\{ \{ y \in (v/c) X \} \}$	
Eqs. (2-9) and (2-11)	
completely describe the	
dynamics of electrons in	
bands wherever it is possible	
to think in terms of wave	
packets; that is, whenever the	
tields are slowly varying	

relative to interatomic	
spacings. Notice that if we	
think of fik as the canonical	
momentum, then the band	
energy, written in terms of p	
= hk, plus the potential	
energy, F(r), play precisely	
the role of the classical	
Hamiltonian, since with these	
definitions, Eqs. (2-9) and (2-	
11), are precisely Hamilton's	
equations. Thus, in terms of	
the energy bands E(k), we	
may proceed directly by	
using kinetic theory to	
examine the transport	
properties of solids, without	
thinking again of the	
microscopic theory that led to	
those bands. We may go even	
further and use this classical	
Hamiltonian to discuss a	
wave function for the packet	
itself, just as we constructed	
wave functions for electrons	
in Chapter 1. This enables us	
to treat band electrons bound	
to impurities in the solid with	
methods similar to those used	
to treat electrons bound to	
tree atoms; however, it is	
imperative to keep in mind	
that the approximations are	
good only when the resulting	
wave functions vary slowly	
with position, and therefore	
their usefulness would be	
restricted to weakly bound	
impurity states.	
Let us note some qualitative	

aspects of electron dynamics. If the bands are narrow in energy, electron velocities will be small and electrons will behave like heavy particles. These qualities are observed in insulator valence bands and in transition-metal d bands. In simple metals and semiconductors the bands tend to be broader and the electrons are more mobile; in metals the electrons typically behave as free particles with masses near the true electron mass. One question that might be asked is: what happens when an electron is accelerated into

the Brillouin Zone surface? The answer is that it jumps across the zone and appears on the opposite face. It is not difficult to see from Eq. (2-3) that if, for example, m; is changed by Ni (corresponding to going from a wave number on one zone face to a wave number on the opposite face) the phase factors change by e2"; the states are therefore identical. In general, equivalent states are found on opposite zone faces. and electron an accelerated into one face will appear at the opposite face and continue to change its wave number according to Eq. (2-11).

2- C Characteristic Solid	
Types	
Before discussing in detail	
the various categories of	
solids it is helpful to survey	
them in general terms. This is	
conveniently done by	
concentually constructing the	
somiconductor silicon from	
free atoms. In the course of	
this it will become apparent	
how the matallicity of a	
now the metanicity of a	
semiconductor varies with	
row number in the periodic	
table. with the general model	
as a basis we can also	
construct compounds of	
increasing polarity, starting	
with silicon or germanium	
and moving outward in the	
same row of the periodic	
table. Metallicity and polarity	
are the two principal trends	
shown by compounds and	
will provide a suitable	
framework for the main body	
of our discussions.	
Imagine silicon atoms	
arranged as in a diamond	
crystal structure but widely	
spaced. This structure will be	
discussed in the next chapter;	
a two-dimensional analogue	
of it is shown in Fig. 2-3. At	
large internuclear distance,	
two electrons are on each	
individual atom in s states	
and two are in p states. As the	
atoms are brought together,	
the atomic states broaden into	

bands, as we have indicated. complications, (There are unimportant here, if one goes beyond а one-electron picture.) The s bands are completely full, whereas the p bands can accommodate six electrons per atom and are only one third full. This partial filling of bands is characteristic of a metal. As the atoms are brought still closer together, the broadening bands finally reach each other, as shown in Fig. 2-3, and a new gap opens up with four bands below and four above. The bonding bands below (called valence bands) are completely full and the antibonding bands above (called con-duction bands) are completely empty; now the system is that of an insulator or, when the gap is small, of a semiconductor. In Chapter 1, it was noted that a crossing of bonding and antibonding states does not occur in the simple diatomic molecules, but that it can in larger molecules and in solids, as shown here. The qualitative change in associated with properties such crossing is one of the most important concepts for necessary an understanding of chemical bonding, yet

FIGURE 2-3	
The formation of bands in a	
homopolar tetrahedral	
semiconductor as the atoms	
are brought together.	
Internuclear distance	
decreases to the right.	
it has not been widely	
examined until recently.	
Particular attention has been	
brought by Woodward and	
Hoffmann (1971) in their	
discussion of reactions	
between molecules. In that	
context, Woodward and	
Hoffmann found that when	
bonding and antibonding	
states are equally occupied, as	
in Be2, discussed earlier, no	
bonding energy is gained and	
the atoms repel each other.	
Only when the atoms are	
close enough that upper	
bonding levels can surpass or	
cross the energy of the lower	
antibonding levels above can	
bonding result. In some such	
cases (not Be2) a stably	
bonded system can be	
formed, but an energy barrier	
must be overcome in order to	
cause the atoms to bond.	
Reactions in which energy	
barriers must be overcome	
are called "symmetry	
Torbidden reactions." (See	
woodward and Hoffmann,	
19/1, p. IOII, for a discussion	
OI $2C2H4 \rightarrow C4H8.$) The	
barrier remains, in fact, when	

	-	
there is no symmetry. In		
silicon, illustrated in Fig. 2-3,		
the crossing occurs because		
high symmetry is assumed to		
exist in the atomic		
arrangement. Because of this		
symmetry, the matrix		
elements of the Hamiltonian		
are zero between wave		
functions of states that are		
dropping in energy and those		
that are rising (ultimately to		
cross each other). If, instead,		
the silicon atoms were to		
come		
■4 Increasing interatomic		
distance (d)		
FIGURE 2-4		
The variation of energy of		
two levels which cross, as a		
function of atomic spacing d,		
in a symmetric situation, but		
do not cross when there is not		
sufficient symmetry.		
together as a distorted lattice		
with no symmetry, the		
corresponding matrix		
elements of the Hamiltonian		
would not be zero, and		
decreasing and increasing		
energy levels would not cross		
(see Fig. 2-4).		
In an arrangement of high		
symmetry, a plotting of total		
energy as a function of d may		
snow a cusp in the region		
where electrons switch from		
bonding to antibonding states;		
a clear and abrupt qualitative		
change in denavior coincides		

with this cusp region. In an unsymmetric arrangement, change in total energy as a function of d is gradual but at small or at large internuclear distances, energies are indistinguishable from those observed symmetric in arrangements. Thus, though the crossing is artificial (and dependent on path), the qualitative difference, which we associate with covalent bottcling, is not. For this reason, it is absolutely essential to know on which side of a diagram such as Fig. 2-3 or Fig. 2-4 a particular system lies. For example, in covalent silicon, bondingantibonding splitting is the large term and the sp splitting is the small one. That statement explains why there is a gap between occupied states and unoccupied states, which makes covalent silicon semiconductor. and а knowing this guides us in numerical approximations. Similarly, in metals, bondingantibonding splitting is the small term and the sp splitting the large term; this explains why it is a metal and guides our numerical approximations in metals. If we wished to make full, accurate machine calculations we would never need to make

this distinction; we could	
simply look at the results of	
the full calculation to check	
for the presence of an energy	
gap. Instead, our methods are	
designed to result in intuitive	
understanding and	
approximate calculations of	
properties, which will allow	
us to guess trends without	
calculations in some cases,	
and which will allow us to	
treat complicated compounds	
that would otherwise be	
intractable by full, accurate	
calculation in other cases.	
The diagram at the bottom of	
Fig. 2-3 was drawn to	
represent silicon but also,	
surprisingly, illustrates the	
homopolar series of	
semiconductors c, Si, Ge, and	
Sn. The internuclear distance	
is smallest in diamond,	
corresponding to the largest	
gap, far to the right in the	
figure. The internuclear	
distance becomes larger	
element by element down the	
series, corresponding to	
progression leftward in the	
figure to tin, for which the	
gap is zero. (Notice that in a	
plot of the bands, as in Fig. 2-	
2, the gap can vary with wave	
number. In tin it vanishes at	
only one wave number, as	
will be seen in Chapter 6, in E_{1}^{2}	
Fig. 6-10.) Nonetheless we	
must regard each of these	

semiconductors—even tin—	
as a covalent solid in which	
the dominant energy is the	
bonding-antibonding	
splitting We can define a	
"motalligity" that increases	
from a to Sn reflecting a	
docucesing notic of bonding	
decreasing ratio of bonding-	
antibonding splitting to sp	
splitting; nevertheless, if the	
structure is tetrahedral, the	
bonding-antibonding splitting	
has won the contest and the	
system is covalent.	
The discussion of Fig. 2-3 fits	
well with the LCAO	
description but the degree to	
which a solid is covalent or	
metallic is independent of	
which basis states are used in	
the calculation. Most of the	
analysis of covalent solids	
that will be made here will be	
based upon linear	
combinations of atomic	
orbitals, but we also wish to	
understand them in terms of	
free-electron-like behavior.	
(These two extreme	
approaches are illustrated for	
cesium chloride in Fig. 2-2.)	
Free-electron-like behavior is	
treated in Chapter 18, where	
two physical parameters will	
be designated, one of which	
dominates in the covalent	
solid and one of which	
dominates in the metallic	
solid. It can be useful here to	
see how these parameters	

correspond to the concepts	
discussed so far.	
In Fig. 2-2, the width of the	
bands, approximately Ep —	
Es, corresponds to the kinetic	
energy, £F. of the highest	
filled states. The bonding-	
antibonding splitting	
similarly corresponds to the	
residual splitting between	
bands which was suppressed	
completely in Fig 2-2 h For	
metals this residual solitting	
is described by a	
nseudopotential In metals	
the small parameter is the	
nseudopotential divided by	
the Fermi energy	
(corresponding to the ratio of	
bonding-antibonding splitting	
to sp splitting or the	
reciprocal of the metallicity)	
In the covalent solids on the	
other hand we would say that	
the pseudopotential is the	
dominant aspect of the	
problem and the kinetic	
energy can be treated as the	
small correction. In fact, in	
Chapter 18 the	
pseudopotential approach will	
be applied to simple	
tetrahedral solids: there.	
treating kinetic energies as	
small compared to the	
pseudopotential leads to a	
simple description of the	
covalent bond in which a one-	
to-one correspondence can be	
obtained between matrix	

elements of the	
pseudopotential (that is,	
between plane waves) and	
matrix elements of the	
Hamiltonian between atomic	
states. The correspondence	
between these two opposite	
approaches is even more	
remarkable than the similarity	
between the LCAO and free-	
electron bands in Fig. 2-2,	
though it is the latter	
similarity which will provide	
us with LCAO matrix	
elements.	
Now, as an introduction to	
polar semiconductors, let us	
follow the variation of	
electronic structure,	
beginning with an elemental	
semiconductor and moving to	
more polar solids. For this,	
germanium is a better starting	
point than silicon, and in	
order of increasing polarity	
the series is Ge, GaAs, ZnSe,	
and CuBr. The total number	
of electrons in each of these	
solids is the same (they are	
isoelectronic) and the	
structure is the same for all;	
they differ in that the nuclear	
charge increases on one of the	
atoms (the anion) and	
decreases on the other (the	
cation). The qualita-	
FIGURE 2-5	
Change in the bands as a	
homopolar semiconductor is	
made increasingly polar, and	

then as the two atom types	
are made more alike without	
broadening the levels	
tive variation in electronic	
structure in this series is	
illustrated in Fig 2-5 a Bear	
in mind that even in nonpolar	
solids there are two types of	
atomic sites one to the right	
and one to the left of the	
horizontal bonds in the figure	
In polar solids the nuclear	
charge on the atom to the	
right is increased compound	
by compound This will tend	
to displace the bond charges	
(electron density) toward the	
atom with higher nuclear	
charge (center diagram in Fig	
2-5 a) and in fact the corre-	
sponding transfer of charge in	
most cases is even larger than	
the change in nuclear charge	
so the atom with greater	
nuclear charge should be	
thought of as negative: hence	
the term anion is used to	
denote the nonmetallic atom	
At high polarities most of the	
electronic charge may be	
thought of as residing on the	
nonmetallic atom, as shown.	
The most noticeable change	
in the energy bands of Fig. 2-	
5.b. as polarity increases, is	
the opening up of a gap	
between the valence bands as	
shown. There is also a	
widening of the gap between	
valence and conduction bands	

and some broadening of the valence band. In extremely polar solids, at the center of the figure, the valence band, to a first approximation, has split into an anion s band and three narrow anion p bands. The conduction bands in this model—the unoccupied bands—also split into s bands and p bands, but in a real crystal of high polarity, the bands for unoccupied orbitals remain very broad and even free-electron-like. We complete can the sequence of changes in the model shown in Fig. 2-5 by pulling the atoms apart to obtain isolated free atom energies. Perhaps the simplest path is that shown on the right side of Fig. 2-5, where the metallic and nonmetallic atoms become more alike and where the individual energy bands remain narrow. Where the levels cross, electrons of the fill available anion orbitals of the cation; the crossing results in a reduction of the atomic charges to zero. By comparing Fig. 2-5 with Fig. 2-3, we can see that there is no discontinuous change in the qualitative nature of the electronic structure in going from homopo- lar to highly polar solids of the same

crystal structure (Fig. 2-5),

discontinuity that but is encountered in going from the atomic electronic structure to the covalent one (Fig. 2-3). Properties vary smoothly with polarity over the entire range. This feature has been apparent for a long time and led Pauling to define ionicity in terms of energies of formation in order to provide a scale for the trend (Pauling, 1960). Coulson et al. (1962) redefined ionicity in terms of LCAO an description much like the one we shall use in Chapter 3. Phillips (1970) gave still a third definition in terms of the dielectric constant. The formula for polarity of a simple bond, introduced in Eq. (1-37), is essentially equivalent to the ionicity defined by Coulson, but the ionicities defined by Pauling and by Phillips are to a first approximation proportional to the square of that polarity. We will use the term polarity to describe a variation in electronic structure in solids. covalent and the particular values defined by Eq. (1-37) will directly enter the calculation of some properties. We do not use polarity to interpolate properties from one material to another. However, such
interpolative approaches are commonly used, and degree of ionicity or polarity is frequently used to rationalize trends in properties. Therefore it best is to examine that approach briefly. The distinction between these two approaches is subtle but of fundamental importance. We have seen that there are trends with polarity and with metallicity among the tetrahedral solids. One of the trends is the decrease, with increasing metallicity and increasing polarity, of the angular rigidity that stabilizes the open tetrahedral structure. Thus, if either increases too far, the structure collapses to form closea packed structure. When this happens, the new system has a qualitatively different electronic structure, and different and concepts approximations become appropriate. We may think of this as analogous to a phase diagram, as illustrated in Fig. 2-6. If a combination of atoms (e.g., Litium and flourine) is too polar, a closepacked rocksalt structure is formed. LiF is an ionic crystal and most frequently the best initial approximation to the electronic structure is

based on independent ions,	
which we used in the	
discussion of the cesium	
chloride energy bands. Ionic	
solids can be distinguished	
from covalent solids by their	
characteristic crystalline	
structures, a topic that will be	
taken up later.	
When the metallicity is too	
great, a close-packed	
structure again becomes more	
Polarity	
FIGURE 2-6	
A schematic phase diagram	
indicating the three	
qualitatively different types	
of solids discussed in the	
book. The phase boundaries	
are topologically correct but	
details of shape are only	
schematic.	
Stable. In this case the	
electronic structure ordinarily	
approximates that of a free-	
electron gas and may be	
analyzed with methods	
appropriate to free-electron	
gases. Again, the crystal	
structure is the determining	
feature for the classification.	
When tin has a tetrahedral	
structure it is a covalent solid;	
when it has a close- packed	
white-tin structure, it is a	
metal. Even silicon and	
germanium, when melted,	
become close-packed and	
liquid metals.	
To complete the " phase	

diagram," there must also be a line separating metallic and ionic systems. Materials near this line called are intermetallic compounds; they can lie on the metallic side (an example is Mg2Pb) or on the ionic side (for example. CsAu). Consideration of intermetallic compounds takes the trends far beyond the isoelectronic series that we have been discussing. The sharp distinction between ionic and covalent solids is maintained in а rearrangement of the periodic table of elements made by Pantelides and Harrison (1975). In this table, the alkali metals and some of their neighbors are transferred to the right (see Fig. 2-7). The elements of the carbon 4) column (column and compounds made from elements to either side of that column (such as GaAs or CdS) are covalent solids with tetrahedral structures. Compounds made from elements to either side of the helium column of rare gases (such as KC1 or CaO) are compounds with ionic characteristic ionic structures. A few ionic and covalent compounds do not fit this correlation; notably, MgO,

AgF, AgCl, and AgBr are	
ionic compounds, and MgS	
and MgSe can occur in either	
ionic or covalent structures.	
(Notice that Mg is found both	
in column 2 and column 10).	
The interesting isoelectronic	
series for ionic compounds	
will be those such as Ar,	
KC1, CaS, and ScP, obtained	
from argon by transferring	
protons between argon nuclei.	
In this case the ion receiving	
the proton is the metallic ion	
and the electronic structure is	
thought of as a slightly	
distorted rare gas structure.	
This model leads to a theory	
of ionic-compound bonding	
that is even simpler than the	
bonding theory for covalent	
solids. The Pantiledes-	
Harrison rearrangement of the	
periodic table is used as the	
format for the Solid State	
Table, where the parameters	
needed for the calculation of	
properties have been	
gathered.	
2- D Solid State Matrix	
Elements	
Almost all of the discussion	
of covalent and ionic solids in	
this book is based upon	
descriptions of electron states	
as linear combinations of	
atomic orbitals. In order to	
obtain numerical estimates of	
properties we need numerical	
values for the matrix	

elements giving rise to the covalent and polar energies properties being for the considered. There is no best choice for these parameters since a trade-off must be made between simplicity (or universality) of the choice and accuracy of the predictions that result when they are used. Clearly if different values are used for each property of each material, exact values of the properties he can accommodated. We shall follow a procedure near the opposite extreme, by introducing four universal parameters in terms of which all interatomic matrix elements between s and p states for all systems can be estimated. We shall also use a single set of atomic s and p orbital energies throughout. principal These are the parameters needed for the entire range of properties, though the accuracy of the corresponding predictions is limited. One might at first think that interatomic matrix elements could be calculated by using tabulated atomic wave functions and potentials estimated for the various solids. Such approaches have a long history of giving poor

numerical results and have	
tended to discredit the LCAO	
method itself. However, the	
difficulty seems to be that	
though true atomic orbitals do	
not provide a good basis for	
describing electronic	
structure, there are atomiclike	
orbitals that can provide a	
very good description. One	
can therefore obtain a useful	
theory by using LCAO	
formalism but obtaining the	
necessary matrix elements by	
empirical or semiempirical	
methods	
One of the oldest and most	
familiar such approaches is	
the "Extended Hueckel	
Approximation" (Hoffman	
1963.) Let us take a moment	
to examine this approach.	
though later we shall choose	
an alternative scheme.	
Detailed rationalizations of	
the approach are given in	
Blyholder and Coulson	
(1968), and in Gilbert (1970,	
p. 244); a crude intuitive	
derivation will suffice for our	
purposes, as follows. We seek	
matrix elements of the	
Hamiltonian between atomic	
orbitals on adjacent atoms,	
$(p \in C)$. If I a) were an	
eigenstate of the Hamiltonian,	
we could replace HI a) by	
Ea a), where £a is the	
eigenvalue. Then if the	
overlap (,P\oc) is written	

Spa, the matrix element	
becomes EaSpa. This,	
however, treats the two	
orbitals differently, so we	
might use the average instead	
of Ea Finding that this does	
not give good values we	
introduce a scale factor G to	
be adjusted to fit the	
properties of heavy	
molecules: this leads to the	
extended Hueckel formula:	
$(\text{PiHi}) = GSp_2(ap + a_2)/2$	
(111110) = OSpa(cp + ca)/2.	
These matrix alamants are	
substituted into the	
Hamiltonian matrix of Eq. (2)	
Hammonian matrix of Eq. (2-	
2) for a molecule, or a cluster	
of atoms, and the matrix is	
diagonalized. A value of $G =$	
1.75 is usually taken; the	
difference from unity	
presumably, arises from the	
peculiar manner in which	
nonorthogonality is	
incorporated.	
The Extended Hueckel	
Approximation and a wide	
range of methods that may be	
considered as descendents of	
it (e.g., the CNDO method—	
Complete Neglect of	
Differential Overlap) have	
enjoyed considerable success	
in theoretical chemistry.	
Some machine calculation is	
required, first in determining	
the parameters s from	
tabulated wave functions or	
numerical approximations to	

them, and second in solving the resulting simultaneous equations, as at Eq. (2-2). This difficulty is exacerbated by the fact that s drops rather slowly with increasing distance between atoms, so a very large number of matrix elements are required. The computation required for any given system is very small, however, in comparison with what is required to obtain more accurate solutions. Once an Extended Hueckel Approximation has been made. direct machine computations of any property can be made and alternatives to the simplest approximations-e.g., Eq. (2-12)— can be made which improve agreement with the experimental values. Such improvements are described in detail by Pople and Beveridge (1970). Combining descriptions of electronic structure that are essentially correct, with the use of highspeed computers, and the results of a number of years of trial and error in correcting the simplest approximations, probably provide the most accurate predictions of the diverse properties of complex systems that are presently available. For isolated properties, such as the energy

bands of solids, other	
computer methods are much	
more reliable and accurate.	
The approach that will be	
used in this text is different.	
in that the description of	
electronic structures is greatly	
simplified to provide a more	
vivid understanding of the	
properties: numerical	
estimates of properties will be	
obtained with calculations	
that can be carried through by	
hand rather than machine. We	
shall concentrate on the	
"physics" of the problem. In	
this context a semiempirical	
determination of matrix	
elements is appropriate. The	
first attempt at this (Harrison,	
1973c) followed Phillips	
(1970) in obtaining the	
principal matrix element v2	
from the measured dielectric	
constant. A second attempt	
(Harrison and Ciraci, 1974)	
used the principal peak	
in the optical reflectivity of	
the covalent solids, which we	
shall come to later, as the	
basis for the principal matrix	
element; this led to the	
remarkable finding that v2	
scaled from material to	
material quite accurately as	
the inverse square of the	
interatomic distance, the bond	
length d, between atoms. A	
subsequent study of the	
detailed form of valence	

bands (Pantelides and	
Harrison, 1975), combined	
with v2 determined from the	
peak in optical reflectivity,	
gave a complete set of	
interatomic matrix elements	
for covalent solids with the	
finding that all of them varied	
approximately as d~2 from	
material to material.	
The reason for this	
dependence recently became	
very clear in a study of the	
bands of covalent solids by	
Froyen and Harrison (1979).	
They took advantage of the	
similarity of the LCAO bands	
and free-electron bands,	
noted in Fig. 2-2. By equating	
selected energy differences	
obtained in the two limits,	
they derived formulae that	
had this dependence for all of	
the interatomic matrix	
elements. We may in fact see	
in detail how this occurs by	
considering Fig. 2-2. The	
lowest band, labelled s in Fig.	
2-2, a, was given by Eq. (2-5).	
For k in an x-direction, it	
becomes $E(k) = es - 4V2$	
$2\sqrt{2} \cos ka$, varying by $4\sqrt{2}$	
from r (where $k = 0$) to X	
(where $K = \frac{9}{2}$). The free-	
varies by $(h^2/2m)(n/a)^2$ over	
the same region of wave	
number space for the lowest	
hand Thus if both limiting	
models are to be appropriate	
i models are to be appropriate,	

and therefore consistent with each other, it must follow that $v2 = t]h2/\{ma2\}$ with rj =7t2/8 = 1.23. This predicts the dependence upon the inverse square of interatomic distance and a coefficient that depends only upon crystal structure. A similar comparison of the second band gives the same form with a different coefficient for the matrix element v'2 between p states. This simplest model is not so relevant, but it illustrates the point nicely. Before going to more relevant systems we must define more precisely the notation to be used for general interatomic matrix elements. These matrix elements will be important throughout the text; they are specified here following the conventions used by Slater and Koster (1954) and used earlier while discussing the diatomic molecule. In general, for a matrix element < a |//|/j >between orbitals on different atoms we construct the vector d, from the nucleus of the atom of which I a) is an orbital (the "left" atom) to that of the atom of which I/?) is an orbital (the "right" atom). Then spherical coordinate systems are constructed with the z-axes

parallel to d, and with origins at each atom; the angular form of the orbitals can be taken as Y?(9, ê) for the left orbital and VI! (O', \hat{Q}) for the right orbital. The angular factors depending upon ê combine to (Notice that the wave function (a I is the complex conjugate of I a).) The integration over â gives zero unless m' = m. Then all matrix elements (a|H||S)vanish unless rri = m, and these are labelled by O, n, or Ó (in analogy with s, p, d) for m - I). 1, and 2 respectively. Thus, for example, the matrix element Vspa corresponds to 1 = 0, I = 1, m = 0. Slater and Koster (1954) designated matrix elements by enclosing the indices within parentheses; thus, the element VWm used in this book and their (Wm) are the same. We saw how formulae for the matrix elements can be obtained by equating band energies from LCAO theory and from free-electron theory in Fig. 2-2. Froye.1 and Harrison (1979) made the corresponding treatment of the tetrahedral solids, again including only matrix elements between nearestneighbor atoms. The form of their results is just as found for the simple cubic case

Notice that the subscript m is	
a quantum number but the m	
in the denominator	
Dimensionless coefficients in	
Eq. (2-13) determining	
approximate interatomic	
matrix elements	
Theoretical values	
Coefficient Simple cubic	
structure Tetrahedral	
structure Adjusted value*	
NOTE: Theoretical values	
(Froven and Harrison 1979)	
were obtained by equating	
hand energies from I (\0 and	
free ejectron theory as	
described in the text	
Adjusted values (Harrison	
1076b 1077a) ware obtained	
hy fitting tile anargy hands of	
by fitting the energy bands of	
shicon and germanum, the	
Solid State Table	
Solid State Table.	
is the electron mass. The	
length d is the internuclear	
distance, equal to a in the	
simple cubic structure. If d is	
given in angstroms, this form	
is easily evaluated, using	
h2/m = 7.62 eV-A2. In Table	
2-1 we give the values of the	
dimensionless cnefficients	
obtained by Froyen and	
Harrison for both the simple	
cubic and Id rahedral	
structures. The calculation is	
closely related to that just	
carried through for the bands	
of Fig. 2-2, and in fact, the	
VSS <j element="" for="" matrix="" td="" the<=""><td></td></j>	

simple cubic case is just the negative of the v2 value evaluated there, leading to the t]ssa = — 7t2/8. wv shall see in Section 18-A exactly how the other theoretical coefficients listed were obtained. Motice that the coefficients obtained for the tetrahedral structure differ from those obtained for the simple cubic structure and indeed the coefficients for any mu: structure depend somewhat upon which band energies are used. However. the differences are not great and we shall neglect them. The coefficients we shall use are close to those given bv Froyen and Harrison (1979) for the tetrahedral structure. but were obtained somewhat earlier by Harrison (1976b), who adjusted tliL'm to give the interatomic matrix elements found by Chadi and Cohen (1975) in fitting the known energy bands of silicon and germanium. The average of the coefficients so obtained silicon for and germanium is listed in Table 2-1 in the column headed "Adjusted," and these are the values listed in the Solid State Table and used throughout this text. Also listed in the Solid State Table are forms

	•	
lor predicting matrix elements		
involving atomic d states,		
formulae which will be		
developed in Chapter 20.		
The coefficients in Table 2-1		
have been obtained entirely in		
the context of nearest-		
neighbor coupling between		
states. They would have been		
different if a		
*For recent developments,		
see the Preface to the Dover		
Edition.		
TABLE 2-2		
Atomic term values from		
Herman and Skillman (196.Í).		
or extrapolated from their		
values.		
Atomic term value (eV)		
second-neighbor LCAO fit		
had been used, for example,		
and it would not therefore be		
appropriate to use them if the		
description of the bands were		
to be extended to second-		
neighbor interactions.		
It will ordinarily be more		
convenient in solids to use the		
forms for angular		
dependence, x/r , y/r , and z/r ,		
as in Eq. (1-20), rather than		
the forms $Y''i(0, . Then in$		
order to obtain matrix		
elements involving these		
orbitals, we need to expand		
the		
NOTE: These values appear		
also in the Solid State Table.		
p orbital in question in terms		
of 17, which are defined with		

respect to the coordinate system discussed above. For p orbitals this is quite simple. For the simplest geometries it leads to the identification of matrix elements shown in the upper four diagrams of Fig. 2-8. For arbitrary geometries the result depends upon the direction cosines giving the vector d in the coordinate system of X, y, and z; this is illustrated at the bottom in Fig. 2-8. The corresponding transformations for d FIGURE 2-8 The four types of interatomic matrix elements entering the study of s- and p-bonded systems are chosen as for diatomic molecules as shown in Fig. 1-11. Approximate values for each are obtained from the bond length, or internuclear distance, i/, by Vfj — riijtS/md2, with tiij taking values given in Table 2-1 and in the Solid State Table at the back of the book. When p orbitals are not oriented simply as shown ill the upper diagrams, they may be decomposed geometrically as vectors in order to evaluate matrix elements as illustrated in the bottom diagrams. It can be seen that the interatomic matrix element at the bottom right consists of cancelling the contributions that lead to

a vanishing matrix element.	
orbitals as well as p orbitals	
will be given in detail in	
Table 20-1, but for s and p	
orbitals the simple vector	
transformations illustrated in	
Fig. 2-8 should be sufficient;	
the results can be checked	
with Table 20-1.	
When we give the Froyen-	
Harrison analysis in Chapter	
18-A, we shall see that the	
same procedure can give an	
estimate of the energy	
difference Ep — £s. It is of	
the correct general magnitude	
but fails to describe the	
important trend in the energy	
bands among the covalent	
solids c, Si, Ge, and Sn.	
Furthermore, it does not	
provide a means of estimating	
term-value differences such	
as scp — e" in polar solids.	
Thus, for these intra-atomic	
parameters we shall use	
calculated atomic term	
values, which are listed in	
Table 2-2. A comparison	
shows them to be roughly	
consistent with term values	
obtained in the fit to known	
bands done by Chadi and	
Conen (1975) for the polar	
sellicon and cormanium	
This particular sat of	
calculated values (by Hermon	
and Skillman 1063) was	
chosen since the	

approximations used in the calculation were very similar to those used in determining the energy bands that led to the parameters in Table 2-1. The values would not have differed greatly if they were Hartree-Fock taken from calculations (such values are tabulated in Appendix A). Values based on Hartree-Fock calculations have the advantage of giving good values for d states. Therefore, though the calculations in this book are based upon the Herman-Skillman values, for applications the some Hartree-Fock values may be better suited. Notice absolute that as numbers the atomic energy values have only limited meaning in any case. Imagine, for example, that the value Ep for oxygen correctly gives the energy required to remove an electron from an isolated oxygen atom in space. If this atom is brought close to the surface of a metal (or, almost equivalently, to the surface of a covalent solid with а large dielectric constant) but not close enough for any chemical bonding to take place, how much energy is now required to remove the electron from the oxygen? One way to

calculate this is to move the neutral atom to infinity, with no work required, remove the electron requiring £p, and then return the oxygen ion to its initial position; as it returns it gains an energy e2/4d from the image field, where d is the final distance from the surface. The resultant correction of fip. with d equal to $2 \hat{A}$, is 1.8 eV, from negligible. far The precise value is uncertain because of the dielectric approximation, the uncertainty in the d used, and other effects, but we may significant expect that corrections of the absolute energies are needed relative to the values in vacuum. The reason that the values are nevertheless useful as parameters is that in solids such corrections are similar for all atoms involved and the relative values are meaningful. How do the values obtained from Tables 2-1 and 2-2 compare with the values obtained directly by fitting bands? This energy comparison is made in Table 2-3 for the covalent systems studied by Chadi and Cohen. Agreement is semiquantitative throughout and all trends are reproduced except the

splitting of values for VsptT	
in the compounds. The	
discrepancies are comparable	
to the differences between	
different fits (the most recent	
fitz and have the	
ints are used here), thus	
justifying the use of the	
simple forms in our studies.	
Significantly different values	
are obtained if one includes a	
greater number of matrix	
elements in the fit (Pandey,	
1976) and would be	
appropriate if we were to	
include these matrix elements	
in the calculation of	
properties other than the	
bands themselves.	
Significantly different values	
have also been given by	
Levin (1974).	
The coefficients from Table	
2-1 and atomic term values	
from Table 2-2 will suffice	
for calculation of an	
extraordinarily wide range of	
properties of covalent and	
ionic solids using only a	
standard hand-held calculator.	
This is impressive testimony	
to the simplicity of the	
electronic structure and	
bonding in these systems.	
Indeed the same parameters	
gave a semiguantitative	
prediction of the one-electron	
energy levels of diatomic	
molecules in Table 1-1.	
However, that theory is	
intrinsically approximate and	

not always subject to	
successive correc-	
TABLE 2-3	
Matrix elements from the	
Solid State Table, compared	
with values (in parentheses)	
from fits to individual bands.	
All values are in eV.	
SOURCES of data in	
parentheses: c from Chadi	
and Martin (1976); Si and Ge	
from Chadi and Cohen	
(1975); GaAs and ZnSe from	
Chadi and Martin (1976).	
NOTE: Where two values of	
Vspr are given for	
compounds, the first value is	
for an s state in the	
nonmetallic atom and p state	
in the metallic atom. States	
are reversed for the second	
value. Where two values of	
((p - cs)/4 are listed, the	
first value is for the metallic	
atom, the second for the	
nonmetallic atom.	
tions and improvements. In	
most cases our predictions of	
properties will be accurate on	
a scale reflected in Table 2-3,	
and though the introduction	
of further parameters allows a	
more accurate fit to the data,	
it may be that improvements	
at a more fundamental level	
are required for a more	
realistic treatment and that	
these improvements cannot	
be made without sacrificing	
the conceptual and	

computational simplicity of	
the picture that will be	
constructed in the course of	
this book.	
Before proceeding to	
quantitative studies of the	
covalent solids it is	
appropriate to comment on	
the concept of	
"electronegativity,"	
introduced by Pauling to	
denote the tendency of atoms	
to attract electrons to	
themselves (discussed	
recently, for example, by	
Phillips, 1973b, p. 32). It may	
be an unfortunate term since	
the positive terminal of a	
battery has greater	
electronegativity than the	
negative terminal.	
Furthermore, it was defined	
to be dimensionless rather	
than to have more natural	
values in electron volts. It	
would be tempting to take the	
hybrid energy values of Table	
2-2 as the definition of	
electronegativity, but it will	
be seen that in some	
properties the energy Ep is a	
more appropriate measure.	
Therefore it will be a wiser	
choice to use the term only	
qualitatively. Then from	
Table 2-2 (or from Fig. 1-8)	
we see that the principal trend	
is an increase in	
electronegativity with	
increasing atomic number	

proceeding horizontally from	
one inert gas to the next (e.g.,	
from neon, Na, Mg, Al, Si, p,	
s, and Cl to argon). In	
addition, the elements	
between helium and neon	
have greater electronegativity	
than the heavier elements. It	
is useful to retain "	
electronegativity " to describe	
these two qualitative trends.	
2- E Calculation of	
Spectra	
We have seen that in solids,	
bands of electron energies	
exist rather than the discrete	
levels of atoms or molecules.	
Similarly there are bands of	
vibration frequencies rather	
than discrete modes. Thus, to	
show electron eigenvalues, a	
curve was given in Fig. 2-2	
rather than a table of values.	
However, a complete	
specification of the energies	
within the bands for a three-	
dimensional solid requires a	
three-dimensional plot and	
that cannot be made; even in	
two dimensions an attempt is	
of limited use. Instead, a	
convenient representation of	
electronic structure can be	
made by plotting the number	
of states, per unit energy, as a	
tunction of energy. This loses	
the information about, for	
example, electron velocity,	
since that requires a	
knowledge of energy as a	

function of wave number.	
However, it is all that is	
needed to sum the energies of	
the electrons for given atomic	
arrangements.	
Calculation of such a	
spectrum might seem	
straightforward, but if done	
by sampling, it requires an	
inordinate amount of	
calculation. For example, to	
produce a plot we might	
divide the energy region of	
interest into one thousand	
intervals and then evaluate	
the energies (as we did in	
Section 2-A) over a closely	
spaced grid in the Brillouin	
Zone, keeping track of the	
number of eigenvalues	
obtained in each interval. A	
great increase in efficiency	
can be obtained by noting that	
the energy bands have the full	
symmetry of the Brillouin	
Zone—in the case of CsCl, a	
cube—so that the entire	
Brillouin Zone need not be	
sampled. One could sample	
multiply the results by two	
one eighth and multiply by	
eight or in fact for a cube	
one forty-eighth suffices.	
However, even in a sample of	
thousands of values, the	
resulting histogram shows	
large statistical fluctuations.	
Therefore an alternative	
approach is required.	

The approach most	
commonly used, and used	
extensively in the curves in	
this book, is the Gilat-	
Raubenheimer scheme	
(Raubenheimer and Gilat,	
1966). In this scheme, the	
idea is to replace the true	
bands by approximate bands,	
but then to calculate the	
density of levels for that	
spectrum accurately. This is	
done by dividing up the	
Brillouin Zone, or a forty-	
eighth of the zone for cubic	
symmetry, into cells; of the	
order of fifty may be	
appropriate; Raubenheimer	
and Gilat used cells in the	
shape of cubes. They then fit	
each band in each cell by a	
linear expression, $Ek = E0 +$	
A1 kx + A2ky + A3kz, with k	
measured from the center of	
the cell. Then the energy	
region of interest for the	
system is divided into some	
1000 energy intervals and the	
contribution to each of these	
intervals is accurately and	
analytically obtained from the	
linear values of the bands in	
each cell. This is illustrated	
tor one dimension in Fig. 2-9.	
We see that the distribution of	
the approximate bands is	
obtained exactly. This turns	
out to eliminate most of the	
statistical error and to give	
very good results.	

In the Gilat-Raubenheimer	
scheme it is inconvenient to	
obtain the necessary values of	
the gradient of the energy	
with respect to wave number	
in each cell, and the cubes do	
not fit the Brillouin Zone	
section exactly, so there are	
problems in calculating the	
energy at the surface of the	
section. For this reason	
Jepsen and Andersen (1971)	
and later, independently,	
Lehman and Taut (1972)	
replaced	
(c) Number of states	
contributed in each interval	
FIGURE 2-9	
A schematic representation of	
the Gilat-Raubenheimer	
scheme for calculating	
densities of states. The energy	
bands (a) are replaced by	
linear bands (b) in each cell.	
The contribution by each cell	
to each of a set of small	
energy intervals (c) is then	
obtained analytically.	
cubes by tetrahedra and wrote	
the distribution of energies in	
terms of the values at the four	
comers. A clear description of	
this much simpler approach is	
given by Rath and Freeman	
(1975), who include the	
necessary formulae. It is also	
helpful to see one manner in	
which the Brillouin Zone can	
be divided into cells. This is	
shown in Fig. 2-10, This	

procedure has been discussed	
also by Gilat and Bharatiya	
(1975). Another scheme,	
utilizing a more accurate	
approximation to the bands	
has been considered recently	
hus been considered recently by Chen (1976)	
In some sense this is a	
annutational datail but the	
resulting curves are so	
essential to solid state	
properties that the detail is	
important. Once a program	
has been written for a given	
Brillouin Zone, any of the	
spectra for the corresponding	
structure can be efficiently	
and accurately obtained from	
the bands themselves.	
PROBLEM 2-1 Calculating	
one-dimensional energy	
bands	
Let us make an elementary	
calculation of energy bands.	
using the notation of LCAO	
theory For many readers the	
procedure will be familiar	
Consider a ring of N atoms	
each with an s orbital We	
seek an electronic state in the	
form of an LCAO	
where the integers a number	
the stome We can evaluate	
the avpostation value of the	
and expectation value of the	
to be identical as (a LUL a)	
to be identical, so $(a + H + a) =$	
K is the same for all a. We	
can also neglect all matrix	
elements ($a H p'$), except if a	
and /? differ by one; we write	

that	
FIGURE 2-10	
(a) The body-centered-	
cubic Brillouin Zone is	
divided into 48 equivalent	
pyramidal segments. (Two	
such pyramids are required	
for face-centered cubic	
zones.) (b) The pyramid is cut	
by equally spaced planes	
parallel to the base, (c) Most	
of the slab may be subdivided	
into triangular prisms. An	
edge is left over on the right	
which can be divided into	
triangular prisms with one	
tetrahedron left over. Each	
triangular prism	
(d) may finally be divided	
into three tetrahedra, (e). This	
divides the Brillouin Zone	
entirely into tetrahedra of	
equal volume. The bands are	
taken to be linear in wave	
number within each	
tetrahedron.	
We shall treat the uj as	
independent of ua and	
minimize the expression with	
respect to UI, giving a linear	
algebraic equation for each a.	
(a) Show that for any	
integer it there is a solution	
the form	
(b) Give the energy of a	
function of n and alzetab it as	
a function of n/N for large N	
Include positive and pagative	
nerude positive and negative	
11.	

(c) Obtain the value of A	
that normalizes the electron	
state.	
(d) Show that for an n	
outside the range — $N/2 < n <$	
N/2, the electron state	
obtained is identical to that	
for some n within this range	
(within the Brillouin Zone). It	
suffices to prove that for	
given n the ua are unchanged	
by the addition of N to n.	
PROBLEM 2-2 Electron	
dynamics	
Consider an electron in a one-	
dimensional energy band	
given by $E(k) = -y2 COS$	
ka in a Brillouin Zone, —n/a	
< k $<$ n/a. At time t = 0, with	
the electron having wave	
number $k = 0$, apply an	
electric field ê.	
Obtain the energy, the speed,	
and the position of the	
electron as a function of time.	
The behavior will be	
oscillatory. It can be thought	
of as acceleration of the	
electron followed by gradual	
diffraction caused by the	
lattice.	
How many lattice distances	
(each distance $a = 2 \text{ Å}$) does	
the electron go if $v^2 = 2 eV$	
and the field is 100 volts per	
centimeter?	


```
The lowest state contains
comparable contributions
from the s and p orbitals.
What is the fraction of s
character, that is, (ui + uiyiui + ui + ui)
```

CHAPTER 2

Electronic Structure of Solids

SUMMARY

In solids, atomic valence levels broaden into bands comprising as many states as there are atoms in the solid.

Electrons in these band states are mobile, each electron state being characterized by a momentum p or wave number k = p/tt that is restricted to a Brillouin Zone.

If each atom in the solid has only four neighboring atoms, the atomic valence orbitals can be combined to form bond orbitals between each set of neighbors, and two electrons per bond can stabilize such an arrangement of atoms.

In such covalent structures, bands of states based upon the bond orbitals will be fully occupied by electrons but

other bands will be empty. The bonds may be symmetric or polar. The covalent structure will not be stable if there are not two electrons per bond, if the bond energy is too small, or if the bond is too polar.

Under these circumstances the lattice will tend to collapse to a denser structure. It may be an ionic crystal, which is a particularly stable arrangement, if by redistributing the electrons it can leave every atomic shell full or empty. Otherwise it will be metallic, having bands of states that are only partially occupied.

If the electron states are represented linear by combinations of atomic orbitals, the electron energy bands are found to depend on a set of orbital energies and interatomic matrix elements. Fitting these to accurate bands suggests that atomic term values suffice for the orbital energies and that nearest-neighbor interatomic matrix elements scale with bond- length d from system to system as d~2.

This form, and approximate coefficients, all follow from the observation that the bands are also approximately given by free-electron a approximation. Atomic term values and coefficients determining interatomic matrix elements are listed in the Solid State Table and will be used in the study of covalent and ionic solids.

In this chapter we give a very brief description of solids, which is the principal subject of the book. The main goal is to fit solids into the context of atoms and molecules. In addition, we shall carefully formulate the energy band in the simplest possible case and study the behavior of electrons in energy bands.

2- A Energy Bands When many atoms are brought together to form a solid, the number of electron states is conserved, just as in the formation of diatomic molecules. Likewise, as in diatomic molecules, the oneelectron states for the solid

can, to a reasonable approximation, be written as LCAO's.

However, in solids, the number of basis states is great. A solid cube one centimeter on an edge may contain 1023 atoms, and for each, there is an atomic s orbital and three p orbitals. At first glance it might seem that such a problem, involving some 4 X 1023 equations, could not be attacked.

However, the simplicity of the crystalline solid system allows proceed us to effectively and accurately. As the atoms brought are together, the atomic energy levels split into bands, which are analogous to the states illustrated for diatomic molecules in Fig. 1-12.

The difference is that rather than splitting into a single bonding and a single antibonding state, the atomic levels split into an entire band of states distributed between extreme bonding and antibonding limits.

To see how this occurs, let us

consider simplest the interesting case, that of The cesium chloride. structure of CsCl is shown in The Fig. 2-1,a. chlorine atoms, represented by open circles, appear on the comers of a cube, and this cubic array is repeated throughout the entire crystal. At the center of each cube is a cesium atom (at the body-center position ill the cube).

Cesium chloride is very polar, so the occupied orbitals lie almost entirely upon the chlorine atoms. As a first approximation we can say that the cesium atom has given up a valence electron to

(a) Crystal structure (b) Brillouin Zone

FIGURE 2-1

(a) A unit cube of the cesium chloride crystal structure, and
(b) the corresponding
Brillouin Zone in wave number space.
fill the shell of the chlorine

atom, which becomes a charged atom, called an ion. Thus we take chlorine 3s orbitals and 3p orbitals as the basis states for describing the

occupied states.

Furthermore, the chlorine ions are spaced far enough apart that the s and p states can be considered separately, as was true at large internuclear distance d in Fig. 1-12. Let us consider first the electron states in the crystal that are based upon the chlorine atomic 3s orbitals.

We define an index i that numbers all of the chlorine ions in the crystal. The chlorine atomic s state for each ion is written I Si). We can approximate a crystalline state by

The variational calculation then leads immediately to a set of equations, in analogy to Eq. (1-26):

It is convenient at this stage to avoid the complications that arise from consideration of the crystalline surface, by introducing periodic boundary conditions. Imagine a crystal of chlorine ions that is Ni ions long in the x-

direction, N2 long ill the ^direction, and N3 long in the z-direction. The right surface of the crystal is connected to the left, the top to the bottom, and the front to the back. This is difficult to imagine in three dimensions. but in one dimension such a structure corresponds to a ring of ions rather than a straight segment with two ends. Closing the ring adds an Hij matrix element coupling the states on the end ions. Periodic boundary conditions greatly problem simplify the mathematically; the only error that is introduced is the neglect of the effect of surfaces, which is beyond the scope of the discussion here.

The approximate description of the crystalline state, Eq. (2-1), contains a basis set of Np = N1N2 N3 states (for the Np pairs of ions), and there are Np solutions of Eq. (2-2). These solutions can be written down directly and verified by substitution into Eq. (2-2). To do this we define a wave number that will be associated with each state:

(2-3)

where 1i, n2, and n3 are integers such that -Ni/2<nx< Ni/2, ...and X, y, andare units vectors in the three perpendicular directions, as indicated in Fig. 2-1,b. Then for each k allowed by Eq. (2-3), we can write the coefficient Uj in the form

Here the r7- = (ml X + m2y + m2y)m3 z)a are the positions of the ions. We see immediately that there are as many values of k as there are chlorine ions; these correspond to the conservation of chlorine electron states. We also see that the wave functions for states of different k are orthogonal to each other. Values for k run almost continuously over a cubic region of wave number space, - n/a < kx < n/a, - n/a < ky< n/a, and - n/a < kz < %/a.This domain of k is called a Brillouin Zone. (The shape of the Brillouin Zone, here cubic. depends upon the crystal structure.) For a macroscopic crystal the Ni are very large, and the change in wave number for unit change in «j is very tiny. Eq. (2-4) is an exact solution of Eq. (2-2); however, we will

show it for only the simplest approximation, namely, for the assumption that the |sf) are sufficiently localized that we can neglect the matrix element Hji = |S() unless (1) two states in question are the same (/' = j) or (2) they are from nearest-neighbor chlorine ions. For these two cases, the magnitudes of the matrix elements are. in analogy with the molecular case,

In cesium chloride the main contribution to v2 comes from cesium ion states acting as intermediaries in a form that can be obtained from perturbation theory. We need not be further concerned here with the origin of v2. (We shall discuss the ionic crystal matrix elements in Chapter 14.) For a particular value of j in Eq. (2-2), there are only seven values of i that contribute to the sum: i=j numbered as 0, and the six nearest-neighbor chlorine s states. The solution (valid for any i) is

This energy varies with the wave number over the entire

Brillouin Zone of Fig. 2-1,b. The results are customarily displayed graphically along certain lines within that Brillouin Zone.

For example, Fig. 2-2,a shows a variation along the lines rx and TK of Fig. 2-1,b.

calculation of bands The based on p states proceeds in much the same way. In particular, if we make the possible simplest assumption—that each рх orbital is coupled by a matrix element V'2 only to the px orbitals on the nearest neighbors in the x-direction and to no other p orbitals, and similarly for the py and pz orbitals— then the calculation can be separated for the three types of states. (Otherwise it would be necessary to solve three simultaneous equations together.) For the states based upon the px orbitals,

For py orbitals and pz orbitals, the second term is 2V2 COS kya and 1V'2 COS kza, respectively. The three corresponding p bands are also shown in Fig. 2-2,a. In later discussions we shall see that by the addition of matrix elements between orbitals

that are more distant it is possible to obtain as accurate a description of the true bands as we like; for the present, crude approximations are sufficient to illustrate the method.

Can we construct other bands. for other orbitals, such as the cesium s orbital? It turns out that states that are not occupied in the ground state of the crystal are frequently not well described in the simplest LCÀO descriptions, but approximate an description can be made in the same way.

How would the simple bands change if we could somehow slowly eliminate the strong atomic potentials that give rise to the atomic states upon which the bands are based? The answer is given in Fig. 2-2,b. The gaps between bands decrease, including the gap between the cesium bands (not shown in Fig. 2-2,a) and the chlorine bands. The lowest bands have а recognizable similarity to each other in these two extreme limits. The limit shown in Fig. 2-2,b is in fact the limit as the electrons

become completely free; the lowest band there is given by the equation for free-electron kinetic energy, E — tĩ2k2/2m.

The other bands in Fig. 2-2,b are also free-electron bands but are centered at different wave numbers (e.g., as E =h2(k - q)2/2m), in keeping with the choice to represent all states by wave numbers in the Brillouin Zone. Such freeelectron descriptions will be appropriate later when we discuss metals: for cesium chloride, these descriptions are not so far from LCAO descriptions as one might have thought, and in fact the similarity will provide us, in Section 2-D. with approximate values for interatomic matrix elements such as v2 and V'l.

Since there are as many states in each band as there are chlorine ions in the crystal, the four bands of Fig. 2-2,a, allowing both spins in each spatial state, can accommodate the seven chlorine electrons and one cesium electron. All states

will be filled. This is the characteristic feature of an insulator; the state of the system cannot be changed without exciting an electron with several electron volts of energy, thus transferring it to one of the empty bands of greater energy. For that reason, light with frequency less than the difference between bands, divided by h, cannot be absorbed, and the crystal will be transparent. Similarly, currents cannot be induced by small applied voltages. This absence of electrical conductivity results from the full bands, not from anv localization of the electrons at atoms or in bonds. It is important to recognize that bands exist in crystals and that the electrons are in states of the crystal just as, in the molecule 02, electrons form bonding and antibonding molecular states, rather than atomic states at the individual atoms.

eight electrons of each chlorine-cesium atom pair would fill the states only to the energy Ep shown in the figure; this is called the Fermi energy. Each band would only be partly filled, a feature that, as we shall see, is characteristic of a metal.

2-**B** Electron Dynamics In circumstances where the electron energy bands are neither completely full nor completely empty, the behavior of individual electrons in the bands will be of interest. This is not the principal area of concern in this text, but it is important to understand electron dynamics because this provides the link between the band properties and electronic properties of solids.

Consider a Brillouin Zone, such as that defined for CsCl, and an energy band E(k), defined within that zone. Further, imagine a single electron within that band. If its wave function is an energy eigenstate, the timedependent Schroedinger equation, Eq. (1-17), tells us that

The magnitude of the wave function and therefore also the probability density at any point do not change with time. To discuss electron dynamics we must consider linear combinations of energy eigenstates of different energy. The convenient choice is a wave packet. In particular, we construct a packet, using states with wave numbers near k0 and parallel to it in the Brillouin Zone:

Taking the form of i)h from Eqs. (2-1) and (2-3), and treating k - k0 as small, a little algebra shows that at t = 0, Eq. (2-8) corresponds to the state iI/ko modulated by a gaussian peak centered at r = 0. Furthermore, writing £(k) = E(k0) + (dE/dk) \blacksquare (k - k0), we may see that the center of the gaussian moves with a velocity

Thus it is natural to associate this velocity with an electron in the state Ijjko. Indeed, the relation is consistent with the expectation value of the current operator obtained for that state.

We are also interested in the effects of small applied fields: imagine the electron wave packet described above, but now allow a weak, slowly varying potential F(r) to be present. The packet will work against this potential at the rate V \cdot dv/dr. This energy can only come from the band energy of the electron. through a change, with time, of the central wave number k0 of the packet:

This is consistent with the relation

This can, in fact, be generalized to magnetic forces by replacing -dv/dxby the Lorenz force, -e[--¥

(2-11)Eqs. (2-9)and completely describe the dynamics of electrons in bands wherever it is possible to think in terms of wave packets; that is, whenever the fields are slowly varying relative interatomic to spacings. Notice that if we think of fik as the canonical momentum, then the band energy, written in terms of p = hk, plus the potential energy, F(r), play precisely the role of the classical Hamiltonian, since with these

definitions, Eqs. (2-9) and (2-11), are precisely Hamilton's equations. Thus, in terms of the energy bands E(k), we may proceed directly by using kinetic theory to examine the transport properties of solids, without thinking again of the microscopic theory that led to those bands. We may go even further and use this classical Hamiltonian to discuss а wave function for the packet itself, just as we constructed wave functions for electrons in Chapter 1. This enables us to treat band electrons bound to impurities in the solid with methods similar to those used to treat electrons bound to free atoms; however,

it is imperative to keep in mind that the approximations are good only when the resulting wave functions vary slowly with position, and therefore their usefulness would be restricted to weakly bound impurity states.

Let us note some qualitative aspects of electron dynamics. If the bands are narrow in energy, electron velocities will be small and electrons

will behave like heavy particles. These qualities are observed in insulator valence bands and in transition-metal d bands.

In simple metals and semiconductors the bands tend to be broader and the electrons are more mobile; in metals the electrons typically behave as free particles with masses near the true electron mass.

One question that might be asked is: what happens when an electron is accelerated into the Brillouin Zone surface? The answer is that it jumps across the zone and appears on the opposite face. It is not difficult to see from Eq. (2-3) that if, for example, m; is changed by Ni (corresponding to going from a wave number on one zone face to a wave number on the opposite face) the phase factors change by e2"; the states are therefore identical. In general, equivalent states are found on opposite zone faces. and electron an accelerated into one face will appear at the opposite face and continue to change its

wave number according to Eq. (2-11).

2-C Characteristic Solid Types

Before discussing in detail the various categories of solids, it is helpful to survey them in general terms. This is conveniently done by conceptually constructing the semiconductor silicon from free atoms. In the course of this, it will become apparent how the metallicity of a semiconductor varies with row number in the periodic table. With the general model as a basis we can also compounds construct of increasing polarity, starting with silicon or germanium and moving outward in the same row of the periodic table. Metallicity and polarity are the two principal trends shown by compounds and suitable will provide a framework for the main body of our discussions.

Imagine silicon atoms arranged as in a diamond crystal structure but widely spaced. This structure will be discussed in the next chapter; a two-dimensional analogue

of it is shown in Fig. 2-3.

At large internuclear distance, two electrons are on each individual atom in s states and two are in p states. As the atoms are brought together, the atomic states broaden into bands, as we have indicated. (There are complications, unimportant here, if one goes beyond а one-electron picture.) The s bands are completely full, whereas the p bands can accommodate six electrons per atom and are only one third full. This partial filling of bands is characteristic of a metal. As the atoms are brought still closer together, the broadening bands finally reach each other, as shown in Fig. 2-3, and a new gap opens up with four bands below and four above. The bonding bands below (called valence bands) are completely full and the antibonding bands above (called con-duction bands) are completely empty; now the system is that of an insulator or, when the gap is small, of a semiconductor. In

Chapter 1, it was noted that a

crossing of bonding and antibonding states does not occur in the simple diatomic molecules, but that it can in larger molecules and in solids, as shown here.

The qualitative change in properties associated with such crossing is one of the most important concepts necessary for an understanding of chemical bonding, yet

FIGURE 2-3

The formation of bands in a homopolar tetrahedral semiconductor as the atoms are brought together. Internuclear distance decreases to the right.

it has not been widely examined until recently. Particular attention has been brought by Woodward and Hoffmann (1971) in their of reactions discussion between molecules. In that Woodward context. and Hoffmann found that when and antibonding bonding states are equally occupied, as in Be2, discussed earlier, no bonding energy is gained and

the atoms repel each other.

Only when the atoms are close enough that upper bonding levels can surpass or cross the energy of the lower antibonding levels above can bonding result. In some such cases (not Be2) a stably bonded system can be formed, but an energy barrier must be overcome in order to cause the atoms to bond. Reactions in which energy barriers must be overcome called "symmetry are forbidden reactions." (See Woodward and Hoffmann. 1971, p. lOff, for a discussion of 2C2H4 -> C4H8.) The barrier remains, in fact, when there is no symmetry.

In silicon, illustrated in Fig. 2-3, the crossing occurs because high symmetry is assumed to exist in the atomic arrangement. Because of this symmetry, the matrix elements of the Hamiltonian zero between are wave functions of states that are dropping in energy and those that are rising (ultimately to cross each other). If, instead, the silicon atoms were to

■4 Increasing interatomic distance (d)

FIGURE 2-4

The variation of energy of two levels which cross, as a function of atomic spacing d, in a symmetric situation, but do not cross when there is not sufficient symmetry.

together as a distorted lattice with no symmetry, the corresponding matrix elements of the Hamiltonian would not be zero, and decreasing and increasing energy levels would not cross (see Fig. 2-4).

In an arrangement of high symmetry, a plotting of total energy as a function of d may show a cusp in the region where electrons switch from bonding to antibonding states; a clear and abrupt qualitative change in behavior coincides with this cusp region.

In an unsymmetric arrangement, change in total energy as a function of d is gradual but at small or at

large internuclear distances, energies are indistinguishable from those observed in symmetric arrangements.

Thus, though the crossing is artificial (and dependent on qualitative path), the difference. which we associate with covalent bottcling, is not. For this reason. it is absolutely essential to know on which side of a diagram such as Fig. 2-3 or Fig. 2-4 a particular system lies. For example, in covalent silicon, bondingantibonding splitting is the large term and the sp splitting is the small one. That statement explains why there is a gap between occupied states and unoccupied states, which makes covalent silicon a semiconductor. and knowing this guides us in numerical approximations. Similarly, in metals, bondingantibonding splitting is the small term and the sp splitting the large term; this explains why it is a metal and guides our numerical approximations in metals.

If we wished to make full, accurate machine calculations we would never need to make this distinction; we could simply look at the results of the full calculation to check

for the presence of an energy gap.

Instead, our methods are designed to result in intuitive understanding and approximate calculations of properties, which will allow us to guess trends without calculations in some cases, and which will allow us to treat complicated compounds that would otherwise be intractable by full, accurate calculation in other cases.

The diagram at the bottom of Fig. 2-3 was drawn to represent silicon but also, surprisingly, illustrates the homopolar series of semiconductors c, Si, Ge, and Sn. The internuclear distance is smallest in diamond, corresponding to the largest gap, far to the right in the figure. The internuclear distance becomes larger element by element down the corresponding series, to progression leftward in the figure to tin, for which the gap is zero.

(Notice that in a plot of the bands, as in Fig. 2-2, the gap

can vary with wave number. In tin it vanishes at only one wave number, as will be seen in Chapter 6, in Fig. 6-10.)

Nonetheless we must regard each of these semiconductors-even tinas a covalent solid in which the dominant energy is the bonding-antibonding splitting. We can define a "metallicity" that increases from c to Sn, reflecting a decreasing ratio of bondingantibonding splitting to sp splitting; nevertheless, if the structure is tetrahedral, the bonding-antibonding splitting has won the contest and the system is covalent.

The discussion of Fig. 2-3 fits well with the LCAO description but the degree to which a solid is covalent or metallic is independent of which basis states are used in the calculation. Most of the analysis of covalent solids that will be made here will be based upon linear combinations of atomic orbitals, but we also wish to understand them in terms of free-electron-like behavior. (These two extreme

approaches are illustrated for cesium chloride in Fig. 2-2.)

Free-electron-like behavior is treated in Chapter 18, where two physical parameters will be designated, one of which dominates in the covalent solid and one of which dominates in the metallic solid. It can be useful here to see how these parameters correspond to the concepts discussed so far.

In Fig. 2-2, the width of the bands, approximately Ep — Es, corresponds to the kinetic energy, £F, of the highest filled states. The bondingantibonding splitting similarly corresponds to the residual splitting between bands which was suppressed completely in Fig. 2-2,b. For metals, this residual splitting is described by a pseudopotential. In metals, the small parameter is the pseudopotential divided by the Fermi energy (corresponding to the ratio of bonding-antibonding splitting to sp splitting, or the reciprocal of the metallicity). In the covalent solids, on the other hand, we would say that

the pseudopotential is the dominant aspect of the and the kinetic problem energy can be treated as the small correction. In fact, in Chapter 18 the pseudopotential approach will applied be to simple tetrahedral solids; there. treating kinetic energies as small compared to the pseudopotential leads to a simple description of the covalent bond in which a oneto-one correspondence can be obtained between matrix elements of the pseudopotential (that is. between plane waves) and matrix elements of the Hamiltonian between atomic states. The correspondence between these two opposite approaches is even more remarkable than the similarity between the LCAO and freeelectron bands in Fig. 2-2, though the latter it is similarity which will provide with LCAO us matrix elements.

Now, as an introduction to polar semiconductors, let us follow the variation of electronic structure, beginning with an elemental semiconductor and moving to more polar solids. For this, germanium is a better starting

point than silicon, and in order of increasing polarity the series is Ge, GaAs, ZnSe, and CuBr.

The total number of electrons in each of these solids is the same (they are isoelectronic) and the structure is the same for all; they differ in that the nuclear charge increases on one of the atoms (the anion) and decreases on the other (the cation). The qualita-

FIGURE 2-5

Change in the bands as a homopolar semiconductor is made increasingly polar, and then as the two atom types are made more alike without broadening the levels.

tive variation in electronic structure in this series is illustrated in Fig. 2-5,a. Bear in mind that even in nonpolar solids there are two types of atomic sites, one to the right and one to the left of the horizontal bonds in the figure. In polar solids the nuclear charge on the atom to the right is increased, compound by compound. This will tend to displace the bond charges (electron density) toward the atom with higher nuclear

charge (center diagram in Fig. 2-5,a) and, in fact, the corresponding transfer of charge in most cases is even larger than the change in nuclear charge, so the atom with greater nuclear charge should be thought of as negative; hence, the term anion is used to denote the nonmetallic atom. At high polarities most of the electronic charge may be thought of as residing on the nonmetallic atom, as shown.

The most noticeable change in the energy bands of Fig. 2-5,b, as polarity increases, is the opening up of a gap between the valence bands as shown. There is also а widening of the gap between valence and conduction bands and some broadening of the valence band. In extremely polar solids, at the center of the figure, the valence band, to a first approximation, has split into an anion s band and three narrow anion p bands. The conduction bands in this model—the unoccupied bands—also split into s bands and p bands, but in a real crystal of high polarity, the bands for unoccupied orbitals remain very broad and even

free-electron-like.

We complete can the sequence of changes in the model shown in Fig. 2-5 by pulling the atoms apart to obtain isolated free atom energies. Perhaps the simplest path is that shown on the right side of Fig. 2-5, where the metallic and nonmetallic atoms become more alike and where the individual energy bands remain narrow. Where the levels cross, electrons of the anion fill available orbitals of the cation: the crossing results in a reduction of the atomic charges to zero.

By comparing Fig. 2-5 with Fig. 2-3, we can see that there is no discontinuous change in the qualitative nature of the electronic structure in going from homopo- lar to highly polar solids of the same crystal structure (Fig. 2-5), discontinuity is but that encountered in going from electronic the atomic structure to the covalent one (Fig. 2-3). Properties vary smoothly with polarity over the entire range. This feature

has been apparent for a long time and led Pauling to define ionicity in terms of energies of formation in order to provide a scale for the trend (Pauling, 1960). Coulson et al. (1962) redefined ionicity in terms of an LCAO description much like the one we shall use in Chapter 3.

Phillips (1970) gave still a third definition in terms of the dielectric constant. The formula for polarity of a simple bond, introduced in Eq. (1-37), is essentially equivalent to the ionicity defined by Coulson, but the ionicities defined by Pauling and by Phillips are to a first approximation proportional to the square of that polarity. We will use the term polarity to describe a variation in electronic structure in covalent solids. and the particular values defined by Eq. (1-37) will directly enter the calculation of some properties. We do not use polarity to interpolate properties from one material to another. However, such interpolative approaches are commonly used, and degree of ionicity or polarity is frequently used to rationalize

trends in properties.

Therefore is it best to examine that approach briefly. The distinction between these two approaches is subtle but of fundamental importance.

We have seen that there are trends with polarity and with metallicity among the tetrahedral solids. One of the trends is the decrease, with increasing metallicity and increasing polarity, of the angular rigidity that stabilizes the open tetrahedral structure. Thus, if either increases too far, the structure collapses to form closea packed structure. When this happens, system has the new а qualitatively different electronic structure, and different concepts and approximations become appropriate.

We may think of this as analogous to a phase diagram, as illustrated in Fig. 2-6. If a combination of atoms (e.g.,

Litium and flourine) is too polar, a close-packed rocksalt structure is formed. LiF is an ionic crystal and most frequently the best initial approximation to the electronic structure is based on independent ions, which we used in the discussion of the cesium chloride energy bands. Ionic solids can be distinguished from covalent solids by their characteristic crystalline structures, a topic that will be taken up later.

When the metallicity is too great, a close-packed structure again becomes more Polarity FIGURE 2-6

A schematic phase diagram indicating the three qualitatively different types of solids discussed in the book. The phase boundaries are topologically correct but details of shape are only schematic.

Stable. In this case the electronic structure ordinarily approximates that of a free-electron gas and may be analyzed with methods appropriate to free-electron

gases.

Again, the crystal structure is the determining feature for the classification. When tin has a tetrahedral structure it is a covalent solid; when it has a close- packed white-tin structure, it is a metal. Even silicon and germanium, when melted, become close-packed and liquid metals.

To complete the " phase diagram," there must also be a line separating metallic and ionic systems. Materials near this line are called intermetallic compounds; they can lie on the metallic side (an example is Mg2Pb) or on the ionic side (for example, CsAu). Consideration of intermetallic compounds takes the trends far beyond the isoelectronic series that we have been discussing. The sharp distinction between

ionic and covalent solids is maintained in a rearrangement of the periodic table of elements made by Pantelides and Harrison (1975). In this table, the alkali metals and some of their neighbors are transferred to the right (see Fig. 2-7). The

of the elements carbon (column 4) column and compounds made from elements to either side of that column (such as GaAs or CdS) are covalent solids with tetrahedral structures. Compounds made from elements to either side of the helium column of rare gases (such as KC1 or CaO) are ionic compounds with characteristic ionic structures. A few ionic and covalent compounds do not fit this correlation; notably, MgO, AgF, AgCl, and AgBr are ionic compounds, and MgS and MgSe can occur in either ionic or covalent structures. (Notice that Mg is found both in column 2 and column 10). The interesting isoelectronic series for ionic compounds will be those such as Ar, KC1, CaS, and ScP, obtained from argon by transferring protons between argon nuclei. In this case the ion receiving the proton is the metallic ion and the electronic structure is thought of as a slightly distorted rare gas structure. This model leads to a theory of ionic-compound bonding that is even simpler than the bonding theory for covalent solids. The Pantiledes-Harrison rearrangement of the periodic table is used as the

format for the Solid State Table, where the parameters needed for the calculation of properties have been gathered.

2- D Solid State Matrix Elements

Almost all of the discussion of covalent and ionic solids in this book is based upon descriptions of electron states as linear combinations of atomic orbitals. In order to obtain numerical estimates of properties we need numerical values for the matrix elements giving rise to the covalent and polar energies for the properties being considered. There is no best choice for these parameters since a trade-off must be made between simplicity (or universality) of the choice and accuracy of the predictions that result when they are used.

Clearly if different values are used for each property of each material, exact values of the properties can be accommodated. We shall follow a procedure near the opposite extreme, by

introducing four universal parameters in terms of which all interatomic matrix elements between s and p states for all systems can be estimated.

We shall also use a single set of atomic s and p orbital energies throughout. These are the principal parameters needed for the entire range of properties, though the accuracy of the corresponding predictions is limited.

One might at first think that interatomic matrix elements could be calculated by using tabulated atomic wave functions and potentials estimated for the various solids. Such approaches have a long history of giving poor numerical results and have tended to discredit the LCAO method itself.

However, the difficulty seems to be that though true atomic orbitals do not provide a good basis for describing electronic structure, there are atomiclike orbitals that can provide a very good description. One

can therefore obtain a useful theory by using LCAO formalism but obtaining the necessary matrix elements by empirical or semiempirical methods.

One of the oldest and most familiar such approaches is the "Extended Hueckel Approximation" (Hoffman, 1963.) Let us take a moment to examine this approach, though later we shall choose alternative scheme. an Detailed rationalizations of the approach are given in Blyholder and Coulson (1968), and in Gilbert (1970, p. 244);

a crude intuitive derivation will suffice for our purposes, as follows. We seek matrix elements of the Hamiltonian between atomic orbitals on adjacent atoms, $(p \mid H \mid cc)$. If I a) were an eigenstate of the Hamiltonian. we could replace HI a) by Ea|a), where £a is the eigenvalue. Then if the overlap $(,P \setminus oc)$ is written Spa, the matrix element becomes EaSpa.

This, however, treats the two orbitals differently, so we might use the average instead of Ea.

Finding that this does not good give values. we introduce a scale factor G, to be adjusted to fit the of properties heavy molecules; this leads to the extended Hueckel formula: $(.PiHi\dot{u}) = GSpa(ep + ea)/2.$ (2-12)

These matrix elements are substituted into the Hamiltonian matrix of Eq. (2-2) for a molecule, or a cluster of atoms, and the matrix is diagonalized. A value of G =1.75 is usually taken; the difference from unity presumably, arises from the peculiar manner in which nonorthogonality is incorporated.

The Extended Hueckel Approximation and a wide range of methods that may be considered as descendents of it (e.g., the CNDO method— Complete Neglect of Differential Overlap) have enjoyed considerable success

theoretical in chemistry. Some machine calculation is required, first in determining the parameters from S tabulated wave functions or numerical approximations to them, and second in solving the resulting simultaneous equations, as at Eq. (2-2). This difficulty is exacerbated by the fact that s drops rather slowly with increasing distance between atoms, so a very large number of matrix elements are required. The computation required for any given system is very small, however, in comparison with what is required to obtain more accurate solutions. Once an Extended Hueckel Approximation has been made. direct machine computations of any property can be made and alternatives the to simplest approximations-e.g., Eq. (2-12)— can be made which improve agreement with the experimental values. Such improvements are described in detail by Pople and Beveridge (1970). Combining descriptions of electronic structure that are essentially correct, with the use of highspeed computers, and the results of a number of years of trial and error in correcting the simplest approximations,

probably provide the most accurate predictions of the diverse properties of complex systems that are presently available. For isolated properties, such as the energy bands of solids, other computer methods are much more reliable and accurate.

The approach that will be used in this text is different, in that the description of electronic structures is greatly simplified to provide a more vivid understanding of the properties; numerical estimates of properties will be obtained with calculations that can be carried through by hand rather than machine. We shall concentrate on the "physics" of the problem.

In this context a semiempirical determination of matrix elements is appropriate. The first attempt at this (Harrison, 1973c) followed Phillips (1970) in obtaining the principal matrix from element v2the measured dielectric constant. A second attempt (Harrison and Ciraci, 1974) used the

principal peak in the optical reflectivity of the covalent solids, which we shall come to later, as the basis for the principal matrix element;

this led to the remarkable finding that v2 scaled from material to material quite accurately as the inverse square of the interatomic distance, the bond length d, between atoms. A subsequent study of the detailed form of valence bands (Pantelides and Harrison, 1975), combined with v2 determined from the peak in optical reflectivity, gave a complete set of interatomic matrix elements for covalent solids with the finding that all of them varied approximately as $d\sim 2$ from material to material.

The reason for this dependence recently became very clear in a study of the bands of covalent solids by Froyen and Harrison (1979). They took advantage of the similarity of the LCAO bands and free-electron bands, noted in Fig. 2-2. By equating

selected energy differences obtained in the two limits, they derived formulae that had this dependence for all of the interatomic matrix elements. We may in fact see in detail how this occurs by considering Fig. 2-2. The lowest band, labelled s in Fig. 2-2,a, was given by Eq. (2-5).

For k in an x-direction, it becomes $E(k) = es - 4V2 - 2V2 \cos ka$, varying by 4VZ from r (where k = 0) to X (where k = %/a). The freeelectron energy in Fig. 2-2,b varies by (h2/2m)(n/a)2 over the same region of wave number space for the lowest band. Thus, if both limiting models are to be appropriate, and therefore consistent with each other, it must follow that v2 = t]h2/{ma2} with rj = 7t2/8 = 1.23.

This predicts the dependence upon the inverse square of interatomic distance and a coefficient that depends only upon crystal structure. A similar comparison of the second band gives the same form with a different coefficient for the matrix element v'2 between p states.

This simplest model is not so relevant, but it illustrates the point nicely.

Before going to more relevant systems we must define more precisely the notation to be used for general interatomic matrix elements.

These matrix elements will be important throughout the text; they are specified here following the conventions used by Slater and Koster (1954) and used earlier while discussing the diatomic molecule. In general, for a matrix element < a |//|/j >between orbitals on different atoms we construct the vector d, from the nucleus of the atom of which I a) is an orbital (the "left" atom) to that of the atom of which I/?) is an orbital (the "right" atom). Then spherical systems coordinate are constructed with the z-axes parallel to d, and with origins at each atom; the angular form of the orbitals can be taken as Y?(9, ê) for the left orbital and VI! (O', Ô) for the right orbital. The angular factors depending upon ê

combine to (Notice that the wave function (a I is the complex conjugate of I a).) The integration over â gives zero unless m' = m. Then all elements matrix (a|H||S)vanish unless rri = m, and these are labelled by O, n, or O (in analogy with s, p, d) for m - I). 1, and 2 respectively. Thus, for example, the matrix element Vspa corresponds to 1 = 0, I = 1, m = 0. Slater and Koster (1954) designated matrix elements by enclosing the indices within parentheses; thus, the element VWm used in this book and their (Wm) are the same.

We saw how formulae for the matrix elements can be obtained by equating band energies from LCAO theory and from free-electron theory in Fig. 2-2. Froye.1 and Harrison (1979) made the corresponding treatment of the tetrahedral solids, again including only matrix elements between nearestneighbor atoms. The form of their results is just as found for the simple cubic case

Notice that the subscript m is a quantum number but the m in the denominator Dimensionless coefficients in Eq. (2-13) determining approximate interatomic matrix elements.

Theoretical values

CoefficientSimplecubicstructureTetrahedralstructureAdjusted value*

NOTE: Theoretical values (Froyen and Harrison, 1979) were obtained by equating band energies from I ($\0$ and free-eiectron theory, as described in the text. Adjusted values (Harrison, 1976b, 1977a) were obtained by fitting the energy bands of silicon and germanium; the adjusted values appear in the Solid State Table.

is the electron mass. The length d is the internuclear distance, equal to a in the simple cubic structure. If d is given in angstroms, this form is easily evaluated, using h2/m = 7.62 eV-Å2. In Table 2-1 we give the values of the dimensionless cnefficients obtained by Froyen and

Harrison for both the simple cubic and Id rahedral structures.

The calculation is closely related to that just carried through for the bands of Fig. 2-2, and in fact, the VSS<J matrix element for the simple cubic case is just the negative of the v2 value evaluated there, leading to the t]ssa = -7t2/8. wv shall see in Section 18-A exactly how the other theoretical coefficients listed were obtained.

Motice that the coefficients obtained for the tetrahedral structure differ from those obtained for the simple cubic and indeed structure the coefficients for any one structure depend somewhat upon which band energies are used. However. the differences are not great and we shall neglect them. The coefficients we shall use are close to those given by Froyen and Harrison (1979) for the tetrahedral structure. but were obtained somewhat earlier by Harrison (1976b), who adjusted tliL'm to give the interatomic matrix

elements found by Chadi and Cohen (1975) in fitting the known energy bands of silicon and germanium. The average of the coefficients so obtained for silicon and germanium is listed in Table 2-1 in the column headed "Adjusted," and these are the values listed in the Solid State Table and used throughout this text. Also listed in the Solid State Table are forms lor predicting matrix elements involving atomic d states, formulae which will be developed in Chapter 20.

The coefficients in Table 2-1 have been obtained entirely in the context of nearestneighbor coupling between states. They would have been different if a

*For recent developments, see the Preface to the Dover Edition.

TABLE 2-2

Atomic term values from Herman and Skillman (196.Í). or extrapolated from their values.

Atomic term value (eV) second-neighbor LCAO fit had been used, for example, and it would not therefore be appropriate to use them if the description of the bands were to be extended to secondneighbor interactions.

It will ordinarily be more convenient in solids to use the forms for angular dependence, x/r, y/r, and z/r, as in Eq. (1-20), rather than the forms Y''i(0, <p). Then in matrix order to obtain elements involving these orbitals, we need to expand the

NOTE: These values appear also in the Solid State Table.

p orbital in question in terms of 17, which are defined with respect to the coordinate system discussed above. For p orbitals this is quite simple. For the simplest geometries it leads to the identification of matrix elements shown in the upper four diagrams of Fig. 2-8. For arbitrary geometries the result depends upon the direction cosines giving the vector d in the coordinate system of X, y, and z; this is illustrated at the bottom in

Fig. 2-8. The corresponding transformations for d

FIGURE 2-8

The four types of interatomic matrix elements entering the study of s- and p-bonded systems are chosen as for diatomic molecules as shown in Fig. 1-11. Approximate values for each are obtained from the bond length, or internuclear distance, í/, by Vfj — riijtS/md2, with tiij taking values given in Table 2-1 and in the Solid State Table at the back of the book. When p orbitals are not oriented simply as shown ill the upper diagrams, they may be decomposed geometrically as vectors in order to evaluate matrix elements as illustrated in the bottom diagrams.

It can be seen that the interatomic matrix element at the bottom right consists of cancelling the contributions that lead to a vanishing matrix element.

orbitals as well as p orbitals will be given in detail in Table 20-1, but for s and p

This particular set of calculated values (by Herman and Skillman, 1963) was chosen since the approximations used in the calculation were very similar to those used in determining the energy bands that led to the parameters in Table 2-1. The values would not have differed greatly if they were from Hartree-Fock taken calculations (such values are tabulated in Appendix A).

Values based on Hartree-Fock calculations have the advantage of giving good values for d states. Therefore, though the calculations in this book are based upon the Herman-Skillman values, for some applications the Hartree-Fock values may be better suited.

Notice that as absolute numbers the atomic energy values have only limited meaning in any case. Imagine, for example, that the value Ep for oxygen correctly gives the energy required to remove an electron from an isolated atom in oxygen space. If this atom is brought close to the surface of a metal

(or, almost equivalently, to the surface of a covalent solid with a large dielectric constant) but not close enough for any chemical bonding to take place, how much energy is now required to remove the electron from the oxygen? One way to calculate this is to move the neutral atom to infinity, with no work required, remove the electron requiring £p, and then return the oxygen ion to its initial position; as it returns it gains an energy e2/4d from the image field, where d is the final distance from surface. the The resultant correction of fip. with d equal to 2 Å, is 1.8 eV, from negligible. far The precise value is uncertain because of the dielectric approximation, the uncertainty in the d used, and other effects, but we may expect that significant corrections of the absolute energies are needed relative to the values in vacuum.

The reason that the values are nevertheless useful as parameters is that in solids such corrections are similar for all atoms involved and the

relative values meaningful.

from Tables 2-1 and 2-2 compare with the values obtained directly by fitting bands? This energy comparison is made in Table 2-3 for the covalent systems studied by Chadi and Cohen. Agreement is semiquantitative throughout and all trends are reproduced except the splitting of values for VsptT in the compounds. The discrepancies are comparable to the differences between different fits (the most recent fits are used here). thus justifying the use of the simple forms in our studies. Significantly different values are obtained if one includes a greater number of matrix elements in the fit (Pandey, 1976)

and would be appropriate if we were to include these matrix elements in the calculation of properties other than the bands themselves.

Significantly different values have also been given by Levin (1974).

The coefficients from Table 2-1 and atomic term values from Table 2-2 will suffice for calculation of an extraordinarily wide range of properties of covalent and ionic solids using only a standard hand-held calculator. This is impressive testimony to the simplicity of the electronic structure and bonding in these systems. Indeed the same parameters semiquantitative gave a prediction of the one-electron energy levels of diatomic molecules Table in 1-1. that theory However. is intrinsically approximate and not always subject to successive correc-

TABLE 2-3

Matrix elements from the Solid State Table, compared with values (in parentheses) from fits to individual bands. All values are in eV.

SOURCES of data in parentheses: c from Chadi and Martin (1976); Si and Ge from Chadi and Cohen (1975); GaAs and ZnSe from

Chadi and Martin (1976).

NOTE: Where two values of Vspr are given for compounds, the first value is for an s state in the nonmetallic atom and p state in the metallic atom.

States are reversed for the second value. Where two values of ((p - cs)/4) are listed, the first value is for the metallic atom, the second for the nonmetallic atom.

tions and improvements. In most cases our predictions of properties will be accurate on a scale reflected in Table 2-3, and though the introduction of further parameters allows a more accurate fit to the data, it may be that improvements at a more fundamental level are required for a more realistic treatment and that these improvements cannot be made without sacrificing the conceptual and computational simplicity of the picture that will be constructed in the course of this book.

Before proceeding to quantitative studies of the

covalent solids it is appropriate to comment on the concept of "electronegativity," introduced by Pauling to denote the tendency of atoms to attract electrons to themselves (discussed recently, for example, by Phillips, 1973b, p. 32). It may be an unfortunate term since the positive terminal of a battery has greater electronegativity than the terminal. negative Furthermore, it was defined to be dimensionless rather than to have more natural values in electron volts. It would be tempting to take the hybrid energy values of Table 2-2 as the definition of electronegativity, but it will be seen that in some properties the energy Ep is a more appropriate measure. Therefore it will be a wiser choice to use the term only qualitatively. Then from Table 2-2 (or from Fig. 1-8) we see that the principal trend is increase an in electronegativity with increasing atomic number proceeding horizontally from one inert gas to the next (e.g., from neon, Na, Mg, Al, Si, p, s, and Cl to argon). In addition, the elements between helium and neon

have greater electronegativity than the heavier elements. It is useful to retain " electronegativity" to describe these two qualitative trends.

2-E Calculation of Spectra

We have seen that in solids, bands of electron energies exist rather than the discrete levels of atoms or molecules. Similarly there are bands of vibration frequencies rather than discrete modes. Thus, to show electron eigenvalues, a curve was given in Fig. 2-2 rather than a table of values.

However, complete a specification of the energies within the bands for a threedimensional solid requires a three-dimensional plot and that cannot be made; even in two dimensions an attempt is of limited use. Instead, a convenient representation of electronic structure can be made by plotting the number of states, per unit energy, as a function of energy. This loses the information about, for example, electron velocity, since that requires a knowledge of energy as a function of wave number.

However, it is all that is needed to sum the energies of the electrons for given atomic arrangements.

Calculation of such а spectrum might seem straightforward, but if done by sampling, it requires an inordinate amount of calculation. For example, to produce a plot we might divide the energy region of interest into one thousand intervals and then evaluate the energies (as we did in Section 2-A) over a closely spaced grid in the Brillouin Zone, keeping track of the eigenvalues number of obtained in each interval. A great increase in efficiency can be obtained by noting that the energy bands have the full symmetry of the Brillouin Zone—in the case of CsCl. a cube—so that the entire Brillouin Zone need not be sampled. One could sample one half the zone and multiply the results by two, one eighth and multiply by eight, or in fact, for a cube, one forty-eighth suffices. However, even in a sample of thousands of values, the

resulting histogram shows large statistical fluctuations. Therefore an alternative approach is required.

The approach most commonly used, and used extensively in the curves in this book. is the Gilat-Raubenheimer scheme (Raubenheimer and Gilat. 1966). In this scheme, the idea is to replace the true bands by approximate bands, but then to calculate the density of levels for that spectrum accurately. This is done by dividing up the Brillouin Zone, or a fortyeighth of the zone for cubic symmetry, into cells; of the may of order fifty be Raubenheimer appropriate; and Gilat used cells in the shape of cubes. They then fit each band in each cell by a linear expression, Ek = E0 +A1 kx + A2ky + A3kz, with k measured from the center of the cell.

Then the energy region of interest for the system is divided into some 1000 energy intervals and the contribution to each of these intervals is accurately and

analytically obtained from the linear values of the bands in each cell. This is illustrated for one dimension in Fig. 2-9. We see that the distribution of the approximate bands is obtained exactly. This turns out to eliminate most of the statistical error and to give very good results.

In the Gilat-Raubenheimer scheme it is inconvenient to obtain the necessary values of the gradient of the energy with respect to wave number in each cell, and the cubes do not fit the Brillouin Zone section exactly, so there are problems in calculating the energy at the surface of the section. For this reason Jepsen and Andersen (1971) independently, and later, Lehman and Taut (1972) replaced

(c) Number of states contributed in each interval

FIGURE 2-9 A schematic representation of the Gilat-Raubenheimer scheme for calculating densities of states. The energy

bands (a) are replaced by linear bands (b) in each cell. The contribution by each cell to each of a set of small energy intervals (c) is then obtained analytically.

cubes by tetrahedra and wrote the distribution of energies in terms of the values at the four comers. A clear description of this much simpler approach is given by Rath and Freeman (1975), who include the necessary formulae. It is also helpful to see one manner in which the Brillouin Zone can be divided into cells. This is shown in Fig. 2-10, This procedure has been discussed also by Gilat and Bharatiya (1975). Another scheme. utilizing a more accurate approximation to the bands, has been considered recently by Chen (1976).

In some sense this is a computational detail, but the resulting curves are SO essential solid to state properties that the detail is important. Once a program has been written for a given Brillouin Zone, any of the spectra for the corresponding structure can be efficiently and accurately obtained from the bands themselves.

PROBLEM 2-1 Calculating one-dimensional energy bands Let us make an elementary calculation of energy bands, using the notation of LCAO theory. For many readers the

procedure will be familiar. Consider a ring of N atoms, each with an s orbital. We seek an electronic state in the form of an LCAO,

where the integers a number the atoms. We can evaluate the expectation value of the energy, considering all atoms to be identical, so (a I HI a) = R is the same for all a. We can also neglect all matrix elements (a\H\p'), except if a and /? differ by one; we write that

FIGURE 2-10

(a) The body-centeredcubic Brillouin Zone is divided into 48 equivalent pyramidal segments. (Two such pyramids are required for face-centered cubic zones.) (b) The pyramid is cut

by equally spaced planes parallel to the base, (c) Most of the slab may be subdivided into triangular prisms. An edge is left over on the right which can be divided into triangular prisms with one tetrahedron left over. Each triangular prism (d) may finally be divided into three tetrahedra, (e). This divides the Brillouin Zone entirely into tetrahedra of equal volume. The bands are taken to be linear in wave number within each tetrahedron.

We shall treat the uj as independent of ua and minimize the expression with respect to UĨ, giving a linear algebraic equation for each a.

(a) Show that for any integer it there is a solution for all of these equations of the form

(b) Give the energy as a function of n, and sketch it as a function of n/N for large N. Include positive and negative n.

(c) Obtain the value of A that normalizes the electron state.

(d) Show that for an n outside the range — N/2 < n < N/2, the electron state obtained is identical to that for some n within this range (within the Brillouin Zone). It suffices to prove that for given n the ua are unchanged by the addition of N to n.

PROBLEM 2-2 Electron dynamics

Consider an electron in a onedimensional energy band given by E(k) = -y2 COS ka in a Brillouin Zone, -n/a< k < n/a. At time t = 0, with the electron having wave number k = 0, apply an electric field \hat{e} .

Obtain the energy, the speed, and the position of the electron as a function of time. The behavior will be oscillatory. It can be thought of as acceleration of the electron followed by gradual diffraction caused by the lattice. How many lattice distances

(each distance a = 2 Å) does the electron go if v2 = 2 eVand the field is 100 volts per centimeter?

