Theo yéu cu ciia khich hing, trong mt nim
qua, ching t61i 48 dijch qua 16 mén hoc, 34
cudn séch, 43 bai béo, 5 sb tay (chua tinh cic
tai liéu tir nim 2010 tr& vé& truéc) Xem & ddy

DICH VU "Cpisau mot lan lién lac, viée

DICH S it
TIENG

ANH |
CHUYRN Gia ca: co thé giam dén 10

NGANH nhin/l tran
NHANH

NHAT VA Chat luc_mg:Tgo dung niém tin cho
khach hang bang céng nghé 1.Ban

XAC théy duoc to.:ém b6 ban dich; 2.Ba,n

NHAT danh gia chat lwong. 3.Ban quyét
dinh thanh toan.

Tai liéu nay dwoc dich sang tiéng viét béi:

VA A2 L E T A (W 11|

Tim ban géc tai thw muc nay (copy link va dan hodc nhan Ctrl+Click):

https://drive.google.com/folderview?id=0B4rAPqlxlMRDSFE2RX0Q2N3FtdDA&usp=sharing

Lién hé dé mua:

thanhlam1910 2006@yahoo.com hoic frbwrthes@gmail.com hoic s6 0168 8557 403 (gap Lam)

Gi4 tién: 1 nghin /trang don (trang khéng chia cdt); 500 VND/trang song ngir

Dich tai li¢u ciaa ban: http://www.mientayvn.com/dich_tieng_anh_chuyen_nghanh.html



https://drive.google.com/folderview?id=0B4rAPqlxIMRDSFE2RXQ2N3FtdDA&usp=sharing
mailto:thanhlam1910_2006@yahoo.com
mailto:frbwrthes@gmail.com
http://www.mientayvn.com/dich_tieng_anh_chuyen_nghanh.html

Introduction to Advanced Computer
Architecture and Parallel Processing
Computer architects have always
strived to increase the performance of
their computer architectures. High
performance may come from fast dense
circuitry, packaging technology, and
parallelism. Single-processor
supercomputers have achieved unheard
of speeds and have been pushing
hardware technology to the physical
limit of chip manufacturing. However,
this trend will soon come to an end,
because there are physical and
architectural bounds that limit the
computational power that can be
achieved with a single-processor
system. In this book we will study
advanced computer architectures that
utilize  parallelism via  multiple
processing units.

Parallel processors are computer
systems  consisting of  multiple
processing units connected via some
interconnection network plus the
software needed to make the
processing units work together. There
are two major factors used to
categorize such systems: the processing
units themselves, and the
interconnection network that ties them
together. The processing units can
communicate and interact with each
other using either shared memory or
message  passing  methods. The
interconnection network for shared
memory systems can be classified as
bus-based versus switch-based. In

Gidi thiéu kién tric may tinh tién tién va
xir 1y song song [N

Cé4c ky su may tinh ludn cd ging ting
hiéu sudt kién tric may tinh cta ho
(Nhitng nha thiét ké may tinh luén cd
gang tang hiéu niang kién tric may tinh
ctia ho). Hiéu suit cao c6 thé nhd vao
murc dg tich hgp mach nhanh, cong nghé
dong goi, va cong nghé xur ly song song.
Siéu may tinh don xtr Iy (mot bd vi xur
ly) da dat duogc toc do chua timg c6 va da
day cong nghé phan ctng téi gidi han vt
1y cta n6 & phuong dién san xuét chip
(da day cong nghé san xuat chip dén gidi
han cuia no). Tuy nhién, xu hudng nay sé
sém két thuc, boi vi cac gi61 han vat 1y
va kién trGc 1am han ché cong suét tinh
toan dat dugc vdi hé don xur 1y. Trong
sach nay, ching ta sé nghién ctru Cac
kién tric may tinh tién tién st dung co
ché song song théng qua cac bo da xir 1y.

Cac bo xur 1y song song 1a c4c hé thong
may tinh bao gém nhiéu don vi xir Iy
dugc két ndi thong qua mang lién thong
va cac phin mém can thiét dé cac don vi
xtr 1y lam viéc cting nhau” C6 hai yéu t6
chinh duoc st dung dé phan loai cac hé
thong 1a: chinh cac don vi xt 1y nay, va
mang lién thong gan két ching v6i nhau.
Cac don vi xir Iy c6 thé giao tiép va
tuong tac voi nhau bang cach st dung bo
nhd chung hoic cac phuong phép truyén




message  passing  systems,  the
interconnection network is divided into
static and dynamic. Static connections
have a fixed topology that does not
change while programs are running.
Dynamic connections create links on
the fly as the program executes.

The main argument for using
multiprocessors is to create powerful
computers by simply connecting
multiple processors. A multiprocessor
is expected to reach faster speed than
the fastest single-processor system. In
addition, a multiprocessor consisting of
a number of single processors is
expected to be more cost-effective than
building a high-performance single
processor. Another advantage of a
multiprocessor is fault tolerance. If a
processor  fails, the  remaining
processors should be able to provide
continued service, albeit with degraded
performance.

1.1 FOUR DECADES OF
COMPUTING

Most computer scientists agree that
there have been four distinct paradigms
or eras of computing. These are: batch,
time-sharing, desktop, and network.
Table 1.1 is modified from a table
proposed by Lawrence Tesler. In this
table, major characteristics of the
different computing paradigms are
associated with each decade of
computing, starting from 1960.

tin. Mang lién thong ctia cac hé thong bo
nhG dung chung cé thé thudc loai dua
trén bus va dua trén chuyén mach. Trong
c4c hé thong truyén tin, mang lién thong
dugc chia thanh tinh va dong. Cac két
ndi tinh c6 mot topd cb dinh khong thay
d6i khi chuong trinh dang chay. Cac két
ndi dong tao ra cac lién két tuy bién khi
chuong trinh thyc thi.

Muyc dinh chinh ctia viéc dung cac bd da
xtr 1y 14 tao ra cac may tinh manh bang
su két ndi don gian nhiéu bd xir ly.
Nguoi ta cho rang mot bo da xir 1y s& dat
téc do nhanh hon so v&i hé thong don xir
ly nhanh nhat. Ngoai ra, viéc phat trién
mot bo da xir 1y bao gdm nhiéu bo don
xtt 1y cling c6 thé hiéu qua hon vé chi phi
so vo1 viée phat trién mot hé don xur ly
hiéu suét cao. Mot wu diém khéac cta bd
da xtr 1y 13 kha ning khang 18i. Néu mot
bd xir 1y trong hé gip su cd, cac bd xir Iy
con lai van sé& hoat dong binh thudng,
mic du hiéu suit suy giam.

1.1 Tong quan vé may tinh qua 4 thap ky

Hau hét cac nha khoa hoc mdy tinh déu
nhit tri rang da c6 bén mo hinh hay ky
nguyén dién toan khac nhau. D6 1a: may
tinh (xr ly) bo, may tinh phan hudng
thoi gian, destop, va mang. Bang 1.1
duoc sta doi tir bang dugc Lawrence
Tesler dé xuét. Trong bang nay, cac dic
diém chinh ctia cdc mo hinh dién toan
khac nhau dugc trinh bay tng véi mdi




1.1.1 Batch Era

By 1965 the IBM System/360
mainframe dominated the corporate
computer centers. It was the typical
batch  processing machine  with
punched card readers, tapes and disk
drives, but no connection beyond the
computer room. This single mainframe
established large centralized computers
as the standard form of computing for
decades. The IBM System/360 had an
operating system, multiple
programming languages, and 10
megabytes of disk storage. The
System/360 filled a room with metal
boxes and people to run them. Its
transistor circuits were reasonably fast.
Power users could order magnetic core
memories with up to one megabyte of
32-bit words. This machine was large
enough to support many programs in
memory at the same time, even though
the central processing unit had to
switch from one program to another.

1.1.1 Time-Sharing Era

The mainframes of the batch era were
firmly established by the late 1960s
when advances in semiconductor
technology made the solid-state

thap ky dién toan, bat dau tir nam 1960.
1.1.1 Ky nguyén may tinh (xt 1y) bo

Nam 1965, may tinh lon thudéc hé
IBM/360 théng tri trong cac cong ty.
bay 1a mdt loai may tinh xt 1y theo 16
dién hinh véi cac bd doc thé duc 15, bang
va 0 dia, nhung khong thé trao do6i dir
liéu vuot ra ngoai pham vi phong may.
Chdng hinh thanh nén cac may tinh tap
trung 16n va 1a mot dang tiéu chuan cua
may tinh trong nhiéu thap ky. Hé
IBM/360 c6 mot hé diéu hanh, nhiéu
ngon ngtt 1ap trinh, va dung lugng dia la
10 MB. Céic hop kim loai cua H¢
IBM/360 va nhitng nguoi van hanh
ching chiém tron mot can phong. Tdc d6
hoat dong cuia cac mach transistor bén
trong cling khong nhanh 1im. Nhiing
nguoi st dung thanh thao co thé dat mua
cac b nhé 13i tir 1én dén 1 MB tir 32-bit.
May tinh nay da da 16n dé hd tro cing
lGc nhiéu chuong trinh trong bd nhd,
mac du bo xu 1y trung tAm phai chuyén
tr mot chuong trinh nay sang chuong
trinh khac.

1.1.2 Ky nguyén may tinh phan hudng
thoi gian

Cac may tinh 16n cua thoi ky may tinh
xt 1y theo khéi di duoc dit nén mong
vitng chic vao cubi nhirng nim 1960.
Cling tai thoi diém do, nhirng tién bod
trong cong nghé ban dan da lam cho bd




memory and integrated circuit feasible.
These  advances in hardware
technology spawned the minicomputer
era. They were small, fast, and
inexpensive enough to be spread
throughout the company at the
divisional level. However, they were
still too expensive and difficult

TABLE 1.1 Four Decades of
Computing

to use to hand over to end-users.
Minicomputers made by DEC, Prime,
and Data General led the way in
defining a new kind of computing:
time-sharing. By the 1970s it was clear
that there existed two kinds of
commercial or business computing:

(1) centralized data  processing
mainframes, and (2) time-sharing
minicomputers. In parallel with small-
scale machines, supercomputers were
coming into play. The first such
supercomputer, the CDC 6600, was
introduced in 1961 by Control Data
Corporation. Cray Research
Corporation  introduced the  best
cost/performance supercomputer, the
Cray-1, in 1976.

1.1.3 Desktop Era

Personal computers (PCs), which were
introduced in 1977 by Altair, Processor

nh§ trang thai ran va mach tich hop tro
nén kha thi. Nhiing tién bo trong cong
nghé phin cimg di sinh ra ky nguyén
may tinh mini. Ching nho, nhanh, va gia
ca vua phai nén dugc st dung rong rai
trong cong ty & moi phong ban. Tuy
nhién, d6i véi nguoi ding cudi, chung
van con qua dat va kho chuyén giao.

BANG 1.1 Tong quan vé may tinh qua
bdon thap ky

Cac may tinh mini duoc ché tao boi tap
doan DEC, Prime, va Data General dan
dén viéc dinh nghia mdt loai cong nghé
dién todn moi: phan hudng thoi gian.
Vao nhitng nam 1970, rd rang, trén thi
truong d3 ton tai hai loai may tinh
thuong mai hodc kinh doanh:

(1) Cac may tinh I6n xir ly dir liéu tap
trung, va (2) cac may tinh mini phan
huong thoi gian. Song song vdi CAC may
tinh quy mo nho, cac siéu may tinh da ra
doi va tham gia vao cudc choi. Siéu may
tinh dau tién 1a CDC 6600, duoc gidi
thiéu vao nam 1961 béi Control Data
Corporation. Cray Research Corporation
da gioi thiéu siéu may tinh chi phi / hiéu
sut tot nhat, Cray-1, vao nim 1976.

1.1.3 Ky nguyén desktop

Ca&c may tinh ca nhan (PC), dugc gidi
thifu vao nam 1977 boi tdp doan
Processor Technology, North Star,
Tandy, Commodore, Apple, va nhiéu tap




Technology, North Star, Tandy,
Commodore, Apple, and many others,
enhanced the productivity of end-users
in numerous departments. Personal
computers from Compag, Apple, IBM,
Dell, and many others soon became
pervasive, and changed the face of
computing.

Local area networks (LAN) of
powerful personal computers and
workstations  began to  replace
mainframes and minis by 1990. The
power of the most capable big machine
could be had in a desktop model for
one-tenth of the cost. However, these
individual desktop computers were
soon to be connected into larger
complexes of computing by wide area
networks (WAN).

1.1.4 Network Era

The fourth era, or network paradigm of
computing, is in full swing because of
rapid advances in network technology.
Network  technology  outstripped
processor technology throughout most
of the 1990s. This explains the rise of
the network paradigm listed in Table
1.1. The surge of network capacity
tipped the balance from a processor-
centric view of computing to a
network-centric view.

doan khac, ting ning suat lam viéc cua
ngudi dung cudi trong nhiu céng ty.
Cac may tinh ca nhan tr tdp doan
Compaq, Apple, IBM, Dell, va nhiéu tap
doan khac nhanh chong tré nén phd bién,
va di lam thay d6i bo mat cua nganh
may tinh.

Mang may tinh cuc bd (LAN) cac may
tinh ca nhan va cac may tram manh bat
dau thay thé cac mAy tinh 16n va mini
vao nam 1990. May desktop c6 thé c6
kha ning tinh todn ngang v&i cidc may
tinh 16n manh nhat nhung gia thanh chi
bang mdt phan muodi. Tuy nhién, cac
destop ca nhan da sém duoc két nbi vao
cac phuc hé dién toan 16n hon qua mang
dién rong (WAN).

1.1.4 Ky nguyén mang may tinh

Ky nguyén thir tu, hay con goi 1a mo
hinh mang may tinh (m6 hinh mang
trong ki thuat dién toan), dang phat trién
hét sttc nhanh chong do nhiing tién bd
trong cong ngh¢ mang. Cong nghé mang
vuot xa cong nghé xur 1y (cong nghé vi
xtr 1y) trong sudt nhitng nim 1990. Piéu
nay 1a nguyén nhan cta su xuat hién Ccac
md hinh mang duoc dé cap trong Bang
1.1. Su ting dot bién cong suit mang da
lam chung ta chuyén tir quan diém lay bo
xt 1y 1am trung tAm sang quan diém liy
mang lam trung tam.

Trong nhitng nim 1980 va 1990, thé gidi




The 1980s and 1990s witnessed the
introduction of many commercial
parallel computers with  multiple
processors. They can generally be
classified into two main categories: (1)
shared memory, and (2) distributed
memory systems. The number of
processors in a single machine ranged
from several in a shared memory
computer to hundreds of thousands in a
massively parallel system. Examples of
parallel computers during this era
include Sequent Symmetry, Intel iPSC,
nCUBE, Intel Paragon, Thinking
Machines (CM-2, CM-5), MsPar (MP),
Fujitsu (VPP500), and others.

1.1.5 Current Trends

One of the clear trends in computing is
the substitution of expensive and
specialized parallel machines by the
more  cost-effective  clusters  of
workstations. A cluster is a collection
of stand-alone computers connected
using some interconnection network.
Additionally, the pervasiveness of the
Internet created interest in network
computing and more recently in grid
computing. Grids are geographically
distributed platforms of computation.
They should provide dependable,
consistent, pervasive, and inexpensive
access to high-end computational
facilities.

da chung kién su ra doi ctia nhiéu may
tinh song song thuong mai c6 nhiéu bo
xt 1ly. Ching dugc phan thanh hai loai
chinh: (1) hé théng bd nhé dung chung,
va (2) hé thong bo nhé phan tan. Sé
lugng cac bd vi xur Iy trong mot may dao
dong tor mdt vai bo trong may tinh bo
nhd dung chung cho dén hang trim ngan
bo vi xir Iy trong mdt hé thong song song
cuc 16n. Vi du vé cac may tinh song song
trong thoi ky ndy bao gdm Sequent
Symmetry, Intel iPSC, nCUBE, Intel
Paragon, Thinking Machines (CM-2,
CM-5), MsPar (MP), Fujitsu (VPP500),
va nhirng dong khac.

1.1.5 Cac xu hudng hién tai

Mot trong nhitng xu hudng rd rét trong
may tinh 13 su thay thé cac may song
song dat tién va chuyén biét bang cac
cum may tram gia thanh ré hon. Mot
cum la mot tap hop cadc may tinh ddc lap
duoc két ndi biang mang lién théng.
Ngoai ra, sy phd bién rong rii cua
Internet thuc day sy quan tim dén tinh
to4n mang (dién toan mang) va gin day
hon la dién toan mang ludi. Ludi 1a cac
nén tinh toan phan tan vé mat dia 1y.
Chilng cung cap cho chiing ta nhiing ta
kha nang truy cap dang tin cay, phu hop,
pho bién, va gia thanh ré vao cac phuong
tién tinh toan cao cap.

1.2 PHAN LOAI KIEN TRUC MAY




1.2 FLYNN’S TAXONOMY OF
COMPUTER ARCHITECTURE

The most popular taxonomy of
computer architecture was defined by
Flynn in 1966. Flynn’s classification
scheme is based on the notion of a
stream of information. Two types of
information flow into a processor:
instructions and data. The instruction
stream is defined as the sequence of
instructions  performed by the
processing unit. The data stream is
defined as the data traffic exchanged
between the memory and the
processing unit. According to Flynn’s
classification, either of the instruction
or data streams can be single or
multiple. Computer architecture can be
classified into the following four
distinct categories:

. single-instruction single-data
streams (SISD);

. single-instruction multiple-data
streams (SIMD);

. multiple-instruction single-data
streams (MISD); and

. multiple-instruction ~ multiple-

data streams (MIMD).

Conventional  single-processor von
Neumann computers are classified as
SISD systems. Parallel computers are
either SIMD or MIMD. When there is
only one control unit and all processors
execute the same instruction in a
synchronized fashion, the parallel
machine is classified as SIMD. In a
MIMD machine, each processor has its

TINH CUA FLYNN

Phan loai cdu tric may tinh phd bién
nhit dwoc Flynn dinh nghia vao nim
1966. Phuong phap phan loai ciia Flynn
dua trén khai niém vé ludng thong tin.
Hai loai ludng thdng tin di vao bo xu ly
la: cac 1énh va dit liéu. Ludng lénh 1a
chudi cac 1énh duogc thuc hién boi cac
don vi xir 1y. Cac luéng dir liéu 1a luu
luong dir liéu trao doi gifra bd nhd va cac
don vi xt ly. Theo phan loai Flynn, cac
1u6ng 1énh hoac cac lué)ng dit liéu c6 thé
la mot hodc nhiéu (don hodc da). Kién
truic may tinh co thé dugc phan loai
thanh bén loai riéng biét sau day:

* May tinh mgt dong Iénh-mdt dong dir
liéu (SISD);

« M4y tinh mot dong 1énh-nhiéu dong dit
liéu (SIMD);

« M4y tinh nhiéu dong 1énh-mét dong dit
li¢u (MISD), va

« M4y tinh nhiéu dong 1énh-nhiéu dong
dir liéu (MIMD).

May tinh don xir Iy von Neumann truyén
thong thudc hé SISD. Cac may tinh song
song hoac cé thé thudc loai SIMD hoic
MIMD. Khi chi c6 mét bo diéu khien va
tat ca cac bo xir 1y thyc hién 1énh gidng
nhau theo kiéu doéng bd thi may song
song duoc xép vao loai SIMD. Trong
may MIMD, mdi bo xir Iy co6 bo diéu




own control unit and can execute
different instructions on different data.
In the MISD category, the same stream
of data flows through a linear array of
processors executing different
instruction streams. In practice, there is
no viable MISD machine; however,
some authors have considered
pipelined machines (and perhaps
systolic-array computers) as examples
for MISD. Figures 1.1, 1.2, and 1.3
depict the block diagrams of SISD,
SIMD, and MIMD, respectively.

An extension of Flynn’s taxonomy was
introduced by D. J. Kuck in 1978. In
his classification, Kuck extended the
instruction stream further to single
(scalar and array) and multiple (scalar
and array) streams. The data stream in
Kuck’s classification is called the
execution stream and is also extended
to include single

Figure 1.1 SISD architecture.

Figure 1.2 SIMD architecture.

(scalar and array) and multiple (scalar
and array) streams. The combination of
these streams results in a total of 16
categories of architectures.

1.3 SIMD ARCHITECTURE

The SIMD model of parallel computing
consists of two parts: a front-end
computer of the usual von Neumann
style, and a processor array as shown in

khién riéng va co thé thuc hién cac 1énh
khac nhau trén cac dir liéu khac nhau.
Trong MISD, cung m{t dong dit li¢u
chay qua mot mang tuyén tinh cac bo xir
1y thuc hién cac dong 1énh khac nhau.
Trong thuc té, may MISD khéng ton tai,
tuy nhién, mot sb tac gia dd xem cac may
cau tric 6ng (va co thé 1a cac may tinh
mang systolic) la cac MISD. Hinh 1.1,
1.2, va 1.3 md ta so d6 khdi twong tng
cua SISD, SIMD, va MIMD.

Phan loai Flynn di dwoc DJ Kuck bo
sung vao nam 1978. Trong phan loai cta
minh, Kuck m¢ rdng thém 1u6ng 1énh
thanh ludng 1énh don(vd hudng va
mang) va da luéng 1énh (vo6 huéng va
mang). Ludng dir liéu trong phan loai
Kuck duoc goi 13 ludng thuc thi va ciing
duoc mo rong dé gop vao

Hinh 1.1 Kién truc tric SISD.
Hinh 1.2 Kién tric SIMD.

ludng don (VO huéng va mang) va da
ludng(voé hudng va mang). Su két hop
ctia nhitng ludng nay dan dén tong cong
16 loai kién truc.

1.3 KIEN TRUC SIMD

M6 hinh tinh todn song song SIMD bao
gdm hai phan: mot may tinh phu tro kiéu
von Neumann thong thuong, va mot
mang b0 xu ly nhu mi€éu ta ¢ hinh 1.4.




Figure 1.4. The processor array is a set
of identical synchronized processing
elements capable of simultaneously
performing the same operation on
different data. Each processor in the
array has a small amount of local
memory where the distributed data
resides while it is being processed in
parallel. The processor array is
connected to the memory bus of the
front end so that the front end can
randomly access the local

Figure 1.3 MIMD architecture.

Virtual Processors SIMD architecture
model.

processor memories as if it were
another memory. Thus, the front end
can issue special commands that cause
parts of the memory to be operated on
simultaneously or cause data to move
around in the memory. A program can
be developed and executed on the front
end using a traditional serial
programming language. The
application program is executed by the
front end in the usual serial way, but
Issues commands to the processor array
to carry out SIMD operations in
parallel. The similarity between serial
and data parallel programming is one
of the strong points of data parallelism.
Synchronization is made irrelevant by
the lock-step syn-chronization of the
processors.  Processors either do
nothing or exactly the same operations
at the same time. In SIMD architecture,

Maéng xtr 1y 1a tdp hop cua cac bo xur ly
ddng bo gidng hét nhau c6 kha ning thuc
hién ddng thoi cung mot hoat dong trén
cac dir liéu khac nhau. Mdi bo vi xir 1y
trong mang c6 mot luong bd nhd riéng
nho dé luu dir liéu phan tan trong khi no
dang dugc xtr ly song song. Mang xur ly
duoc két ndi voi bus nhd ciia may tinh
phu tro dé nd co thé truy cap dir liéu
ngau nhién vao bd nhé xtr Iy cuc bo (bo
nhé riéng)

Hinh 1.3 Kién trtc MIMD.
M6 hinh kién trac SIMD b xir 1y 4o.

v61 chiic nang nhu mdt by nhd khac.
Nhu vdy, may tinh phu tro c6 thé dua ra
nhitng 1énh dac biét lam cho cac bd phan
cua b0 nhd dugc van hanh cung luc
(d6ng thoi) hoic lam cho dit liéu di
chuyén trong bé nhé. Mét chuong trinh
¢ thé duoc phat trién va thuc thi & may
tinh phu tro dung mét ngén ngir 1ap trinh
kiéu nbi tiép truyén théng. Chuong trinh
tng dung duoc thyc thi bang may tinh
phu tro theo phuong thic ndi tiép thong
thudng, nhung truyén 1énh dén cac mang
xt 1y dé thuc hién cac phép toan SIMD
song song. Sy gidng nhau giita 1ap trinh
dir liéu song song va ndi tiép chinh Ia
mot trong nhitng diém manh cua xu 1y
dir liéu song song. Dong bd hoa tré nén
khong thich hop qua viéc dong bd hoa




parallelism is exploited by applying
simultaneous operations across large
sets of data. This paradigm is most
useful for solving problems that have
lots of data that need to be updated on a
wholesale basis. It is especially
powerful in many regular numerical
calculations.

There are two main configurations that
have been used in SIMD machines (see
Fig. 1.5). In the first scheme, each
processor has its own local memory.
Processors can communicate with each
other through the interconnection
network. If the interconnection network
does not provide direct connection
between a given pair of processors,
then this pair can exchange data via an
intermediate processor. The ILLIAC
IV used such an interconnection
scheme. The interconnection network
in the ILLIAC IV allowed each
processor to communicate directly with
four neighboring processors inan 8 x 8
matrix pattern such that the ith
processor can communicate directly
with the (i — 1)th, (i + D)th, (i — 8)th,
and (i + 8)th processors. In the second
SIMD scheme, processors and memory
modules communicate with each other
via the interconnection network. Two
processors can transfer data between
each other via intermediate memory
module(s) or possibly via intermediate

nhip xung ctia Cac bo xu ly. Bo vi xtur ly
khong lam gi hodc thyc hién cac hoat
dong gidng hét nhau cung mot lac. O
kién tric SIMD, phuong phap song song
duogc khai thac bang cach ap dung dong
thoi cac phép todn cho cac tap dir liéu
16n. M6 hinh nay phat huy hiéu qua tot
nhat khi giai nhiing bai toan c6 nhiéu dir
liéu can phai dugc cap nhat hang loat. NO
rat hiéu qua trong cac tinh toan sé thong
thuong.

Co6 hai ciu hinh chinh dugc st dung
trong cac may SIMD (xem hinh. 1.5).
Trong so do dau tién, mdi bo xur 1y c6 bd
nhd cuc bd ri€éng cua nd. Cac bd vi xur ly
c6 thé giao tiép véi nhau thong qua mang
lién thong. Néu mang lién thong khong
két ndi truc tiép giita hai bd xtr Iy xac
dinh, thi cdp nay co thé trao do6i dit liéu
thong qua mot by xu 1y trung gian.
ILLIAC IV di str dung mot so dd két ndi
nay. Cac két ndi mang trong ILLIAC IV
cho phép mdi bd xir Iy giao tiép truc tiép
v6i bdn b vi xir Iy 14n can theo mo hinh
ma trdn 8 X 8 sao cho bd vi xur 1y thar i co
thé giao tiép tryc tiép vai bo (i - 1), (i +
1), (i - 8), va bo vi xir 1y thi (i + 8). O so
d6 SIMD thir hai, bo vi xir Iy va cac mo-
dun bo nhé giao tiép v4i nhau thong qua
mang lién théng. Hai bo vi xtr Iy co thé
truyén dit liéu cho nhau thong qua mot
hay nhiéu mo-dun bo nhd trung gian
hodc qua mot hodc nhiéu bo xur 1y trung
gian. BSP (B60 xt ly khoa hoc




processor(s). The BSP (Burroughs’
Scientific Processor) used the second
SIMD scheme.

1.4 MIMD ARCHITECTURE
Multiple-instruction multiple-data
streams (MIMD) parallel architectures
are made of multiple processors and
multiple memory modules connected
together via some

Figure 1.5 Two SIMD schemes.
interconnection network. They fall into
two broad categories: shared memory
or message passing. Figure 1.6
illustrates the general architecture of
these two categories. Processors
exchange information through their
central shared memory in shared
memory systems, and exchange
information through their
interconnection network in message
passing systems.

A shared memory system typically
accomplishes interprocessor
coordination through a global memory
shared by all processors. These are
typically  server  systems  that
communicate through a bus and cache
memory controller. The bus/ cache
architecture alleviates the need for
expensive multiported memories and
interface circuitry as well as the need to
adopt a message-passing paradigm
when developing application software.
Because access to shared memory is
balanced, these systems are also called
SMP  (symmetric  multiprocessor)
systems. Each processor has equal
opportunity to read/write to memory,
including equal access speed.

Burroughs) st dung so d6 SIMD thtr hai.
1.4 CAU TRUC MIMD

Kién trGc song song nhiéu dong 1énh-
nhiéu dong dir lieu (MIMD) duoc tao
thanh tir nhiéu b xur Iy va nhiéu md-dun
bd nhd két ndi véi nhau thong qua mot
s6 két ndi mang. Chung thudc hai loai
chinh: bd nhé dung chung hodc truyén
tin. Hinh 1.6 minh hoa cau tric chung
cua hai loai nay. Céac bd vi xur 1y trao doi
thong tin thong qua bd nhd dung chung
trung tAm cta ching trong C4c hé thong
bd nhé dung chung, va trao doi thong tin
thong qua két ndi mang ctia ching trong
hé thdng truyén tin.

Mot hé thdng bd nhd ding chung thuong
phéi hop cac bo vi xtt Iy v6i nhau thong
qua by nhd toan cuc dugc tat ca cac bod
xur Iy dung chung (chia s¢). Pay la nhirng
hé théng may chu dién hinh giao tiép
théng qua bus va bd diéu khién bo nhé
dém. Kién tric bus / by nhé dém lam
giam nhu cau str dung cac bo nhd nhiéu
cong va mach giao tiép dit tién ciing nhu
nhu cau ap dung mot mo hinh truyén tin
khi phat trién phan mém ung dung. Do
viéc truy cdp vao by nhd dung chung
dugc can bang, cac hé thong nay con
dugc goi 1a cac hé SMP (da xir 1y doi
xtng). Mdi b xur 1y co co hoi doc/viét
nhu nhau vao b nhé, thdm chi ca toc do
truy cép ciing bang nhau.




Shared Memory MIMD Architecture
Message Passing MIMD Architecture
Figure 1.6 Shared memory versus
message passing architecture.
Commercial examples of SMPs are
Sequent Computer’s Balance and
Symmetry, Sun Microsystems
multiprocessor servers, and Silicon
Graphics Inc. multiprocessor servers.

A message passing system (also
referred to as distributed memory)
typically combines the local memory
and processor at each node of the
interconnection network. There is no
global memory, so it is necessary to
move data from one local memory to
another by means of message passing.
This is typically done by a
Send/Receive pair of commands, which
must be written into the application
software by a programmer. Thus,
programmers must learn the message-
passing paradigm, which involves data
copying and dealing with consistency
issues. Commercial examples of
message passing architectures c. 1990
were the nCUBE, iPSC/2, and various
Transputer-based  systems.  These
systems eventually gave way to
Internet connected systems whereby
the processor/memory nodes were
either Internet servers or clients on
individuals’ desktop.

It was also apparent that distributed
memory is the only way efficiently to
increase the number of processors

Kién traic MIMD b nh¢ dung chung
Kién trac MIMD truyén tin

Hinh 1.6 Kién tric bd nhé dung chung
va truyén tin

Cac vi du thuong mai vé SMP 1a Sequent
Computer’s Balance va Symmetry, C4c
may chu da xt Iy Sun Microsystems, va
may chu da xtr 1y Silicon Graphics Inc.

Hé thong truyén tin (con dugc goi 1a bd
nhé phéan tan) thuong két hop véi bo nhé
riéng va bo vi xir Iy tai méi nit mang. Vi
khong c6 bd nhd toan cuc nén bat budc
phai chuyén dit lidu tir bd nhd riéng nay
sang bo nhd khac bang cach truyén tin.
Diéu nay thuong duoc thuc hién bing
cap lénh giri / nhan, ching phai dugc mot
1ap trinh vién viét vao cic phan mém tng
dung. Do do, cac l1ap trinh vién phai tim
hiéu cac mo hinh truyén tin, bao gdm sao
chép dir liéu va xtr Iy cac van dé nhit
quan. Mot sé vi dy thuong mai cta kién
trac truyén tin nam 1990 la Ncube, IPSC
/ 2, va cac hé théng dua trén phﬁn mém
trung gian khac nhau. Cudi cung, cac hé
thong nay ciing nhuong chd cho cac hé
thong két ndi Internet trong d6 cac nut vi
xtr Iy / bo nhd hodc 1a may chu Internet
hoac la céac client trén desktop ca nhan.

RO rang, bd nhd phan tan 1a phuong thirc
duy nhat c6 hiéu qua dé ting s6 luong
cac bd vi xtr 1y ctia hé théng song song
va phan tan. Néu kha ning mé rong hé




managed by a parallel and distributed
system. If scalability to larger and
larger systems (as measured by the
number of processors) was to continue,
systems had to use distributed memory
techniques. These two forces created a
conflict: programming in the shared
memory model was easier, and
designing systems in the message
passing model provided scalability.
The

distributed-shared memory (DSM)
architecture began to appear in systems
like the SGI Origin2000, and others. In
such systems, memory is physically
distributed; for example, the hardware
architecture  follows the message
passing school of design, but the
programming model follows the shared
memory school of thought. In effect,
software covers up the hardware. As
far as a programmer is concerned, the
architecture looks and behaves like a
shared memory machine, but a message
passing architecture lives underneath
the software. Thus, the DSM machine
is a hybrid that takes advantage of both
design schools.

1.4.1 Shared Memory Organization

A shared memory model is one in
which processors communicate by
reading and writing locations in a
shared memory that is equally
accessible by all processors. Each
processor may have registers, buffers,

thong ngay cang 16n (duoc do bang so
luong cac bd vi xur 1) van tiép tuc, cac
hé¢ thdng phai st dung cac ky thuat bo
nhd phan tan. Hai rang budc nay tao ra
mau thudn: 1ap trinh theo mé hinh b nhé
dung chung d& dang hon, va thiét ké cac
hé¢ thdng theo mé hinh truyén tin c6 kha
nang mo rong.

Kién trGic bo nhd phan tan-ding chung
(DSM) bat dau xuat hién trong cac hé
thong nhu SGI Origin2000, va nhing hé
thong khac. Véi nhitng hé théng nhu
vay, bo nho phan tan vé mat vat 1y, vi du,
kién trac phan cimg theo trudng phéi
thiét ké truyén tin, nhung md hinh lap
trinh lai theo truong phai bo nhé dung
chung. Trong thyc té, phan mém chi phdi
cac phan cimg. Theo nhitng gi mot 1ap
trinh vién biét, kién triic nhin bé ngoai c6
vé nhu mdt may bd nhd dung chung,
nhung kién tric truyén tin lai hoat dong
bén dudi phan mém. Nhu vay, may DSM
la mét dang lai hoa tin dung ca hai
truong phai thiét ké.

1.4.1 T6 chire bd nhé ding chung

M0 hinh b nhé dung chung 1a mét mo
hinh ma bo vi xir 1y giao tiép bang cach
doc va ghi lai vi tri trong by nhd dung
chung, cai ma tat ca cac bo vi xir Iy déu
c6 thé truy cép vao né v6i kha ning nhu
nhau. Mdi bd xtr Iy déu c6 thanh ghi, bo
dém, bd nhd dém, va cac ngan hang bo
nhd riéng dugc xem nhu ngudn nhd bd




caches, and local memory banks as
additional memory resources. A
number of basic issues in the design of
shared memory systems have to be
taken into consideration. These include
access control, synchronization,
protection, and security. Access control
determines which process accesses are
possible to which resources. Access
control models make the required
check for every access request issued
by the processors to the shared
memory, against the contents of the
access control table. The latter contains
flags that determine the legality of each
access attempt. If there are access
attempts to resources, then until the
desired access is completed, all
disallowed access attempts and illegal
processes are blocked. Requests from
sharing processes may change the
contents of the access control table
during execution. The flags of the
access control with the synchronization
rules determine  the system’s
functionality. Synchronization
constraints limit the time of accesses
from sharing processes to shared
resources. Appropriate synchronization
ensures that the information flows
properly  and ensures  system
functionality. Protection is a system
feature that prevents pro-cesses from
making arbitrary access to resources
belonging to other processes. Sharing
and protection are incompatible;
sharing allows access, whereas
protection restricts it.

sung. Mot so van dé co ban trong viéc
thiét ké hé thong bd nhé dung chung phai
dugc xem xét. Bao gdom: kiém soat truy
cap, dong bo hoa, bao vé va bao mat.
Kiém soat truy cdp xac dinh qua trinh
truy cap nao c6 thé dung cho ngudn tai
nguyén nao. Mo hinh diéu khién truy cap
thuc hién viéc kiém tra bat budc doi vai
mdi yéu cau truy cdp cia bo vi xir Iy dén
bd nhd dung chung, dwa vao ndi dung
ciia bang diéu khién truy cdp. Ban niy
chira c& x4c dinh tinh hop 18 ctia moi nd
luc truy cap (lan thtr truy cap). Néu co
nhitng n6 luc truy cdp vao cac ngudn tai
nguyén, sau qué trinh xem xeét cac truy
cap, nhiing truy cap nao khdéng duoc
phép va cic qua trinh khong hop 1€ bi
chin. Cac yéu ciu cua qué trinh ding
chung c6 thé thay d6i ndi dung ctia bang
diéu khién truy cap trong qué trinh thyc
thi. Co diéu khién truy cdp vd&i nhiing
quy tic dong bd hoa xac dinh chirc ning
ctia hé théng. Co6 nhitng rang budc dong
bd hoéa han ché thoi gian truy cip cua
qua trinh chia sé ngudn tai nguyén ding
chung. Péng bo hoa thich hop dam bao
lugng thong tin luu thong ding va dam
bdo chirc nang hé théng. Bao vé la mot
tinh ning hé théng ngin chin cac qua
trinh truy cdp ty y vao cac ngudn tai
nguyén cua cac qua trinh khac. Qua trinh
dung chung (chia sé¢) va bao vé khong
tuong thich véi nhau, dung chung (chia
sé) cho phép truy cdp, con bao vé lai han




The simplest shared memory system
consists of one memory module that
can be accessed from two processors.
Requests arrive at the memory module
through its two ports. An arbitration
unit within the memory module passes
requests through to a memory
controller. If the memory module is not
busy and a single request arrives, then
the arbitration unit passes that request
to the memory controller and the
request is granted. The module is
placed in the busy state while a request
Is being serviced. If a new request
arrives while the memory is busy
servicing a previous request, the
requesting processor may hold its
request on the line until the memory
becomes free or it may repeat its
request sometime later.

Depending on the interconnection
network, a shared memory system
leads to systems can be classified as:
uniform memory access (UMA),
nonuniform memory access (NUMA),
and cache-only memory architecture
(COMA). In the UMA system, a shared
memory is accessible by all processors
through an interconnection network in
the same way a single processor
accesses its memory. Therefore, all
processors have equal access time to
any memory location. The
interconnection network used in the
UMA can be a single bus, multiple
buses, a crossbar, or a multiport

ché no.

Hé thong bd nhd ding chung don gian
nhit gdbm mot mo-dun bd nhd co thé
dugc truy cap tu hai bo vi xtr ly. M6-dun
bd nhé tiép nhan nhitng yéu cau thong
qua hai cong cua né. Bo xir 1y 1énh trong
mé-dun bd nhé chuyén cic yéu cdu
thong qua mot by diéu khién. Néu mo-
dun bd nhd khdng ban trong qua trinh xir
ly ma c6 mot yéu cau dén, thi bo xu 1y
lénh chuyén yéu cau do dén bo dicu
khién va yéu cau duoc chip nhan. Mo-
dun dugc dat trong trang thai ban trong
khi c6 mdt yéu cau dang duoc xir Iy. Néu
mot yéu cau moi dén trong khi bd nhd
dang ban xtr ly mdt yéu cau truge do, bod
Xt 1y yéu cdu co thé gilt yéu cau do trén
hang cho dén khi b nhé ranh hoic nd cd
thé lap lai cac yéu cau vai lan sau do.

Tuy thudéc vao mang lién théng, mot hé
théng bo nhé ding chung dan dén cac hé
c6 thé chia thanh: truy cdp bo nhé dong
nhit (UMA), truy cdp bd nhd khdng
ddng nhat (Numa), va kién trac bd nhé
chi dung Cache (COMA). Trong hé
thong UMA, tat ca cac b vi xtr 1y ¢6 thé
truy cap vao bd nhd dung chung théng
qua mang lién thong giébng nhu (theo
cach giéng nhu) mot bo xir 1y truy cap
vao bd nhd ctia nd. Vi vay, tit ca cac bd
vi xtr Iy c6 thoi gian truy cap nhu nhau
tai bat ky vi tri nhd. Mang lién thong
duoc st dung trong UMA ¢6 thé 13 mot




memory. In the NUMA system, each
processor has part of the shared
memory attached. The memory has a
single address space. Therefore, any
processor could access any memory
location directly using its real address.
However, the access time to modules
depends on the distance to the
processor. This results in a nonuniform
memory access time. A number of
architectures are used to interconnect
processors to memory modules in a
NUMA. Similar to the NUMA, each
processor has part of the shared
memory in the COMA. However, in
this case the shared memory consists of
cache memory. A COMA system
requires that data be migrated to the
processor requesting it. Shared memory
systems will be discussed in more
detail in Chapter 4.

1.4.2 Message Passing Organization

Message passing systems are a class of
multiprocessors  in  which  each
processor has access to its own local
memory. Unlike shared memory
systems, communications in message
passing systems are performed via send
and receive operations. A node in such

bus, nhiéu bus, bd chuyén mach diém
chéo, hay mot bo nhd da cong. Trong hé
thdng Numa, mdi bd vi xtr Iy c6 kém
theo mot phan cua bo nhé ding chung.
B6 nhé nay chi ¢c6 mét khong gian dia
chi. Vi vay, bat ky bo vi xir Iy nao ciing
c6 thé truy cap truc tiép vao bat ky vi tri
nhd nao khi str dung dia chi thuc cua né.
Tuy nhién, thoi gian truy cap vao Cac
module phuy thudéc vao khoang céach dén
bd xtr ly. Dicu nay lam cho thoi gian truy
cap vao bo nhd khong dong déu (khong
béng nhau). Mot s6 kién trac dugc sir
dung dé lién két cac bd vi xir Iy véi mo-
dun trong by nhé Numa. Tuong tu nhu
Numa, trong bd nhé COMA, mdi bd Vi
xtt 1y c¢6 mot phan ctia bé nhs ding
chung. Tuy nhién, trong truong hop nay,
bd nhd dung chung cé b nhd Cache.
Mot hé théng bd nhd COMA yéu cau dit
liéu duoc di chuyén dén b xtr Iy dang
yéu cau nb. Trong chuong 4, chiung sé& s&
thao luan chi tiét hon vé bo nhd ding
chung.

Cac hé thong truyén tin 1a mot loai da
xt |y trong d6 mdi bo xur Iy c6 thé truy
cap vao bo nhé riéng cua nd. Khong
giong nhu cac hé thong bo nhé dung
chung, truyén théng trong cac hé thong
truyén tin duoc thuc hién théng qua cac
hoat dong gui va nhan. Mot ndt trong
mot hé thdng nhu vay bao gdm mot bo




a system consists of a processor and its
local memory. Nodes are typically able
to store messages in buffers (temporary
memory locations where messages wait
until they can be sent or received), and
perform send/receive operations at the
same time as processing. Simultaneous
message processing and problem
calculating are handled by the
underlying operating system.
Processors do not share a global
memory and each processor has access
to its own address space. The
processing units of a message passing
system may be connected in a variety
of ways ranging from architecture-
specific interconnection structures to
geographically dispersed networks. The
message passing approach is, in
principle, scalable to large proportions.
By scalable, it is meant that the number
of processors can be increased without
significant decrease in efficiency of
operation.

Message  passing  multiprocessors
employ a variety of static networks in
local communication. Of importance
are hypercube networks, which have
received special attention for many
years. The nearest neighbor two-
dimensional and three-dimensional
mesh networks have been used in
message passing systems as well. Two
important design factors must be
considered in designing

xt ly va bo nhé riéng cua n6. Cac nut cé
thé Iuu trir tin trong nhitng ving dém
(cac vi tri nhé tam thoi, noi cac thdng tin
chd cho dén khi ching cé thé giri hodc
nhan), va thuc hién nhiing hoat dong gui
/ nhan dong thoi vai viéc xir ly. Viéc xir
ly tin va viéc tinh toan déng thoi duoc xir
ly bai hé diéu hanh co ban. Cac bo xu ly
ctia hé thong truyén tin khéng sur dung
chung mét bd nhé toan cuc va moi bo xir
ly c6 quyén truy cap vao vung dia chi
riéng cta minh. Cac don vi xir ly cta mot
hé thdng truyén tin c6 thé dugc két ni
theo nhiéu cach khac nhau, tir cau tric
ndi két dic trung toi cAc mang phan tan
vé mat dia ly. Vé nguyén tic, phuong
phap truyén tin cd kha ning md rong
sang quy mé I6n. Kha ning c6 thé mo
rong dan dén mot loi thé 1a ching ta c6
thé tang s6 luong bo xu Iy ma khong lam
giam dang ké hiéu suat tinh toan.

Cac bo da xtr ly truyén tin st dung mét
loat mang tinh trong truyén théng cuc bé.
Quan trong trong sé d6 1a mang hinh siéu
khdi, mot loai mang d3 thu hit sy quan
tam trong thoi gian dai. Mang mat ludi 2
va 3 chiéu lan can gan nhét ciing duogc sir
dung trong hé thong truyén tin. Can phai
xem xét hai yéu t6 quan trong trong viéc
thiét ké cac mang lién théng cho hé
thng truyén tin. D6 1a bang thong lién
két va thoi gian tri hodn cua mang. Bang
thong lién két duoc dinh nghia 1a sd bit
c6 thé dugctruyén di trong mot don vi




interconnection networks for message
passing systems. These are the link
bandwidth and the network latency.
The link bandwidth is defined as the
number of bits that can be transmitted
per unit time (bits/ s). The network
latency is defined as the time to
complete a  message  transfer.
Wormhole routing in message passing
was introduced in 1987 as an
alternative to the traditional store-and-
forward routing in order to reduce the
size of the required buffers and to
decrease the message latency. In
wormhole routing, a packet is divided
into smaller units that are called flits
(flow control bits) such that flits move
in a pipeline fashion with the header
flit of the packet leading the way to the
destination node. When the header flit
is blocked due to network congestion,
the remaining flits are blocked as well.
More details on message passing will
be introduced in Chapter 5.

1.5 INTERCONNECTION
NETWORKS

Multiprocessors interconnection
networks (INs) can be classified based
on a number of criteria. These include
(1) mode of operation (synchronous

versus asynchronous), (2) control
strategy (centralized Versus
decentralized), (3) switching

techniques (circuit versus packet), and
(4) topology (static versus dynamic).
1.5.1 Mode of Operation

thoi gian (bit/ s). Thoi gian tri hodn cua
mang dugc dinh nghia 1a thoi gian dé
hoan thanh mot qua trinh truyén tin. Co
ché diéu khién ludng Wormhole trong
truyén tin di dugc dua ra vao nam 1987
nhu mot sy thay thé cho co ché diéu
khién ludng luu trir-va-chuyén tiép
truyén thong dé lam giam kich thuéc cua
bo dém can thiét va giam do tré truyén
tin. Trong co ché diéu khién ludng
Wormhole, mot goéi tin dugc chia thanh
cac don vi nho hon duoc goi la cac flit
(bit diéu khién luu luong) dé cac flit di
chuyén theo kiéu duong dng cuing véi flit
dau cua goi tin dan dén nut dich. Khi flit
dau bi chan do tic ngh&n mang, cac flit
con lai cling bi chan. Trong chuong 5,
ching ta s& nghién ctu chi tiét hon vé
qua trinh truyén tin.

1.5 CAC MANG LIEN THONG

Céac mang lién thong da xtr ly (INS) co
thé dugc phan loai dua trén mot sb tiéu
chi. Ching bao gém (1) phuong thuc
hoat dong (dong bo hay bat déng bo),
(2) chién lugc kiém soat (tap trung hay
khong tap trung), (3) cac ki thuat chuyén
mach (mach hay goi tin), va (4) t6 pé
(tinh hay dong).

1.5.1 PHUONG THUC HOAT DONG
Theo phuong thirc hoat dong, INs duoc
phan loai thanh déng bo va bat dong bo.
Trong phuong thic hoat dong dong bo,
tat ca cac thanh phan trong hé théng sir




According to the mode of operation,
INs are classified as synchronous
versus asynchronous. In synchronous
mode of operation, a single global
clock is used by all components in the
system such that the whole system is
operating in a lock-step manner.
Asynchronous mode of operation, on
the other hand, does not require a
global clock. Handshaking signals are
used instead in order to coordinate the
operation of asynchronous systems.
While synchronous systems tend to be
slower compared to asynchronous
systems, they are race and hazard-free.

1.5.2 Control Strategy

According to the control strategy, INs
can be classified as centralized versus
decentralized. In centralized control
systems, a single central control unit is
used to oversee and control the
operation of the components of the
system. In decentralized control, the
control function is distributed among
different components in the system.
The function and reliability of the
central control unit can become the
bottleneck in a centralized control
system. While the crossbar is a
centralized system, the multistage
interconnection networks are
decentralized.

1.5.3 Switching Techniques
Interconnection networks can be
classified according to the switching

dung chung mot xung dong ho dé toan
bo hé hoat dong theo kiéu lock-step
(xung nhip). Mat khac, phuong thirc hoat
dong khong déng bo khong doi hoi mot
xung dong hé chung. Thay vao do, tin
hiéu bat tay duoc sir dung dé phdi hop
hoat dong cua cac hé théng khéng dong
bo. Trong khi hé théng dong bo co xu
huéng chdm hon so vai cac hé thong
khong dong bo, ching khdng canh tranh
va anh huéng nhau.

1.5.2 CHIEN LUGC KIEM SOAT

Theo chién lugc kiém soat, INs cd thé
duoc phan loai thanh tap trung va phi tap
trung. Trong cac hé thong diéu khién tap
trung, mot don vi diéu khién trung tam
duy nhit duoc st dung dé giam sat va
kiém soat cac thanh phan cta hé thong.
Trong diéu khién phi tap trung, chic
ning diéu khién dugc phan bé cho cac
thanh phan khac nhau trong hé. Chic
ning va do tin cay cua cic don vi diéu
khién trung tdm c6 thé trg thanh mot tro
ngai I6n trong hé thong diéu khién tap
trung. Trong khi mang phan b6 1a mot hé
thdng tap trung, thi mang lién thdng
nhiéu tang 1a phi tap trung.

PHAN BEN DUOI KHOANG 5
TRANG KEP (2.5 TRANG DON) do
ban bén CNTT dich

1.5.3 Céc Ky thuat chuyén mach

Theo co ché chuyén mach, mang lién




mechanism as circuit versus packet
switching networks. In the circuit
switching mechanism, a complete path
has to be established prior to the start
of communication between a source
and a destination. The established path
will remain in existence during the
whole communication period. In a
packet switching mechanism,
communication between a source and
destination takes place via messages
that are divided into smaller entities,
called packets. On their way to the
destination, packets can be sent from a
node to another in a store-and-forward
manner until they reach their
destination. While packet switching
tends to use the network resources
more efficiently compared to circuit
switching, it suffers from variable
packet delays.

1.5.4 Topology

An interconnection network topology is
a mapping function from the set of
processors and memories onto the same
set of processors and memories. In
other words, the topology describes
how to connect processors and
memories to other processors and
memories. A fully connected topology,
for example, is a mapping in which
each processor is connected to all other
processors in the computer. A ring
topology is a mapping that connects
processor K to its neighbors, processors
(k-1)and (k + 1).

In general, interconnection networks

thdng c6 thé duoc phan loai thanh
chuyén mach-mach va chuyén mach-goi.
Trong co ché chuyén mach-mach, mot
duong din hoan chinh phai duoc thiét
lap trudc khi bit dau giao tiép gitta
ngudn va dich. Puong din da thiét lap s&
van ton tai trong sudt khoang thdi gian
truyén thong. Trong co ché chuyén mach
goi, truyén thong giita ngudén va dich
thuc hién thong qua tin nhan duoc chia
thanh cac don vi nho hon, goi la cac goi
tin. Trén dudong dén dich, cac goi tin co
thé duoc giri tr mdt nat téi nut Khac
bang cach luu trir va chuyén tiép cho dén
khi toi duoc diém dén cua ching. Uu
diém cta chuyén mach géi 1a st dung
cac tai nguyén mang hi¢u qua hon so voi
chuyén mach mach, nhugc diém cia nod
13 d6 tré cac gbi tin bién doi.

1.5.4 T6 pd

T6 pd mang lién théng 1a mot ham anh
xa tr cac bo vi xur 1y va b nhd vao cung
mot bo vi xir Iy va bd nhd. NOi cach
khac, cac t6 p6 mo ta cach thic két ndi
bd vi xtr Iy va cac bo nhd véi bd vi xur ly
Va cac bo nhé khac. Vi du, mot t6 pd két
ndi hoan chinh 1a mot qua trinh anh xa,
trong d6 mdi bo vi xtr Iy dugc két ndi véi
tat ca cac bo xir 1y khac trong may tinh.
T6 pd vong 1a mot anh xa két ndi vi xir 1y
k v&i c&c vi xtr 1y 1an cén cta nd, cac bd
vixly (k-1)va (k+1).

Nhin chung, mang lién théng c6 thé duoc




can be classified as static versus
dynamic networks. In static networks,
direct fixed links are established among
nodes to form a fixed network, while in
dynamic networks, connections are
established as needed. Switching
elements are wused to establish
connections among inputs and outputs.
Depending on the switch settings,
different interconnections can be
established. Nearly all multiprocessor
systems can be distinguished by their
interconnection  network  topology.
Therefore, we devote Chapter 2 of this
book to study a variety of topologies
and how they are used in constructing a
multiprocessor system. However, in
this section, we give a Dbrief
introduction to interconnection
networks for shared memory and
message passing systems.

Shared memory systems can be
designed using bus-based or switch-
based INs. The simplest IN for shared
memory systems is the bus. However,
the bus may get saturated if multiple
processors are trying to access the
shared memory (via the bus)
simultaneously. A typical bus-based
design uses caches to solve the bus
contention problem. Other shared
memory designs rely on switches for
interconnection. For example, a
crossbar switch can be used to connect
multiple  processors to  multiple
memory modules. A crossbar switch,
which will be discussed further in

phan loai thanh cac mang tinh va dong.
Trong mang tinh, li€én két ¢d dinh truc
tiép duoc thiét l1ap gilta cac nut dé tao
thanh mot mang c6 dinh, trong khi trong
mang dong, két ndi duoc thiét 1ap khi
can thiét. Cac phan tir chuyén mach dugc
str dung dé thiét 1ap két ndi giira dau vao
va dau ra. Tuy thudc vao cac thiét lap
chuyén mach, céc lién két khac nhau co
thé duoc thiét 1ap. Gan nhu tt ca cac hé
théng da xtr 1y c¢6 thé dugc phan biét theo
to pd mang lién thong cua ching. Vi vay,
ching t6i danh tron Chuong 2 ciia cudn
sach nay dé nghién ctru mot loat cac t6
p0 va cach sur dung chung trong viéc xay
dung mot hé thong da xu 1y. Tuy nhién,
trong phan nay, ching toi s& dua ra mot
gidi thiéu ngin gon vé cac mang lién
théng ctia hé théng bo nhé ding chung
va hé théng truyén tin.

Viéc thiét ké hé thong bo nhé dung
chung c6 thé st dung cac IN dua trén bus
hoac dua trén chuyén mach. IN don gian
nhit d6i v6i cac bo nhé dung chung 14
bus. Tuy nhién, bus c6 thé bi bio hoa néu
¢6 qua nhiéu bo xir Iy truy cap dong thoi
vao bo dung chung (théng qua bus).
Thong thuong, thiét ké dya trén bus sir
dung bd nhé dém dé giai quyét van dé
tranh chip bus. Céac thiét ké bo nhé dung
chung khac 1¢ thudc vao céc chuyén
mach dé két ndi. Vi du, mot chuyén
mach crossbar c6 thé dugc st dung dé
két n6i nhiéu bo xr 1y cho nhiéu mé-dun




Chapter 2, can be visualized as a mesh
of wires with switches at the points of
intersection. Figure 1.7 shows (a) bus-
based and (b) switch-based shared
memory systems. Figure 1.8 shows
bus-based systems when a single bus is
used versus the case when multiple
buses are used.

Message passing INs can be divided
into static and dynamic. Static
networks form all connections when
the system is designed rather than when
the connection is needed. In a static
network, messages must be routed
along established links.

Figure 1.8 Single bus and multiple bus
systems.

Dynamic INs establish a connection
between two or more nodes on the fly
as messages are routed along the links.
The number of hops in a path from
source to destination node is equal to
the number of point-to-point links a
message must traverse to reach its
destination. In either static or dynamic
networks, a single message may have
to hop through intermediate processors
on its way to its destination. Therefore,
the ultimate performance of an
interconnection network is greatly
influenced by the number of hops taken
to traverse the network. Figure 1.9
shows a number of popular static
topologies: (a) linear array, (b) ring, (c)
mesh, (d) tree, (e) hypercube.

bd nhd. Chuyén mach crossbar, s& duoc
thdo luan trong Chuong 2, c6 thé duoc
hinh dung nhu mdt mang lugi day cung
v6i cac chuyén mach tai cic diém giao
nhau. Hinh 1.7 biéu dién céc hé thong bd
nhd dung chung (a) dua trén bus va (b)
dua trén chuyén mach. Hinh 1.8 minh
hoa hé théng dwa trén bus, bao gom don
bus va da bus.

Cac mang lién thong truyén tin cd thé
dugc chia thanh tinh va dong. Mang tinh
hinh thanh tat ca cac két ndi khi hé thong
duoc thiét ké chu khong phai khi can két
n6i. Trong mang tinh, thong diép phai
duoc chuyén cung vai cac lién két duoc
thiét lap.

Hinh 1.8 Hé thong bus don va nhiéu bus.

Cac mang lién thong dong thiét 1ap két
nbi gitta hai hay nhiéu nat tuy bién khi
tin nhin dugc chuyén doc theo céc lién
két. SO lugng hops trong mot duong dan
tir N0t ngudn dén nut dich bang véi sb
lién két diém dén diém ma mot tin phai
di qua dé dén dich cta nd. Trong ca
mang tinh hoac dong, mét tin don cé thé
phai nhay qua cac bd vi xtr Iy trung gian
trén duong dén dich cua no. Vi vay, hoat
dong cudi cung ciia mang lién thong bi
anh hudng rat nhiéu boi sé luong bude
nhay thuc hién dé di qua mang. Hinh 1.9
biéu dién mot s6 t6 pd tinh phd bién: (a)
mang tuyén tinh, (b) vong, (c) ludi, (d)




Figure 1.10 shows examples of
dynamic networks. The single-stage
interconnection network of Figure
1.10a is a simple dynamic network that
connects each of the inputs on the left
side to some, but not all, outputs on the
right side through a single layer of
binary switches represented by the
rectangles. The binary switches can
direct the message on the left-side input
to one of two possible outputs on the
right side. If we cascade enough single-
stage networks together, they form a
completely  connected  multistage
interconnection network (MIN), as
shown in Figure 1.10b. The omega
MIN connects eight sources to eight
destinations. The con-nection from the
source 010 to the destination 010 is
shown as a bold path in Figure 1.10b.
These are dynamic INs because the
connection is made on the fly, as
needed. In order to connect a source to
a destination, we simply use a function
of the bits of the source and destination
addresses as instructions for
dynamically selecting a path through
the switches. For example, to connect
source 111 to destination 001 in the
omega network, the switches in the
first and second stage must be set to
connect to the upper output port, while
the switch at the third stage must be set
TABLE 1.2 Performance Comparison
of Some Dynamic INs

MIN, on the other hand requires log N
clocks to make a connection. The
diameter of the omega MIN is therefore

cay, (e) siéu lap phuong.

Hinh 1.10 dua ra vi du vé mang dong.
Mang lién thdng mot tang & hinh 1.10a la
mot mang dong don gian, két ndi mdi
dau vao ¢ phia bén trai voi nhitng phan
khéc, nhung khong phai tit ca, cac dau ra
& phia bén phai qua mot 16p thiét bi
chuyén mach nhi phan duoc biéu dién
bang cac hinh chit nhat. Cac chuyén
mach nhi phan co thé huéng tin & dau
vao bén trai dén mot trong hai dau ra kha
di & bén phai. Néu ching ta ghép cac
mang mot ting véi nhau, ching sé hinh
thanh nén modt mang lién thong nhiéu
tang duoc két nbi hoan chinh (MIN), nhu
biéu dién trong hinh 1.10b. MIN omega
két ndi tdm ngudn dén tam dich. Su két
nébi tir ngudn 010 dén dich 010 duogc bicu
dién bang mot dudng dam trong hinh
1.10b. Pay la cac IN dong vi két ndi
duoc thyc hién tiy bién khi can thiét. Dé
két ndi mot ngudn dén dich, chung ta chi
can st dung mot ham theo bit dia chi
ngudén va dich nhu huéng din dé lua
chon dong mot dudng di qua cac chuyén
mach. Vi dy, dé két nbi nguén 111 dén
dich 001 trong mang omega, cic chuyén
mach ¢ tang dau tién va tha hai budc
phai két nbi voi cong ra phia trén, trong
khi chuyén mach & ting thtr ba phai dugc
dat

BANG 1.2 So sanh tinh ning ctia mét sb
IN dong




log N. Both networks limit the number
of alternate paths between any
source/destination pair. This leads to
limited fault tolerance and network
traffic congestion. If the single path
between pairs becomes faulty, that pair
cannot communicate. If two pairs
attempt to communicate at the same
time along a shared path, one pair must
wait for the other. This is called
blocking, and such MINs are called
blocking networks. A network that can
handle all possible connections without

blocking is called a nonblocking
network.

Table 1.2 shows a performance
comparison among a number of

different dynamic INs. In this table, m
represents the number of multiple
buses used, while N represents the

number of processors (memory
modules) or input/output of the
network.

Table 1.3 shows a performance

comparison among a number of static
INs. In this table, the degree of a
network is defined as the maximum
number of links (channels) connected
to any node in the network. The
diameter of a network is defined as the
maximum path, p, of the shortest paths
between any two nodes. Degree of a
node, d, is defined as the number of
channels incident on the node.
Performance  measures  will  be
discussed in more detail in Chapter 3.

MIN, mit khac cin logN dong ho dé
thuc hién két ndi. Do d6, dudng kinh cua
MIN omega 1a N. Ca hai mang déu han
ché s6 luong dudng luan phién giira bat
ky ngudn / dich ndo. Piéu nay din dén
han ché kha ning chiu 15i va tic nghén
lru thong mang. Néu con dudng duy
nhét gitta cac cip bi 16i, ciip d6 khong thé
giao tiép. Néu hai cip cd ging giao tiép
déng thoi trén cung mot dudng, mot cap
phai doi cdp kia. Piéu nay dugc goi 1a
chdn, va cd&¢c MIN nhu vay duogc goi la
mang chan. Mot mang c6 thé xir ly tat ca
cac két nbi c6 thé co (cac két ndi kha di)
ma khong ngin chan dugc goi la mang
khong chan.

Bang 1.2 so sanh hi¢u nang cua cac IN
ddng khac nhau. Trong bang niy, m biéu
dién cho sb bus st dung, trong khi N
biéu dién sb bd vi xtr 1y (cac mo6 dun bo
nhd) hodc dau vao / dau ra clia mang.

Bang 1.3 so sanh hiéu ning ctia mot sb
IN tinh. Trong bang nay, mic d cua mot
mang (bac cua mang) dugc dinh nghia la
s6 luong tdi da cac lién két (kénh) két ndi
v6i bat ky nat ndo trong mang. Puong
kinh ctia mang dugc dinh nghia 1a duong
dan cuc dai, p, trong cac duong din ngin
nhit gitra bat ky hai nat ndo. Mtrc do cua
nat (bac cua nat), d, dugc dinh nghia 1a
s6 luong kénh dén trén ndt. Trong
chuong 3, ching ta s& dé& cap dén viéc




dinh lugng hi€u nang.




CHAPTER 2

Multiprocessors Interconnection Networks
As we have seen in Chapter 1, a
multiprocessor system consists of multiple
processing units connected via some
interconnection network plus the software
needed to make the processing units work
together. There are two major factors used
to categorize such systems: the processing
units themselves, and the interconnection
network that ties them together. A number
of communication styles exist for
multiprocessing networks. These can be
broadly classified according to the
communication model as shared memory
(single address space) versus message
passing  (multiple  address  spaces).
Communication in shared memory systems
is performed by writing to and reading from
the global memory, while communication in
message passing systems is accomplished
via send and receive commands. In both
cases, the interconnection network plays a
major role in  determining  the
communication speed. In this chapter, we
introduce the different topologies used for
interconnecting multiple processors and
memory modules. Two schemes are
introduced, namely static and dynamic
interconnection networks. Static networks
form all connections when the system is
designed rather than when the connection is
needed. In a static network, messages must
be routed along established links. Dynamic
interconnection networks establish
connections between two or more nodes on
the fly as messages are routed along the
links. The hypercube, mesh, and k-ary n-
cube topologies are introduced as examples
for static networks. The bus, crossbar, and




multistage inter-connection topologies are
introduced as examples for dynamic
interconnection networks. Our coverage in
this chapter will conclude with a section on
performance evaluation and analysis of the
different interconnection networks.

2.1 INTERCONNECTION NETWORKS
TAXONOMY

In this section, we introduce a topology-
based taxonomy for interconnection
networks (INs). An interconnection network
could be either static or dynamic.
Connections in a static network are fixed
links, while connections in a dynamic
network

Figure 2.1 A topology-based taxonomy for
interconnection networks.

are established on the fly as needed. Static
networks can be further classified according
to their interconnection pattern as one-
dimension (1D), two-dimension (2D), or
hypercube (HC). Dynamic networks, on the
other hand, can be classified based on
interconnection scheme as bus-based versus
switch-based. Bus-based networks can
further Dbe classified as single bus or
multiple buses. Switch-based dynamic
networks can be classified according to the
structure of the interconnection network as
single-stage (SS), multistage (MS), or
crossbar networks. Figure 2.1 illustrate this
taxonomy. In the following sections, we
study the different types of dynamic and
static interconnection networks.

2.2 BUS-BASED DYNAMIC
INTERCONNECTION NETWORKS




2.2.1 Single Bus Systems

A single bus is considered the simplest way
to connect multiprocessor systems. Figure
2.2 shows an illustration of a single bus
system. In its general form, such a system
consists of N processors, each having its
own cache, connected by a

Figure 2.2 Example single bus system.
shared bus. The use of local caches reduces
the processor-memory traffic. All processors
communicate with a single shared memory.
The typical size of such a system varies
between 2 and 50 processors. The actual
size is determined by the traffic per
processor and the bus bandwidth (defined as
the maximum rate at which the bus can
propagate data once transmission has
started). The single bus network complexity,
measured in terms of the number of buses
used, is O(1), while the time complexity,
measured in terms of the amount of input to
output delay is O(N).

Although simple and easy to expand, single
bus multiprocessors are inherently limited
by the bandwidth of the bus and the fact that
only one processor can access the bus, and
in turn only one memory access can take
place at any given time. The characteristics
of some commercially available single bus
computers are summarized in Table 2.1.

2.2.2 Multiple Bus Systems
The use of multiple buses to connect
multiple processors is a natural extension to




the single shared bus system. A multiple bus
multiprocessor system uses several parallel
buses to interconnect multiple processors
and multiple memory modules. A number of
connection schemes are possible in this
case. Among the possibilities are the
multiple  bus with  full  bus-memory
connection (MBFBMC), multiple bus with
single bus memory connection (MBSBMC),
multiple bus with partial bus- memory
connection (MBPBMC), and multiple bus
with  class-based memory connection
(MBCBMC).  Illlustrations  of  these
connection schemes for the case of N = 6
processors, M = 4 memory modules, and B
= 4 Dbuses are shown in Figure 2.3. The
multiple bus with  full  bus-memory
connection has all memory modules
connected to all buses. The multiple bus
with single bus-memory connection has
each memory module connected to a
specific bus. The multiple bus with partial
bus -memory connection has each memory
module connected to a subset of buses. The
multiple bus with class-based memory
connection has memory modules grouped
into classes whereby each class is connected
to a specific subset of buses. A class is just
an arbitrary collection of memory modules.
One can characterize those connections
using the number of connections required
and the load on each bus as shown in Table
2.2. In this table, k represents the number of
classes; g represents the number of buses
per group, and Mj represents the number of
memory modules in class j.

TABLE 2.1 Characteristics of Some
Commercially  Available  Single Bus
Systems

In general, multiple bus multiprocessor




organization offers a number of desirable
features such as high reliability and ease of
incremental growth. A single bus failure
will leave (B — 1) distinct fault-free paths
between the processors and the memory
modules. On the other hand, when the
number of buses is less than the number of
memory modules (or the number of
processors), bus contention is expected to
increase.

Figure 2.3 (a) Multiple bus with full bus-
memory connection (MBFBMC); (b)
multiple bus with single bus-memory
connection (MBSBMC); (c) multiple bus
with partial bus- memory connection
(MBPBMC); and (d) multiple bus with
class-based memory connection
(MBCBMC).

Figure 2.3 Continued.

2.2.3 Bus Synchronization

A bus can be classified as synchronous or
asynchronous. The time for any transaction
over a synchronous bus is known in
advance. In accepting and/or generating
information over the bus, devices take the
transaction time into account. Asynchronous
bus, on the other hand, depends on the
availability of data and the readiness of
devices to initiate bus transactions.

In a single bus multiprocessor system, bus
arbitration is required in order to resolve the
bus contention that takes place when more
than one processor competes to access the
bus. In this case, processors that want to use
the bus submit their requests to bus
arbitration logic. The latter decides, using a
certain priority scheme, which processor
will be granted access to the bus during a
certain time interval (bus master). The




process of passing bus mastership from one
processor to another is called handshaking
and requires the use of two control signals:
bus request and bus grant. The first indicates
that a given processor is requesting
mastership of the bus, while the second
indicates that bus mastership is granted. A
third signal, called bus busy, is usually used
to indicate whether or not the bus is
currently being used. Figure 2.4 illustrates
such a system.

In deciding which processor gains control of
the bus, the bus arbitration logic uses a
predefined priority scheme. Among the
priority schemes used are random

TABLE 2.2 Characteristics of Multiple Bus
Architectures

Figure 2.4 Bus handshaking mechanism (a)
the scheme; and (b) the timing.

priority, simple rotating priority, equal
priority, and least recently used (LRU)
priority. After each arbitration cycle, in
simple rotating priority, all priority levels
are reduced one place, with the lowest
priority processor taking the highest
priority. In equal priority, when two or more
requests are made, there is equal chance of
any one request being processed. In the
LRU algorithm, the highest priority is given
to the processor that has not used the bus for
the longest time.

2.3 SWITCH-BASED
INTERCONNECTION NETWORKS
In this type of network, connections among




processors and memory modules are made
using simple switches. Three basic
interconnection topologies exist: crossbar,
single-stage, and multistage.

2.3.1 Crossbar Networks

A crossbar network represents the other
extreme to the limited single bus network.
While the single bus can provide only a
single connection, the crossbar can provide
simultaneous connections among all its
inputs and all its outputs. The crosshar
contains a switching element (SE) at the
intersection of any two lines extended
horizontally or vertically inside the switch.
Consider, for example the 8 x 8 crossbar
network shown in Figure 2.5. In this case,
an SE (also called a cross-point) is provided
at each of the 64 intersection points (shown
as small squares in Fig. 2.5). The figure
illustrates the case of setting the SEs such
that simultaneous connections between p
and M8_i+1 for 1 < i < 8 are made. The two
possible settings of an SE in the crossbar
(straight and diagonal) are also shown in the
figure.

As can be seen from the figure, the number
of SEs (switching points) required is 64 and
the message delay to traverse from the input
to the output is constant, regardless of which
input/output are communicating. In general
for an N x N crossbar, the network
complexity, measured in terms of the
number of switching points, is O(N 2) while
the time complexity, measured in terms of
the input to output delay, is O(1). It should
be noted that the complexity of the crossbar




network pays off in the form of reduction in
the time complexity. Notice also that the
crossbar is a nonblocking network that
allows a multiple input-output connection
pattern (permutation) to be achieved
simultaneously. However, for a large
multiprocessor system the complexity of the
crossbar can become a dominant financial
factor.

2.3.2 Single-Stage Networks

In this case, a single stage of switching
elements (SEs) exists between the inputs
and the outputs of the network. The simplest
switching element that can be used is the
Figure 2.5 An 8 x 8 crossbar network (a)
straight switch setting; and (b) diagonal
switch setting.

Figure 2.6 The different settings of the 2 x 2
SE.

2 X 2 switching element (SE). Figure
2.6 illustrates the four possible settings that
an SE can assume. These settings are called
straight, exchange, upper-broadcast, and
lower-broadcast. In the straight setting, the
upper input is transferred to the upper output
and the lower input is transferred to the
lower output. In the exchange setting the
upper input is transferred to the lower output
and the lower input is transferred to the
upper output. In the upper-broadcast setting
the upper input is broadcast to both the
upper and the lower outputs. In the lower-
broadcast the lower input is broadcast to
both the upper and the lower outputs.

To establish communication between a
given input (source) to a given output
(destination), data has to be circulated a




number of times around the network. A
well-known  connection  pattern  for
interconnecting the inputs and the outputs of
a single-stage network is the Shuffle-
Exchange. Two operations are used. These
can be defined using an m bit-wise address
pattern of the inputs, Pm-1Pm-2 « « -p”0, as
follows:

With shuffle (S) and exchange (E)
operations, data is circulated from input to
output until it reaches its destination. If the
number of inputs, for example, processors,
in a single-stage IN is N and the number of
outputs, for example, memories, is N, the
number of SEs in a stage is N/2. The
maximum length of a path from an input to
an output in the network, measured by the
number of SEs along the path, is log2 N.

Example In an 8-input single stage Shuffle-
Exchange if the source is 0 (000) and the
destination is 6 (110), then the following is
the required sequence of Shuffle/ Exchange
operations and circulation of data:

The network complexity of the single-stage
interconnection network is O(N) and the
time complexity is O(N).

In addition to the shuffle and the exchange
functions, there exist a number of other
interconnection patterns that are used in
forming the interconnections among stages
in interconnection networks. Among these
are the Cube and the Plus-Minus 2'(PM2I)
networks. These are introduced below.

The Cube Network The interconnection
pattern used in the cube network is defined




as follows:

Consider a 3-bit address (N = 8), then we
have C2(6) = 2, C1 (7) = 5 and C0(4) = 5.
Figure 2.7 shows the cube interconnection
patterns for a network with N = 8.

The network is called the cube network due
to the fact that it resembles the
interconnection among the corners of an n-
dimensional cube (n = log2 N) (see Fig.

2.16e, later).
The Plus-Minus 2i (PM2l) Network The
PM2I network consists of 2k

interconnection  functions  defined as
follows:

For example, consider the case N = 8,
PM2+1(4) = 4 + 21 mod 8 = 6. Figure 2.8
shows the PM21 for N = 8. It should be
noted that PM2+(k-1)(P) = PM2_ (k-
1)(P)VP, 0 < P < N. It should also be noted
that PM2+2 = C2. This last observation
indicates that it should be possible to use the
PM2I network to perform at least part of the
connections that are parts of the Cube
network (simulating the Cube network using
the PM2I network) and the reverse is also
possible. Table 2.3 provides the lower and
the upper bounds on network simulation
times for the three networks PM2I, Cube,
and Shuffle-Exchange. In this table the
entries at the intersection of a given row and
a given column are the lower and the upper

..............

Figure 2.7 The cube network for N = 8 (a)
CO0; (b) C1; and (c) C2

T




bounds on the time required for the network
in the row to simulate the network in the
column (see the exercise at the end of the
chapter).

The Butterfly Function The interconnection
pattern used in the butterfly network is
defined as follows:

Consider a 3-bit address (N = 8), the
following is the butterfly mapping:

TABLE 2.3 Network Simulation Time for
Three Networks

2.3.3 Multistage Networks

Multistage interconnection networks (MINSs)
were introduced as a means to improve
some of the limitations of the single bus
system while keeping the cost within an
affordable limit. The most undesirable
single bus limitation that MINs is set to
improve is the availability of only one single
path between the processors and the
memory modules. Such MINs provide a
number of simultaneous paths between the
processors and the memory modules.

As shown in Figure 2.9, a general MIN
consists of a number of stages each
consisting of a set of 2 x 2 switching
elements. Stages are connected to each other
using Inter-stage Connection (ISC) Pattern.
These patterns may follow any of the
routing functions such as Shuffle-Exchange,
Butterfly, Cube, and so on.

Figure 2.10 shows an example of an 8 x 8
MIN that uses the 2 x 2 SEs described
before. This network is known in the
literature as the Shuffle-Exchange network
(SEN). The settings of the SEs in the figure
illustrate how a number of paths can be




established simultaneously in the network.
For example, the figure shows how three
simultaneous paths connecting the three
pairs of input/output 000 ! 101, 101 ! 011,
and 110 ! 010 can be established. It should
be noted that the interconnection pattern
among stages follows the shuffle operation.
In MINSs, the routing of a message from a
given source to a given destination is based
on the destination address (self-routing).
There exist log2 N stages in an

Figure 2.9 Multistage interconnection
network.

N x N MIN. The number of bits in any
destination address in the network is log2 N.
Each bit in the destination address can be
used to route the message through one stage.
The destination address bits are scanned
from left to right and the stages are
traversed from left to right. The first (most
significant bit) is used to control the routing
in the first stage; the next bit is used to
control the routing in the next stage, and so
on. The convention used in routing
messages is that if the bit in the destination
address controlling the routing in a given
stage is 0, then the message is routed to the
upper output of the switch. On the other
hand if the bit is 1, the mess-age is routed to
the lower output of the switch. Consider, for
example, the routing of a message from
source input 101 to destination output 011 in
the 8 x 8 SEN shown in Figure 2.10. Since
the first bit of the destination address is 0,
therefore the message is first routed to the
upper output of the switch in the first
(leftmost) stage. Now, the next bit in the
destination address is 1, thus the message is
routed to the lower output of the switch in




the middle stage. Finally, the last bit is 1,
causing the message to be routed to the
lower output in the switch in the last stage.
This sequence causes the message to arrive
at the correct output (see Fig. 2.10). Ease of
message routing in MINSs is one of the most
desirable features of these networks.

The Banyan Network A number of other
MINs exist, among these the Banyan
network is well known. Figure 2.11 shows
an example of an 8 x 8 Banyan network.
The reader is encouraged to identify the
basic features of the Banyan network.

Figure 2.11 An 8 x 8 Banyan network.

If the number of inputs, for example,
processors, in an MIN is N and the number
of outputs, for example, memory modules,
IS N, the number of MIN stages is log2 N
and the number of SEs per stage is N/2, and
hence the network complexity, measured in
terms of the total number of SEs is O(N X
log2 N). The number of SEs along the path
Is usually taken as a measure of the delay a
message has to encounter as it finds its way
from a source input to a destination output.
The time complexity, measured by the
number of SEs along the path from input to
output, is O(log2 N). For example, ina 16 x
16 MIN, the length of the path from input to
output is 4. The total number of SEs in the
network is usually taken as a measure for
the total area of the network. The total area




ofa 16 x 16 MIN is 32 SEs.

The Omega Network The Omega Network
represents another well-known type of
MINSs. A size N omega network consists of
n (n = log2 N single-stage) Shuffle-
Exchange networks. Each stage consists of a
column of N/2, two-input switching
elements whose input is a shuffle
connection. Figure 2.12 illustrates the case
of an N = 8 Omega network. As can be seen
from the figure, the inputs to each stage
follow the shuffle interconnection pattern.
Notice that the connections are identical to
those used in the 8 x 8 Shuffle-Exchange
network (SEN) shown in Figure 2.10.
Owing to its versatility, a number of
university projects as well as commercial
MINs have been built. These include the
Texas Reconfigurable Array Computer
(TRAC) at the University of Texas at
Austin, the Cedar at the University of
Illinois at Urbana-Champaign, the RP3 at
IBM, the Butterfly by BBN Laboratories,
and the NYU Ultracomputer at New York
University. The NYU Ultracomputer is an
experimental shared memory MIMD
architecture that could have as many as
4096 processors connected through an
Omega MIN to 4096 memory modules. The
MIN is an enhanced network that can
combine two or more requests bound for the
same memory address. The network
interleaves consecutive memory addresses
across the memory modules in order to
reduce conflicts in accessing different data
elements. The switch nodes in the NYU
Ultracomputer are provided with queues
(queue lengths of 8 to 10 messages) to
handle messages collision at the switch. The
system achieves one-cycle processor to




Memory access.

2.3.4 Blockage in Multistage
Interconnection Networks

A number of classification criteria exist for
MINs. Among these criteria is the criterion
of blockage. According to this criterion,
MINs are classified as follows.
Rearrangeable  Networks Rearrangeable
networks are characterized by the property
that it is always possible to rearrange
already established connections in order to
make allowance for other connections to be
established simultaneously. The Benes is a
well-known example of rearrangeable
networks. Figure 2.13 shows an example 8 x
8 Benes network. Two simultaneous
connections are shown established in the
network. These are 110 ! 100 and 010 ! 110.
In the presence of the

Figure  2.13 [llustration  of  the
rearrangeability of the Benes network (a)
Benes network with two simultaneously
established paths; and (b) the rearrangement
of connection 110 ! 100 in order to satisfy
connection 101 ! 001.

connection 110 ! 100, it will not be possible
to establish the connection 101 ! 001 unless
the connection 110 ! 100 is rearranged as
shown in part (b) of the figure.

Nonblocking  Networks  Nonblocking
networks are characterized by the property
that in the presence of a currently
established connection between any pair of
input/output, it will always be possible to
establish a connection between any arbitrary
unused pair of input/output. The Clos is a




well-known example of nonblocking
networks. It consists of rlnl x m input
crossbar switches (rl is the number of input
crosshars, and nl1 x m is the size of each
input crossbar), mrl x r2 middle crossbhar
switches (m is the number of middle
crosshars, and rl x r2 is the size of each
middle crossbar), and r2m x n2 output
crossbar switches (r2 is the number of
output crossbars and m x n2 is the size of
each output crossbar). The Clos network is
not blocking if the following inequality is
satisfied m>nl +n2 — 1.

A three-stage Clos network is shown in
Figure 2.14. The network has the following
parameters: r1 =4, nl =2, m =4, r2 = 4,
and n2 = 2. The reader is encouraged to
ascertain the nonblocking feature of the
network shown in Figure 2.14 by working
out some example simultaneous
connections. For example show that in the
presence of a connection such as 110 to 010,
any other connection will be possible. Note
that Clos networks will be discussed again
in Chapter 7.

2.4 STATIC INTERCONNECTION
NETWORKS

Static (fixed) interconnection networks are
characterized by having fixed paths,
unidirectional or bidirectional, between
processors. Two types of static networks can
be identified. These are completely
connected networks (CCNs) and limited
connection networks (LCNS).

Figure 2.14 A three-stage Clos network.
2.4.1 Completely Connected Networks

In a completely connected network (CCN)
each node is connected to all other nodes in
the  network. Completely connected




networks guarantee fast delivery of
messages from any source node to any
destination node (only one link has to be
traversed). Notice also that since every node
IS connected to every other node in the
network, routing of messages between
nodes becomes a straightforward task.
Completely connected networks are,
however, expensive in terms of the number
of links needed for their construction. This
disadvantage becomes more and more
apparent for higher values of N. It should be
noted that the number of links in a
completely connected network is given by
N(N — 1)/2, that is, O(N2). The delay
complexity of CCNs, measured in terms of
the number of links traversed as messages
are routed from any source to any
destination is constant, that is, O(1). An
example having N = 6 nodes is shown in
Figure 2.15. A total of 15 links are required
in order to satisfy the complete
interconnectivity of the network.

2.4.2 Limited Connection Networks
Limited connection networks (LCNSs) do not
provide a direct link from every node to
every other node in the network. Instead,
communications between some nodes have
to be routed through other nodes in the
network. The length of the path between
nodes, measured in terms of the number of
links that have to be traversed, is expected
to be longer compared to the case of CCNs.
Two other conditions seem to have been
imposed by the existence of Ilimited
interconnectivity in LCNs. These are: the
need for a pattern of interconnection among
nodes and the need for a mechanism for
routing messages around the network until
they reach their destinations. These two




items are discussed below.

A number of regular interconnection
patterns have evolved over the years for
LCNs These patterns include:

. linear arrays;

. ring (loop) networks;

. two-dimensional arrays  (nearest-
neighbor mesh);

. tree networks; and

. cube networks.

Simple examples for these networks are
shown in Figure 2.16.

In a linear array, each node is connected to
its two immediate neighboring nodes. The
two nodes at the extreme ends of the array
are connected to their single immediate
neighbor. If node i needs to communicate
with node j, j > i, then the message from
node i has to traverse nodes i + 1, i + 2,..., ]
— 1. Similarly, when node i needs to
communicate with node j, where i > j, then
the message from node i has to traverse
nodes i — 1, i — 2,..., i — J. In the worst
possible case, when node 1 has to send a
message to node N, the message has to
traverse a total of N— 1 nodes before it can
reach its destination. Therefore, although
linear arrays are simple in their architecture
and have simple routing mechanisms, they
tend to be slow. This is particularly true
when the number of nodes N is large. The
network complexity of the linear array is
O(N) and its time complexity is O(N). If the
two nodes at the extreme ends of a linear
array network are connected, then the
resultant network has ring (loop)
architecture.

In a tree network, of which the binary tree
(shown in Fig. 2.16d) is a special case, if a




node at level i (assuming that the root node
is at level 0) needs to communicate with a
node at level j, where i > j and the
destination node belongs to the same root’s
child subtree, then it will have to send its
message up the tree traversing nodes at
levels i — 1,1 — 2,..., ] + 1 until it reaches
the destination node. If a node at level i
needs to communicate with another node at
the same level i (or with node at level j = i
where the destination node belongs to a
different root’s child subtree), it will have to
send its message up the tree until the
message reaches the root node at level 0.
The message will have to be then sent down
from the root nodes until it reaches its
destination. It should be noted that the
number of nodes (processors) in a binary
tree system having k levels can be
calculated as:

Notice also that the maximum depth of a
binary tree system is |log2 NJ], where N is
the number of nodes (processors) in the
network. Therefore, the network complexity
Is O(2k) and the time complexity is O( log2
N).

The cube-connected and the mesh-
connected networks have been receiving
increasing interest and, therefore, we discuss
them in more detail in the following
subsections.

2.4.3 Cube-Connected Networks
Cube-connected networks are patterned after
the n-cube structure. An n-cube (hypercube




of order n) is defined as an undirected graph
having 2n vertices labeled 0 to 2n — 1
such that there is an edge between a given
pair of vertices if and only if the binary
representation of their addresses differs by
one and only one bit. A 4-cube is shown in
Figure 2.17. In a cube-based multiprocessor
system, processing elements are positioned
at the vertices of the graph. Edges of the
graph  represent the point-to- point
communication links between processors.
As can be seen from the figure, each
processor in a 4-cube is connected to four
other processors. In an n-cube, each
processor has communication links to n
other processors. Recall that in a hypercube,
there is an edge between a given pair of
nodes if and only if the binary
representation of their addresses differs by
one and only one bit. This property allows
for a simple message routing mechanism.
The route of a message originating at node i
and destined for node j can be found by
XOR-ing the binary address representation
of i and j. If the XOR-ing operation results
in a 1 in a given bit position, then the
message has to be sent along the link that
spans the corresponding dimension. For
example, if a message is sent from source
(S) node 0101 to destination (D) node 1011,
then the XOR operation results in 1110.
That will mean that the message will be sent
only along dimensions 2, 3, and 4 (counting
from right to left) in order to arrive at the
destination. The order in which the message
traverses the three dimensions is not
important. Once the message traverses the
three dimensions in any order it will reach
its destination. The three possible disjoint
routes that can be taken by the message in




this example are shown in bold in Figure
2.17. Disjoint routes do not share any
common links among them.

In an n-cube, each node has a degree n. The
degree of a node is defined as the number of
links incident on the node. The upper limit
on the number of disjoint paths in an n-cube
IS n. The hypercube is referred to as a
logarithmic architecture. This is because the
maximum number of links a message has to
traverse in order to reach its destination in
an n-cube containing N = 2n nodes is log2 N
= n links. One of the desirable features of
hypercube networks is the recursive nature
of their constructions. An n-cube can be
constructed from two subcubes each having
an (n — 1) degree by connecting nodes of
similar addresses in both subcubes. Notice
that the 4-cube shown in Figure 2.17 is
constructed from two subcubes each of
degree three. Notice that the construction of
the 4-cube out of the two 3-cubes requires
an increase in the degree of each node. It is
worth mentioning that the Intel iPSC is an
example of hypercube-based commercial
multiprocessor systems. A number of
performance Issues of hypercube
multiprocessors will be discussed in Section
2.5.

A number of variations to the basic
hypercube interconnection have been
proposed. Among these is the cube-
connected cycle architecture. In this
architecture, 2n+r nodes are connected in an
n-cube fashion such that groups of r nodes




each form cycles (loops) at the vertices of
the cube. For example, a 3-cube connected
cycle network with r = 3 will have three
nodes (processors) forming a loop (ring) at
each vertex of the 3-cube. The idea of cube-
connected cycles has not been widely used.
2.4.4 Mesh-Connected Networks

An n-dimensional mesh can be defined as an
interconnection structure that has KO x K1
Xx---x K,, 1 nodes where n is the number of
dimensions of the network and K is the
radix of dimension i. Figure 2.18 shows an
example of a 3 x 3 x 2 mesh network. A
node whose position is (i, J, k) is connected
to its neighbors at dimensionsi + 1, j + 1,
and k + 1. Mesh architecture with wrap
around connections forms a torus. A number
of routing mechanisms have been used to
route messages around meshes. One such
routing mechanism is known as the
dimension-ordering routing. Using this
technique, a message is routed in one given
dimension at a time, arriving at the proper
coordinate in each dimension before
proceeding to the next dimension. Consider,
for example, a 3D mesh. Since each node is
represented by its position (i, j, k), then
messages are first sent along the i
dimension, then along the j dimension, and
finally along the k dimension. At most two
turns will be allowed and these turns will be
from i to j and then from j to k. In Figure
2.18 we show the route of a message sent
from node S at position (0, 0, 0) to node D
at position (2, 1, 1). Other routing
mechanisms in meshes have been proposed.
These include dimension reversal routing,
the turn model routing, and node labeling
routing. Readers are referred to the
bibliography for more information on those,




and other routing mechanisms. It should be
noted that for a mesh interconnection
network with N nodes, the longest distance
traveled between any two arbitrary nodes is
O(VN).

Multiprocessors with mesh interconnection
networks are able to support many scientific
computations very efficiently. It is also
known that n-dimensional meshes can be
laid out in n dimensions using only short
wires and built using identical boards, each
requiring only a small number of pins for
connections to other boards. Another
advantage of mesh interconnection networks
Is that they are scalable. Larger meshes can
be obtained from smaller ones without
changing the node degree (a node degree is
defined as the number of links incident on
the node). Because of these features, a large
number of distributed memory parallel
computers utilize mesh interconnection
networks. Examples include MPP from
Goodyear Aerospace, Paragon from Intel,
and J-Machine from MIT.

2.4.5 The k-ary n-Cube Networks

The k-ary n-cube network is a radix k cube
with n dimensions. The radix implies that
there are k nodes in each dimension. An 8-
ary 1-cube is simply an eight node ring,
while an 8-ary 2-cube is eight 8-node rings
connected such that nodes are connected to
all nodes with an address that differs in only
one digit (see Figure 2.19 Examples of k-ary
n-cube networks (a) 8-ary 1-cube (8 nodes
ring) network; and (b) 8-ary 2-cube (eight 8-
node rings) network.




Fig. 2.19). It should be noted that the
number of nodes in a k-ary n-cube is N = kn
nodes and that when k = 2, the architecture
becomes a binary n-cube. Routing of
messages in a k-ary n-cube network can be
done in a similar way to that used in mesh
networks. Figure 2.19 illustrates a possible
path for a message sent from a source node
(S) to a destination node (D). Notice that,
depending on the directionality of links
among nodes the possible route(s) will be
decided. Another factor involved in the
selection of route in a k-ary n-cube network
is the minimality of the route, measured in
terms of the number of hops (links)
traversed by a message before reaching its
destination. The length of the route between
S and D in Figure 2.19b is 6. Notice that
other routes exist between S and D but they
are longer than the indicated route. The
longest distance traveled between any two
arbitrary nodes in a k-ary n-cube network is
O(n + k).

2.5 ANALYSIS AND PERFORMANCE
METRICS

Having introduced the main architecture of
multiprocessors, we now turn our attention
to a discussion on the analysis and
performance issues related to those
architectures. We provide an introduction to
the Dbasic performance issues and
performance metrics related to both static
and dynamic interconnection networks. For
dynamic  networks, we discuss the
performance issues related to cost, measured
in terms of the number of cross points
(switching elements), the delay (latency),
the blocking characteristics, and the fault
tolerance. For static networks, we discuss
the performance issues related to degree,




diameter, and fault tolerance. A more
detailed discussion on assessing the
performance of these networks will be given
in Chapter 3.

2.5.1 Dynamic Networks

The Crossbar The cost of the crosshar
system can be measured in terms of the
number of switching elements (cross points)
required inside the crossbar. Recall that for
an N x N crossbar, the network cost,
measured in terms of the number of
switching points, is N 2. This is because in
an N x N crossbar a cross point is needed at
the intersection of every two lines extended
horizontally and vertically inside the switch.
We, therefore, say that the crossbar
possesses a quadratic rate of cost
(complexity) given by O(N2). The delay
(latency) within a crossbar switch, measured
in terms of the amount of the input to output
delay, is constant. This is because the delay
from any input to any output is bounded.
We, therefore, say that the crossbar
possesses a constant rate of delay (latency)
given by O(1). It should be noted that the
high cost (complexity) of the crossbar
network pays off in the form of reduction in
the time (latency). However, for a large
multiprocessor system the cost (complexity)
of the crossbar can become a dominant
financial burden. The crossbar is however a
nonblocking network; that is, it allows
multiple  output  connection  pattern
(permutation) to be achieved (see Fig. 2.5).
The nonblocking property of the crossbar is
a highly desirable feature that allows
concurrent  (simultaneous) processor-
memory accesses to take place.

A fault-tolerant system can be simply
defined as a system that can still function




even in the presence of faulty components
inside the system. Fault tolerance is a
desirable feature that allows a system to
continue functioning despite the fact that it
contains some faulty elements. The crossbar
can be affected by a single-point failure.
This is because a failure of a single cross
point inside the switch can lead to the
crossbar  being unable to provide
simultaneous connections among all its
inputs and all its outputs. Consider, for
example the cross-point failure shown in
Figure 2.20. In this case, a number of
simultaneous connections are possible to
make within the switch. However, a
connection between P5 and M4 cannot be
made.  Nevertheless, segmenting the
crossbar and realizing each segment
independently can reduce the effect of a
single-point failure in a crossbar. It may also
be possible to introduce routing algorithms
such that more than one path exists for the
establishment of a connection between any
processor-memory pair. Therefore, the
existence of a faulty cross point and/or link
along one path will not cause the total
elimination of a connection between the
processor-memory pair.

Multiple Bus In Section 2.2.2 we considered
a number of different multiple bus
arrangements. A general multiple bus
arrangement is shown in Figure 2.21. It
consists of M  memory  modules,
Nprocessors, and B buses. A given bus is
dedicated

Figure 2.21 Example multiple bus system.

to a particular processor for the duration of a
bus transaction. A  processor-memory
transfer can use any of the available buses.




Given B buses in the system, then up to B
requests for memory use can be served
simultaneously. The cost of a multiple-bus
system such as the ones shown in Figure 2.3
Is measured in terms of the number of buses
used, B. We therefore say that a multiple
bus possesses an O(B) rate of cost
(complexity) growth. The delay (latency) of
a multiple bus, measured in terms of the
amount of the input to output delay, is
proportional to B x N. We therefore say that
the multiple bus possesses an O(B x N) rate
of delay (latency) growth.

Multiple bus multiprocessor organization
offers the desirable feature of being highly
reliable and fault-tolerant. This is because a
single bus failure in a B bus system will
leave (B — 1) distinct fault-free paths
between the processors and the memory
modules. On the other hand, when the
number of buses is less than the number of
memory modules (or the number of
processors), bus contention is expected to
increase.

Multistage Interconnection Networks As
mentioned before, the number of stages in
an N x N MIN is log2 N. Each stage
consists of N/2, 2 x 2 switching elements
(SEs). The network cost (complexity),
measured in terms of the total number of
SEs, is O(N x log2 N). The number of SEs
along a path from a given input to a given
output is usually taken as a measure for the
delay a message has to encounter as it finds
its way from a source to a destination. The
latency (time) complexity, measured by the
number of SEs along the path from input to
output, is O( log2 N).




Simplicity of message routing inside a MIN
Is a desirable feature of such networks.
There exists a unique path between a given
input-output pair. However, this feature,
while simplifying the routing mechanism,
causes the MIN to be vulnerable to single-
point failure. The failure of a component (a
switch or a link) along a given path will
render the corresponding path inoperable,
thus causing the disconnection of the
corresponding input-output pair. Therefore,
MINs are characterized as being O-fault
tolerant; that is, a MIN cannot tolerate the
failure of a single component. A number of
solutions have been suggested in order to
improve the fault- tolerance characteristics
of MINs. One such solution has been to add
an extra stage of SEs such that the number
of stages becomes (log2 N + 1). The
addition of such a stage leads to the creation
of two paths between an input-output pair
and requires a minor modification in the
routing strategy.

Based on the above discussion, Table 2.4
provides an overall performance comparison
among different dynamic interconnection
networks. Notice that in

TABLE 2.4 Performance Comparison of
Dynamic Networks

this table N represent the number of inputs
(outputs) while m represents the number of
buses.

2.5.2 Static Networks

Before discussing performance issues
related to static interconnection networks,
we need to introduce a number of
definitions and topological characteristics:




. Degree of a node, d, is defined as the
number of channels incident on the node.
The number of channels into the node is the
in-degree, din. The number of channels out
of a node is the out-degree, dout. The total
degree, d, is the sum,

d — din ~ dout.

. Diameter, D, of a network having N
nodes is defined as the longest path, p, of
the shortest paths between any two nodes D
— max (minp[pj length(p)). In this
equation, pj is the length of the path
between nodes i and j and length (p) is a
procedure that returns the length of the path,
p. For example, the diameter of a

4 X 4 Mesh D = 6.

. A network is said to be symmetric if
it is isomorphic to itself with any node
labeled as the origin; that is, the network
looks the same from any node. Rings and
Tori networks are symmetric while linear
arrays and mesh networks are not.

Having introduced the above definitions, we
now proceed to introduce the basic issues
related to the performance of a number of
static networks.

Completely Connected Networks (CCNSs)
As mentioned before, in a completely
connected network each node is connected
to all other nodes in the network. Thus, the
cost of a completely connected network
having N nodes, measured in terms of the
number of links in the network, is given by
N(N — 1)/2, that is, O(N2). The delay
(latency) complexity of CCNs, measured in
terms of the number of links traversed as
messages are routed from any source to any
destination, is constant, that is, O(1). Notice




also that the degree of a node in CCN is N
— 1, that is, O(N), while the diameter is
O(1).

Linear Array Networks In this network
architecture, each node is connected to its
two immediate neighboring nodes. Each of
the two nodes at the extreme ends of the
network is connected only to its single
immediate neighbor. The network cost
(complexity) measured in terms of the
number of nodes of the linear array is O(N).
The delay (latency) complexity measured in
terms of the average number of nodes that
must be traversed to reach from a source
node to a destination node is N/2, that is,
O(N). The node degree in the linear array is
2, that is, O(1) and the diameter is (N — 1),
that is, O(N).

Tree Networks In a tree-connected network,
a given node is connected to both its parent
node and to its children nodes. In a k-level
complete binary tree network, the network
cost (complexity) measured in terms of the
number of nodes in the network is O(2K)
and the delay (latency) complexity is O(
log2 N). The degree of a node in a binary
tree is 3, that is, O(1), while the diameter is
O(log2 N).

Cube-Connected Networks An n-cube
network has 2n nodes where two nodes are
connected if the binary representation of
their addresses differs by one and only one
bit. The cost (complexity) of an n-cube
measured in terms of the number of nodes in
the cube is O(2n) while the delay (latency)
measured in terms of the number of nodes
traversed while going from a source node to
a destination node is O(log2 N). The node
degree in an n-cube is O(log2 N) and the
diameter of an n-cube is O(log2 N).




Mesh-Connected Networks A 2D mesh
architecture connects n x n nodes in a 2D
manner such that a node whose position is
(i, j) is connected to its neighbors at
positions (i + 1, j + 1). The cost
(complexity) of a 2D mesh measured in
terms of the number of nodes is O(n2),
while the delay (latency) measured in terms
of the number of nodes traversed while
going from a source to a destination is O(n).
The node degree in a 2D mesh is 4 and the
diameter is O(n).

The k-ary n-Cube Networks The k-ary n-
cube architecture is a radix k cube with n
dimensions. The number of nodes in a k-ary
n-cube is N = kn. The cost (complexity)
measured in terms of the number of nodes is
O(kn) and the delay (latency) measured in
terms of the number of nodes traversed
while going from a source to a destination is
O(n + k). The node degree of a k-ary n-cube
is 2n and the diameter is O(n x k). The
relationship among the  topological
characteristics introduced above for a k-ary
n-cube network is summarized below.
Having briefly discussed the basic
performance characteristics of a number of
static interconnection networks, Table 2.5
summarizes those topological
characteristics. In this table, N is the number
of nodes and n is the number of dimensions.

I1l. Performance Analysis of Multiprocessor
Architecture

In the previous chapter, we introduced the
fundamental concepts related to the design
and analysis of multiple-processor systems.
We have also touched upon some of the
basic issues in the performance analysis of




static and dynamic interconnection
networks. In this Chapter, we will build on
this foundation by providing an in-depth
analysis of the performance measures of
parallel architectures. Our coverage in this
chapter starts by introducing the concept of
computational models as related to
multiprocessors. The emphasis here is on
the computational aspects of the processing
elements (processors). Two computational
models are studied, namely the equal
duration processes and the parallel
computation with serial sections models. In
studying these models, we discuss two
measures. These are the speedup factor and
the efficiency. The impact of the
communication overhead on the overall
speed performance of multiprocessors is
emphasized in these models. Having
introduced the computational models, we
move on to present a number of arguments
in support of parallel architectures.
Following that, we study a number of
performance  measures  (metrics)  of
interconnection  networks. We  define
performance metrics such as the bandwidth,
worst-case  delay, utilization, average
distance traveled by a message, cost, and
interconnectivity. We will show how to
compute those measures for sample
dynamic and static networks. Our coverage
continues with a discussion on the
scalability of parallel systems. A discussion
on the important topic of benchmark
performance concludes our coverage in this
chapter.













3.1 COMPUTATIONAL MODELS
In developing a computational model for
multiprocessors, we assume that a given
computation can be divided into
concurrent tasks for execution on the
multiprocessor.  Two  computational
models, thus, arise. These are discussed
below.

3.1.1 Equal Duration Model

In this model, it is assumed that a given
task -an be divided into n equal subtasks,
each of which can be executed by one
processor. If fs is the execution time of
the whole task using a single processor,
then the time taken by each processor to
execute its subtask is fm = fs/n. Since,
according to this model, all processors are
executing their subtasks simultaneously,
then the time taken to execute the whole
task is fm = fs/n. The speedup factor of a
parallel system can be defined as the ratio
between the time taken by a single
processor to solve a given problem
instance to the time taken by a parallel
system consisting of n processors to solve
the same problem instance.

The above equation indicates that,
according to the equal duration model, the
speedup factor resulting from using n
processors is equal to the number of
processors used, n.

One important factor has been overlooked
in the above derivation. This factor is the




communication overhead, which results
from the time needed for processors to
communicate and possibly exchange data
while executing their subtasks. Assume
that the time incurred due to the
communication overhead is called fc then
the actual time taken by each processor to
execute its subtask is given by

S(n) =  speedup  factor  with
communication overhead

The above equation indicates that the
relative values of fs and fc affect the
achieved speedup factor. A number of
cases can then be contemplated: (1) if fc ~
fs then the potential speedup factor is
approximately n; (2) if fc ~ fs then the
potential speedup factor is ~/™ A 1; (3) if
fc = fs then the potential speedup factor is
n/n+1ffil, forn»1.

In order to scale the speedup factor to a
value between 0 and 1, we divide it by the
number of processors, n. The resulting
measure is called the efficiency, j. The
efficiency is a measure of the speedup
achieved per processor. According to the
simple equal duration model, the
efficiency | is equal to 1 if the
communication overhead is ignored.
However if the communication overhead
is taken into consideration, the efficiency
can be expressed as

Although simple, the equal duration
model is however unrealistic. This is
because it is based on the assumption that
a given task can be divided into a number
of equal subtasks that can be executed by
a number of processors in parallel.




However, it is sufficient here to indicate
that real algorithms contain some (serial)
parts that cannot be divided among
processors. These (serial) parts must be
executed on a single processor. Consider,
for example, the program segments given
in Figure 3.1. In these program segments,
we assume that we start with a value from
each of the two arrays (vectors) a and b
stored in a processor of the available n
processors. The first program block
(enclosed in a square) can be done in
parallel; that is, each processor can
compute an element from the array
(vector) c. The elements of array c are
now distributed among processors, and
each processor has an element. The next
program segment cannot be executed in
parallel. This block will require that the
elements of array ¢ be communicated to
one processor and are added up there. The
last program segment can be done in
parallel. Each processor can update its
elements of a and b.

This illustrative example shows that a
realistic computational model should
assume the existence of (serial) parts in
the given task (program) that cannot be
divided. This is the basis for the following
model.

3.1.2 Parallel Computation with Serial
Sections Model

In this computational model, it is assumed
that a fraction f of the given task
(computation) is not dividable into
concurrent subtasks. The remaining part
(1 — f) is assumed to be dividable into
concurrent subtasks. Performing similar




Example program segments.

orivat | I o 4 F
| | durati o Lwill It in gl
folowing-

The time required to execute the task on n
processors is tm = fts + (1 — f)(ts/n). The
speedup factor is therefore given by

According to this equation, the potential
speedup due to the use of n processors is
determined primarily by the fraction of
code that cannot be divided. If the task
(program) is completely serial, that is, f =
1, then no speedup can be achieved
regardless of the number of processors
used. This principle is known as Amdahl's
law. It is interesting to note that according
to this law, the maximum speedup factor
is given by limn!l S(n) = 1/f. Therefore,
according to Amdahl’s law the
improvement in performance (speed) of a
parallel algorithm over a sequential one is
limited not by the number of processors
employed but rather by the fraction of the
algorithm that cannot be parallelized. A
first glance at Amdahl’s law indicates that
regardless of the number of processors
used, there exists an intrinsic limit on the
potential usefulness of using parallel
architectures. For some time and
according to Amdahl’s law, researchers
were led to believe that a substantial
increase in speedup factor would not be
possible by using parallel architectures.
We will discuss the validity of that and
similar postulates in the next section.
However, let us show the effect of the




communication overhead on the speedup
factor, given that a fraction, f, of the
computation is not parallelizable. As
stated earlier, the communication
overhead should be included in the
processing time. Considering the time
incurred due to this communication
overhead, the speedup factor is given by
The maximum speedup factor under such
conditions is given by

The above formula indicates that the
maximum speedup factor is determined
not by the number of parallel processors
employed but by the fraction of the
computation that is not parallelized and
the communication overhead.

Having considered the speedup factor, we
now touch on the efficiency measure.
Recall that the efficiency is defined as the
ratio between the speedup factor and the
number of processors, n. The efficiency
can be computed as:

As a last observation, one has to notice
that in a parallel architecture, processors
must maintain a certain level of
efficiency. However, as the number of
processors increases, it may become
difficult to wuse those processors
efficiently. In order to maintain a certain
level of processor efficiency, there should
exist a relationship between the fraction
of serial computation, f, and the number
of processor employed (see Problem 6).
After introducing the above two
computational models, we now turn our
attention to a discussion on some
performance laws (postulates) that were




hypothesized regarding the potential gain
of parallel architectures. Among these are
Grosch’s, Amdahl’s and Gustafson-
Brasis’s laws.

3.2 AN ARGUMENT FOR
PARALLEL ARCHITECTURES

In this section, we introduce a number of
postulates that were introduced by some
well-known computer architects
expressing  skepticism  about  the
usefulness of parallel architectures. We
will also provide rebuttal to those
concerns.

3.2.1 Grosch’s Law

It was as early as the late 1940s that H.
Grosch studied the relationship between
the power of a computer system, P, and
its cost, C. He postulated that P = K x Cs,
where s and K are positive constants.
Grosch postulated further that the value of
s would be close to 2. Simply stated,
Grosch’s law implies that the power of a
computer system increases in proportion
to the square of its cost. Alternatively, one
can express the cost of a system as C =
V(P/K) assuming that s = 2. The relation
between computing power and cost
according to Grosch’s law is shown in
Figure 3.2.

Figure 3.2 Power-cost relationship
according to Grosch’s law.

According to Grosch’s law, in order to
sell a computer for twice as much, it must
be four times as fast. Alternatively, to do
a computation twice as cheaply, one has
to do it four times slower. With the
advances in computing, it is easy to see
that Grosch’s law is repealed, and it is
possible to build faster and less expensive




computers over time.

3.2.2 Amdahl’s Law

Recall that in Section 3.1.2 we defined the
speedup factor of a parallel system as the
ratio between the time taken by a single
processor to solve a given problem
instance to the time taken by a parallel
system consisting of n processors to solve
the same problem instance.

Similar to Grosch’s law, Amdahl's law
made it so pessimistic to build parallel
computer systems due to the intrinsic
limit set on the performance improvement
(speed) regardless of the number of
processors  used.  An interesting
observation to make here is that according
to Amdahl’s law,f is fixed and does not
scale with the problem size, n. However,
it has been practically observed that some
real parallel algorithms have a fraction
that is a function of n. Let us assume thatf
is a function of n such that limn!l f(n) =
0. Hence,

This is clearly in contradiction to
Amdahl’s law. It is therefore possible to
achieve a linear speedup factor for large-
sized problems, given that limn!l f (n) =
0, a condition that has been practically
observed. For example, researchers at the
Sandia National Laboratories have shown
that using a 1024-processor hypercube
multiprocessor system for a number of
engineering problems, a linear speedup
factor can be achieved.

Consider, for example, the well-known
engineering problem of multiplying a
large square matrix A(m x m) by a vector




X(m) to obtain a vector, that is, C(m) —
A(m x m) * X(m). Assume further that
the solution of such a problem is
performed on a binary tree architecture
consisting of n nodes (processors).
Initially, the root node stores the vector
X(m) and the matrix A(m X m) is
distributed row-wise among the n
processors such that the maximum
number of rows in any processor is [jnd +
1. A simple algorithm to perform such
computation consists of the following
three steps:

The indivisible part of the computation
(steps 1 and 3) is equal to O(m) + O(m
log n). Therefore, the fraction of
computation that is indivisible f (m) =
(O(m) + O(m log n))/ O(m2) = O((1 + log
n)/m). Notice that limm!l1 f(m) = O.
Hence, contrary to Amdahl’s law, a linear
speedup can be achieved for such a large-
sized problem.

It should be noted that in presenting the
above scenario for solving the matrix
vector multiplication problem, we have
assumed that the memory size of each
processor is large enough to store the
maximum number of rows expected. This
assumption amounts to us saying that
with n processors, the memory is n times
larger. Naturally, this argument is more
applicable to message passing parallel
architectures than it is to shared memory
ones (shared memory and message
passing parallel  architectures are
introduced in Chapters 4 and 5,
respectively). The Gustafson- Barsis law
makes use of this argument and is
presented below.




3.2.3 Gustafson-Barsis’s Law

In 1988, Gustafson and Barsis at Sandia
Laboratories studied the paradox created
by Amdahl’s law and the fact that parallel
architectures comprised of hundreds of
processors were built with substantial
Improvement  in  performance. In
introducing  their  law,  Gustafson
recognized that the fraction of indivisible
tasks in a given algorithm might not be
known a priori. They argued that in
practice, the problem size scales with the
number of processors, n. This contradicts
the basis of Amdahl’s law. Recall that
Amdahl’s law assumes that the amount of
time spent on the parts of the program
that can be done in parallel, (1 — f), is
independent of the number of processors,
n. Gustafson and Brasis postulated that
when using a more powerful processor,
the problem tends to make use of the
increased resources. They found that to a
first approximation the parallel part of the
program, not the serial part, scales up
with the problem size. They postulated
that if s and p represent respectively the
serial and the parallel time spent on a
parallel system, then s + p X n represents
the time needed by a serial processor to
perform the computation. They therefore,
introduced a new factor, called the scaled
speedup factor, SS(n), which can be
computed as:

This equation shows that the resulting
function is a straight line with a slope = (1
— n). This shows clearly that it is
possible, even easier, to achieve efficient
parallel performance than is implied by
Amdahl’s speedup formula. Speedup




should be measured by scaling the
problem to the number of processors, not
by fixing the problem size.

Having considered computational models
and rebutted some of the criticism set
forth by a number of computer architects
in the face of using parallel architectures,
we now move to consider some
performance issues in dynamic and static
interconnection networks. The emphasis
will be on the performance of the
interconnection networks rather than the
computational aspects of the processors
(the latter was considered in Section 3.1).
3.3 INTERCONNECTION
NETWORKS PERFORMANCE ISSUES
In this section, we introduce a number of
metrics for assessing the performance of
dynamic and static interconnection
networks. In introducing the metrics, we
will show how to compute them for
sample networks chosen from those
introduced in Chapter 2. The reader is
reminded to review the definitions given
in Chapter 2 before proceeding with this
section. In particular, the reader should
review the definitions given about the
diameter D, the degree d, and the
symmetry of a network. In addition to
those definitions, we provide the
following definition.

. Channel bisection width of a
network, B, is defined as the minimum
number of wires that, when cut, divide the
network into equal halves with respect to
the number of nodes. The wire bisection
Is defined as the number of wires crossing
this cut of the network. For example, the
bisection width of a 4-cube is B = 8.




Table 3.1 provides some numerical values
of the above topological characteristics
for sample static networks. General
expressions for  the topological
characteristics of a number of static
interconnection networks are summarized
in Table 3.2. It should be noted that in this
table, N is the number of nodes and n is
the number of dimensions. In presenting
these expressions, we assume that the
reader is familiar with their topologies as
given in Chapter 2.
TABLE 3.1 Topological Characteristics
of Static Networks
Network
Configuration Bisection Width (B)
Node Degree (d) Diameter
TABLE 3.2 Topological Characteristics
of a Number of Static Networks
. Bandwidth The bandwidth of a
network can be defined as the data
transfer rate of the network. In a more
formal way, the bandwidth is defined as
the asymptotic traffic load supported by
the network as its utilization approaches
unity.
3.3.1 Bandwidth of a Crossbar

We will define the bandwidth for the
crossbar as the average number of
requests that can be accepted by a
crossbar in a given cycle. As processors
make requests for memory modules in a
crossbar, contention can take place when
two Or more processors request access to
the same memory module. Consider, for
example, the case of a crossbar consisting
of three processors pl, p2, and p3 and




three memory modules M1, M2, and M3.
As processors make requests for
accessing memory modules, the following
cases may take place:

1. All three processors request access
to the same memory module: In this case,
only one request can be accepted. Since
there are three memory modules, then
there are three ways (three accepted
requests) in which such a case can arise.

2. All three processors request access
to two different memory modules: In this
case two requests can be granted. There
are 18 ways (36 accepted requests) in
which such a case can arise.

3. All three processors request access
to three different memory modules: In
this case all three requests can be granted.
There are six ways (18 accepted requests)
in which such a case can arise.

From the above enumeration, it is clear
that of the 27 combinations of 3 requests
taken from 3 possible requests, there are
57 requests that can be accepted (causing
no memory contention). Therefore, we
say that the bandwidth of such a crossbar
Is BW = 57/27 = 2.11. It should be noted
that in computing the bandwidth in this
simple example, we made a simplified
assumption that all processors make
requests for memory module access in
every cycle.

In general, for M memory modules and n
processors, if a processor generates a
request with probability p in a cycle




directed to each memory with equal
probability, then the expression for the
bandwidth can be computed as follows.
The probability that a processor requests a
particular memory module is p/M. The
probability that a processor does not
request that memory module during a
given cycle is (1 — p/M). The probability
that none of the P processors request that
memory module during a cycle is (1 —
(p/M))n. The probability that at least one
request is made to that memory module is
(1 — (1 — (p/M))n). Therefore, the
expected number of distinct memory
modules with at least one request (the
bandwidth) is BW = M1 — (1 —
(p/M))n).

Notice that in case there is equal
probability that any module be requested
by a processor, then the term p/M in the
above equation will become 1/M. Now,
considering the case M = 3 and n = 3, the
BW = 19/9 = 2.11, the same as before.

In deriving the above expression, we have
assumed that all processors generate
requests for memory modules during a
given cycle. A similar expression can be
derived for the case whereby only a
fraction of processors generate requests
during a given cycle (see the exercise at
the end of the chapter).

3.3.2 Bandwidth of a Multiple Bus

We will develop an expression for the
bandwidth of the general multiple bus
arrangement shown in Figure 3.3. It
consists of M memory modules, n
processors, and B buses. A given bus is
dedicated to a particular processor for the




duration of a bus transaction. A
processor-memory transfer can use any of
the available buses. Given B buses in the
system, then up to B requests for memory
use can be served simultaneously. In
order to resolve possible conflicts in
accessing a given memory module out of
the available M modules, M arbiters, one
for each memory module, are used to
arbitrate among the requests made for a
given memory module. The set of M
arbiters accepts only one request for each
memory module at any given time. Let us
assume that a processor generates a
request with probability p in a cycle
directed to each memory with equal
probability. Therefore, out of all possible
memory requests, only up to M memory
requests can be accepted. The probability
that a memory module has at least one
request is given by (see the crosshar
analysis) b = 1 — (1 — (p/M))n. Owing
to the availability of only B buses, then of
all memory requests, only B request can
be satisfied. The

Figure 3.3 A multiple bus system.
probability that exactly k different
memory modules are requested during a
given cycle can be expressed as ........

Two cases have to be considered. These
are the case where fewer than B different
requests being made while fewer than B
buses are being used and the case where
B or more different requests are made
while all B buses are in use. Given these
two cases, the bandwidth of the B buses
system can be expressed as




3.3.3 Bandwidth of a Multistage
Interconnection Network (MIN)

In this subsection, we compute the
bandwidth of a MIN. A simplifying
assumption that we make is that the MIN
consists of stages of a X b crosshar
switches. One such MIN is the Delta
network. This assumption is made such
that the results we obtained for the
bandwidth of the crossbar network can be
utilized.

Let us assume that the request rate at the
input of the first stage is given by r0. The
number of requests accepted by the first
stage and passed on to the next stage is
R1=(1— (1 — (r0/b))a). The number of
requests at any of the b output lines of the
first stage is r1 = 1 — (1 — (r0/b))a.
Since these requests become the input to
the next stage, then by analogy the
number of requests at the output of the
second stage is given by r2 =1 — (1 —
(rl/b))a. This recursive relation can be
extended to compute the number of
requests at the output of stage j in terms
of the rate of input requests passed on
from stage j — 1 as follows: rj =1 — (1
— (rj—1/b))a for 1 < j < n where n is the
number of stages. Based on this, the
bandwidth of the MIN is given by BW =
bn x rn.

. Latency is defined as the total time
required to transmit a message from a
source node to a destination node in a
parallel architecture machine.

It should be noted that parallel machines
attempt to minimize the communication
latency by increasing the




interconnectivity. In our discussion, we
will show the latency caused by the time
spent in switching elements. Latency
caused by software overhead, routing
delay, and connection delay are
overlooked in this discussion.

The latency of a k-ary n-cube is k x log2
N, that of binary hypercube is given by
(log2 N), while that of a 2D mesh is given
by */N.

. Average distance, da, traveled by a
message in a static network, is a measure
of the typical number of links (hops) a
message has to traverse as it makes its
way from any source to any destination in
the network. In a network consisting of N
nodes, the average distance can be
computed using the following relation:

TABLE 3.3 Distance from Node 0000 to
all Other Nodes

In the above relation Nd is the number of
nodes separated by d links and max is the
maximum  distance  necessary  to
interconnect two nodes in the network.
Consider, for example, a 4-cube network.
The average distance between two nodes
in such a network can be computed as
follows. We compute the distance
between node (0) and all other 15 nodes
in the cube. These are shown in Table 3.3.
From these, therefore, the average
distance for a 4-cube is (32/15) ffi 2.13.




. Complexity (Cost) of a static
network can be measured in terms of the
number of links needed to realize the
topology of the network.

The cost of a k-ary n-cube measure in
terms of the number of links is given by n
x N, that of a hypercube is given by (n x
N)/2, that of a 2D mesh (having N nodes)
is given by 2(N — 2), and that of a binary
tree is given by (N — 1).

. Interconnectivity of a network is a
measure of the existence of alternate
paths between each source-destination
pair. The importance of network
connectivity is that it shows the resistance
of the network to node and link failures.
Network

TABLE 3.4 Performance Measure for a
Number of Dynamic Networks

TABLE 3.5 Performance Measure for a
Number of Static Networks

connectivity can be represented by the
two components: node connectivity and
link connectivity.

Consider, for example, the binary tree
architecture. The failure of a node, for
example, the root node, can lead to the




partitioning of the network into two
disjoint halves. Similarly, the failure of a
link can lead to the partitioning of the
network. We therefore say that the binary
tree network has a node connectivity of 1
and a link connectivity of 1.

Based on the above discussion and the
information provided in Chapter 2, the
following two tables, Tables 3.4 and 3.5,
provide overall performance comparison
among different dynamic interconnection
networks and different static networks,
respectively. Having presented a number
of performance measures for static and
dynamic networks, we now turn our
attention to the important issue of parallel
architecture scalability.

3.4 SCALABILITY OF PARALLEL
ARCHITECTURES

A parallel architecture is said to be
scalable if it can be expanded (reduced) to
a larger (smaller) system with a linear
increase (decrease) in its performance
(cost). This general definition indicates
the desirability for providing equal chance
for scaling up a system for improved
performance and for scaling down a
system for greater cost- effectiveness
and/or affordability. Unless otherwise
mentioned, our discussion in this section
will assume the scaling up of systems. In
this context, scalability is used as a
measure of the system’s ability to provide
increased performance, for example,
speed as its size is increased. In other
words, scalability is a reflection of the
system’s ability to efficiently utilize the




increased  processing  resources. In
practice, the scalability of a system can be
manifested in a number of forms. These
forms include speed, efficiency, size,
applications, generation, and
heterogeneity.

In terms of speed, a scalable system is
capable of increasing its speed in
proportion to the increase in the number
of processors. Consider, for example, the
case of adding m numbers on a 4-cube (n
= 16 processors) parallel system. Assume
for simplicity that m is a multiple of n.
Assume also that originally each
processor has (m/n) numbers stored in its
local memory. The addition can then
proceed as follows. First, each processor
can add its own numbers sequentially in
(m/n) steps. The addition operation is
performed  simultaneously in  all
processors. Secondly, each pair of
neighboring processors can communicate
their results to one of them whereby the
communicated result is added to the local
result. The second step can be repeated
(log2 n) times, until the final result of the
addition process is stored in one of the
processors.  Assuming  that  each
computation and the communication takes
one unit time then the time needed to
perform the addition of these m numbers
Is Tp = (m/n) + 2 x log2 n. Recall that the
time required to perform the same
operation on a single processor is Ts = m.




Therefore, the speedup is given by

Table 3.6 provides the speedup S for
different values of m and n. It is
interesting to notice from the table that for
the same number of processors, n, a larger
instance of the same problem, m, results
In an increase in the speedup, S. This is a
property of a scalable parallel system.

In terms of efficiency, a parallel system is
said to be scalable if its efficiency can be
kept fixed as the number of processors is
increased, provided that the problem size
is also increased. Consider, for example,
the above problem of adding m numbers
on an n-cube. The efficiency of such a
system is defined as the ratio between the
actual speedup, S, and the ideal speedup,
n. Therefore, j = (S/n) = m/(m + 2n x log2
n). Table 3.7 shows the values of the
efficiency, j, for different values of m and
n. The values in the table indicate that for
the same number of processors, n, higher
efficiency is achieved as the size of the
problem, m, is increased. However, as the
number of processors, n, increases, the
efficiency continues to decrease. Given
these two observations, it should be
possible to keep the efficiency fixed by
increasing simultaneously both the size of
the problem, m, and the number of




processors, n. This is a property of a
scalable parallel system.

It should be noted that the degree of
scalability of a parallel system is
determined by the rate at which the
problem size must increase with respect
to n in order to maintain a fixed efficiency
as the number of processors increases. For
example, in a highly scalable parallel
system the size of the problem needs to
grow linearly

TABLE 3.6 The Possible Speedup for
Different m and n

TABLE 3.7 Efficiency for Different

Values of m and n

with respect to n to maintain a fixed
efficiency. However, in a poorly scalable
system, the size of the problem needs to
grow exponentially with respect to n to
maintain a fixed efficiency.

Recall that the time spent by each
processor in  performing  parallel
execution in solving the problem of
adding m numbers on an n-cube is given
by (m/n) + 2 x log2 n. Of this time,
approximately (m/n) is spent performing
the actual execution, while the remaining
portion of the time, Toh, is an overhead




incurred in performing tasks such as
interprocessor ~ communication.  The
following relationship applies: Toh = n x
Tp — Ts. For example, the overall
overhead for the addition problem
considered above is given by Toh = 2n x
log2 n. It is interesting to note that a
sequential algorithm running on a single
processor does not suffer from such
overhead. Now, we can rewrite the
expression for the efficiency as j = m/(m
+ Toh), which leads to the equation m =
ZI(1 — Z)Toh. Consider again the
problem of adding m numbers using an n-
cube. For this problem the problem size m
=2xZI(1 —2Z)xnxlog2 n=Kn x log2
n = Q(n x log2 n). The rate at which the
problem size, m, is required to grow with
respect to the number of processors, n, to
keep the efficiency, j, fixed is called the
isoefficiency of a parallel system and can
be used as a measure of the scalability of
the system. A highly scalable parallel
system has a small isoefficiency, while a
poor parallel system has a large
isoefficiency. Theoretically speaking, a
parallel system is considered scalable if
its isoefficiency function exists; otherwise
the system is considered not scalable.
Recall that Gustafson has shown that by
scaling up the problem size, m, it is
possible to obtain near-linear speedup on
as many as 1024 processors (see Section
3.2).




Having discussed the issues of speedup
and efficiency of scalable parallel
systems, we now conduct a discussion on
their relationship. It is useful to indicate at
the outset that typically an increase in the
speedup of a parallel system (benefit), due
to an increase in the number of
processors, comes at the expense of a
decrease in the efficiency (cost). In order
to study the actual behavior of speedup
and efficiency, we need first to introduce
a new parameter, called the average
parallelism (Q). It is defined as the
average number of processors that are
busy during the execution of given
parallel software (program), provided that
an unbounded number of processors are
available. The average parallelism can
equivalently be defined as the speedup
achieved assuming the availability of an
unbounded number of processors. A
number of other equivalent definitions
exist for the average parallelism. It has
been shown that once Q is determined,
then the following bounds are attainable
for the speedup and the efficiency on an
n-processor system:

The above two bounds show that the sum
of the attained fraction of the maximum
possible speedup, S(n)/Q, and attained
efficiency, must always exceed 1. Notice




also that, given a certain average
parallelism, Q, the efficiency (cost)
incurred to achieve a given speedup is
given by Z(n) > (Q — S(n))/(Q — 1). Itis
therefore fair to say that the average
parallelism of a parallel system, Q,
determines the associated speedup versus
efficiency tradeoff.

In addition to the above scalability
metrics, there has been a number of other
unconventional metrics used by some
researchers. A number of these are
explained below.

Size scalability measures the maximum
number of processors a system can
accommodate. For example, the size
scalability of the IBM SP2 is 512, while
that of the symmetric multiprocessor
(SMP) is 64.

Application scalability refers to the ability
of running application software with
improved performance on a scaled-up
version of the system. Consider, for
example, an n-processor system used as a
database server, which can handle 10,000
transactions per second. This system is
said to possess application scalability if
the number of transactions can be
increased to 20,000 using double the
number of processors.




Generation scalability refers to the ability
of a system to scale up by using next-
generation (fast) components. The most
obvious example  for  generation
scalability is the IBM PCs. A user can
upgrade his/her system (hardware or
software) while being able to run their
code generated on their existing system
without change on the upgraded one.

Heterogeneous scalability refers to the
ability of a system to scale up by using

hardware and software components
supplied by different vendors. For
example, wunder the IBM Parallel

Operating Environment (POE) a parallel
program can run without change on any
network of RS6000 nodes; each can be a
low-end PowerPC or a high-end SP2
node.

In his vision on the scalability of parallel
systems, Gordon Bell has indicated that in
order for a parallel system to survive, it
has to satisfy five requirements. These are
size scalability, generation scalability,

space scalability, compatibility, and
competitiveness. As can be seen, three of
these long-term survivability

requirements have to do with different
forms of scalability.

As can be seen from the above
introduction, scalability, regardless of its
form, is a desirable feature of any parallel




system. This is because it guarantees that
with sufficient parallelism in a program,
the performance, for example, speedup,
can be improved by including additional
hardware resources without requiring
program change. Owing to its importance,
there has been an evolving design trend,
called design for scalability (DFS), which
promotes the use of scalability as a major

design  objective.  Two  different
approaches have evolved as DFS. These
are overdesign and backward

compatibility. Using the first approach,
systems are designed with additional
features in anticipation for future system
scale-up. An illustrative example for such
approach is the design of modern
processors with 64-bit address, that is,
264 Dbytes address space. It should be
noted that the current UNIX operating
system supports only 32-bit address
space. With memory space overdesign,
future transition to 64-bit UNIX can be
performed with  minimum  system
changes. The other form of DFS is the
backward compatibility. This approach
considers the requirements for scaled-
down systems. Backward compatibility
allows scaled-up components (hardware
or software) to be usable with both the
original and the scaled-down systems. As
an example, a new processor should be
able to execute code generated by old
processors. Similarly, a new version of an
operating system should preserve all
useful functionality of its predecessor
such that application software that runs
under the old version must be able to run
on the new version.




Having introduced a number of scalability
metrics for parallel systems, we now turn
our attention to the important issue of
benchmark performance measurement.

3.5 BENCHMARK PERFORMANCE
Benchmark performance refers to the use
of a set of integer and floating-point
programs (known collectively as a
benchmark) that are designed to test
different performance aspects of the
computing  system(s)  under test.
Benchmark programs should be designed
to provide fair and effective comparisons
among high- performance computing
systems. For a benchmark to be
meaningful, it should evaluate faithfully
the performance for the intended use of
the system. Whenever advertising for
their new computer systems, companies
usually quote the benchmark ratings of
their systems as a trusted measure. These
ratings are usually used for performance
comparison purposes among different
competing systems.

Among the first known examples of
benchmarks are the Dhrystone and
Whetstone  benchmarks. These are




synthetic (not real) benchmarks intended
to measure performance of real machines.
The Dhrystone benchmark addresses
integer performance. It consists of 100
statements and does not use floating-point
operations or data. The rate obtained from
Dhrystone is used to compute the MIPS
index as a performance measure. This
makes the Dhrystone rather unreliable as
a source for performance measure. The
Whetstone, on the other hand, is a kernel
program that addresses floating-point
performance for arithmetic operations,
array indexing, conditional branch, and
subroutine calls. The execution speed
obtained using Whetstone is used solely
to determine the system performance.
This leads to a single figure measure for
performance, which makes it unreliable.
Synthetic benchmarks were superseded
by a number of application software
segments that reflect real engineering and
scientific applications. These include
PERFECT (Performance Evaluation for
Cost-Effective Transformations), TPC

TABLE 3.8 SPEC Integer Programs

..............................

measure for database 1/O performance
and SPEC (Standard Performance
Evaluation Corporation) measure.




The SPEC is a nonprofit corporation
formed to “establish, maintain, and
endorse a standardized set of relevant
benchmarks that can be applied to the
newest generation of high-performance
computers” . The first SPEC benchmark
suite was released in 1989 (SPEC89). It
consisted of ten engineering/scientific
programs. Two measures were derived
from SPEC89. The SPECmark measures
the ten programs’ execution rates and

SPECthruput, which examines the
system’s throughput. Owing to its
unsatisfactory results, SPEC89 was

replaced by SPEC92 in 1992.

The SPEC92 consists of two suites:
CINT92, which consists of six integer
intensive C programs (see Table 3.8), and
CFP92, which consists of 14 floating-
point intensive C and Fortran programs
(see Table 3.9).

In SPEC92, the measure SPECratio
represents the ratio of the actual execution
time to the predetermined reference time
for a given program. In addition, SPEC92
uses the measure SPECIint92 as the
geometric mean of the SPECratio for the
programs in CINT92. Similarly, the
measure SPECfp92 is the geometric mean
of the SPECratio for the programs in
CFP92. In using SPEC for performance
measures, three major steps have to be
taken: building the tools, preparing
auxiliary  files, and running the
benchmark suites. The tools are used to
compile, run, and evaluate the
benchmarks. Compilation information




such as the optimization flags and
references to alternate source code is kept
in what is called makefile wrappers and
configuration files. The tools and the
auxiliary files are then used to compile
and execute the code and compute the
SPEC metrics.

The use of the geometric mean to obtain
the average time ratio for all programs in
the SPEC92 has been subject to a number
of criticisms. The premise for these
criticisms is that the geometric mean is
bound to cause distortion in the obtained
results. For example, Table 3.10 shows
the execution times (in seconds) obtained
using the 14 floating-point programs in
SPEC92 for two systems: Silicon
Graphics’ Challenger XL/Onyx and the
Sun Sparc Center with eight CPUs.

As can be observed from Table 3.10 the
SG XL/Onyx runs the SPEC92
benchmarks 13.8% (1772.1
1557.3/1557.3) faster than the Sun Sparc.
However, the Sun Sparc is ranked as
12.5% (109.2 — 97.1/97.1) higher on the
SPECrate using the geometric mean. It is
such a drawback that causes skepticism
among computer architects for the use of
the geometric mean in SPEC92. This is
because a large improvement of only one
program can boost the geometric mean
significantly. It was because of this
observation that Giladi and Ahituv have
suggested that the geometric mean be
replaced by the harmonic mean.




TABLE 3.10 SPEC92 Execution Time (in
Seconds) for Two Systems

Subsequently, there arose a concern about
the sensitivity of SPEC metrics to
compiler flags. For example, Mirghafori
and others have computed the average
improvement of SPECpeak with respect
to PSECbase for CINT92 and CFP92 on a
number of platforms. Recall that
PSECpeaks are those ratings that are
reported by vendors in their advertisement
of new products. The SPECbase is a new
measurement to the SPEC92, which has
been designed to accurately reflect the
typical usage of compiler technology
(introduced by PSEC in 1994).

The Mirghafori study revealed that
compiler flag tunings have brought about
11% increase in the SPEC ratings. In
addition, it has been reported that a
number of tuning parameters are usually
used by vendors in obtaining their
reported SPECpeak and SPECbase ratings
and that reproducibility of those ratings is
sometimes impossible. To show the
discrepancy  between the reported
SPECbase and SPECpeak performance by
a number of vendors, Table 3.11 shows a




sample of eight CFP92 results reported in
the SPEC newsletter (the June and
September 1994 issues). As can be seen
from the table, while some machines
show superior performance to other
machines based on the reported
SPECDbase, they show inferior
performance using the SPECpeak, and
vice versa.

For the abovementioned observations, it
became apparent to a number of computer
architects that SPEC92 does not predict
faithfully the performance of computers
on random software for a typical user.

In October 1995, SPEC announced the
release of the SPEC95 suite, which
replaced the SPEC92 suite fully in
September 1996. SPEC95 consists of two
CPU-intensive applications: CINT95, a
set of eight integer programs and CFP95,
a set of 10 floating-point programs.
According to SPEC, all SPEC95
performance results published consider
the SUN SPARC station 10/40 as the
reference machine. Performance results
are therefore shown as ratios compared to
that machine. Each metric used by
SPEC95 is the aggregate overall
benchmark of a given suite by taking the
geometric mean of the ratios of the
individual benchmarks. In presenting the
performance results, SPEC takes the
speed metrics to measure the ratios to
exe-cute a single copy of the benchmark,




while the throughput metrics measure the
ratios to execute multiple copies of the
benchmark. For example, the SPEC95
performance results of a Digital
AlphaStation 500, which uses a 500 MHz
Alpha 21164 processor with 8 MB cache
and 128 MB memory, are shown in the
Table 3.12. In this table,

TABLE 3.11 Five Misleading Reported
CFP92

the SPECint_rate_base95 is obtained by
taking the geometric mean of the rates of
the eight benchmarks of the CIT95, where
each benchmark is compiled with a low
optimization. The rate of each benchmark
is measured by running multiple copies of
the Dbenchmark for a week, and
normalizing the execution time with
respect to the SUN SPARCstation 10/40.
Therefore, the number 113 means that the
AlphaStation executes 112 times more
copies of the CINT95 than the SUN in a
week.

The SPECfp is obtained by taking the
geometric mean of the ratios of the ten
benchmarks of the CFP95, where each
benchmark is compiled with aggressive
optimization. The rate of each benchmark
IS measured by running a single copy of
the benchmark for a week, and
normalizing the execution time with
respect to the SUN SPARCstation 10/40.
Therefore, the number 20.4 means that

RITAN




the Alpha- Station is 19.4 times faster
than the SUN in executing a single copy
of the CFP95.

On June 30, 2000, SPEC retired the
SPEC95 and replaced it with SPEC
CPU2000. The new benchmark suite
consists of 26 benchmarks in total (12
integer and 14 floating-point
benchmarks). It has 19 applications that
have never been in a SPEC CPU suite.
The CPU2000 integer and floating-point
benchmark suites are shown in Tables
3.13 and 3.14, respectively. Three
subjective criteria are achieved

TABLE 3.13 The CPU2000
Benchmark Suite

Integer

TABLE 3.14 The CPU2000 Floating-
Point Benchmark Suite

in the CPU2000. These are confidence in
the benchmark maintainability,
transparency, and vendor interest.

Performance results of the 26 CPU2000
benchmarks (both integer and
floatingpoint) were reported for three
different configured systems using the
Alpha 21164 chip. These systems are the
AlphaStation 500/500 (System #1), the
Personal Workstation 500au (System #2),
and the AlphaServer 4100 5/533 (System




#3). The performance is stated relative to
a reference machine, a 300 MHz Sun
Ultra5_10, which gets a score of 100. It
was reported that the performance of the
26 benchmarks on the 21164 systems
ranges from 92.3 (for the 172.mgrid) to
331 (for the 179.art). It was also found
that the 500 MHz Systems # and System
#2 differ by more than 5% on 17 of the 26
benchmarks. The 533 MHz (system #3),
with a 7% megahertz advantage, wins by
more than 10% three times (176.gcc,
253.perlbmk, 199.art), by less than 3%

three  times  (197.parser,  253.eo0n,
256.bzip2), and loses to the 500 MHz
three  times  (181.mcf, 172.mgrid,
188.ammp).

Shared Memory Architecture




Shared Memory Architecture

Shared memory systems form a major
category of multiprocessors. In this
category, all processors share a global
memory. Communication between tasks
running on different processors is
performed through writing to and reading
from the global memory. All
interprocessor coordination and
synchronization is also accomplished via
the global memory. A shared memory
computer system consists of a set of
independent processors, a set of memory
modules, and an interconnection network
as shown in Figure 4.1.

Two main problems need to be addressed
when designing a shared memory system:
performance  degradation due to
contention, and coherence problems.
Performance degradation might happen
when multiple processors are trying to
access the shared memory
simultaneously. A typical design might
use caches to solve the contention
problem. However, having multiple
copies of data, spread throughout the
caches, might lead to a coherence
problem. The copies in the caches are
coherent if they are all equal to the same
value. However, if one of the processors
writes over the value of one of the copies,
then the copy becomes inconsistent
because it no longer equals the value of
the other copies. In this chapter we study




a variety of shared memory systems and
their solutions of the cache coherence
problem.

Figure 4.1 Shared memory systems.

4.1 CLASSIFICATION OF SHARED
MEMORY SYSTEMS

The simplest shared memory system
consists of one memory module (M) that
can be accessed from two processors (P1
and P2); see Figure 4.2. Requests arrive at
the memory module through its two ports.
An arbitration unit within the memory
module passes requests through to a
memory controller. If the memory module
Is not busy and a single request arrives,
then the arbitration unit passes that
request to the memory controller and the
request is satisfied. The module is placed
in the busy state while a request is being
serviced. If a new request arrives while
the memory is busy servicing a previous
request, the memory module sends a wait
signal, through the memory controller, to
the processor making the new request. In
response, the requesting processor may
hold its request on the line until the
memory becomes free or it may repeat its
request some time later.




If the arbitration unit receives two
requests, it selects one of them and passes
it to the memory controller. Again, the
denied request can be either held to be
served next or it may be repeated some
time later. Based on the interconnection
network used, shared memory systems
can be categorized in the following
categories.

4.1.1 Uniform Memory Access (UMA)

In the UMA system a shared memory is
accessible by all processors through an
interconnection network in the same way
a single processor accesses its memory.
All processors have equal access time to
any memory location. The
interconnection network used in the UMA
can be a single bus, multiple buses, or a
crossbar switch. Because access to shared
memory is balanced, these systems are
also called SMP (symmetric
multiprocessor) systems. Each processor
has equal opportunity to read/write to
memory, including equal access speed.
Commercial examples of SMPs are Sun
Microsystems multiprocessor servers and
Silicon Graphics Inc. multiprocessor
servers. A typical bus-structured SMP
computer, as shown in Figure 4.3,
attempts to reduce contention for the bus
by fetching instructions and data directly
from each individual cache, as much as
possible. In the extreme, the Dbus
contention might be reduced to zero after
the cache memories are loaded from the
global memory, because it is possible for
all instructions and data to be completely




contained within the cache. This memory
organization is the most popular among

Figure 4.2 Shared memory via two ports.

Figure 4.3 Bus-based UMA (SMP) shared
memory system.

shared memory systems. Examples of this
architecture are Sun Starfire servers, HP
V series, and Compag AlphaServer GS.
4.1.2 Nonuniform Access
(NUMA)

Memory

In the NUMA system, each processor has
part of the shared memory attached. The
memory has a single address space.
Therefore, any processor could access any
memory location directly using its real
address. However, the access time to
modules depends on the distance to the
processor. This results in a nonuniform
memory access time. A number of
architectures are used to interconnect
processors to memory modules in a
NUMA. Among these are the tree and the
hierarchical bus networks. Examples of
NUMA architecture are BBN TC-2000,
SGI Origin 3000, and Cray T3E. Figure
4.4 shows the NUMA system
organization.

..................................




Figure 4.4 NUMA shared memory
system.

4.1.3 Cache-Only Memory Architecture
(COMA)

Similar to the NUMA, each processor has
part of the shared memory in the COMA.

However, in this case the shared memory
consists of cache memory. A COMA
system requires that data be migrated to
the processor requesting it. There is no
memory hierarchy and the address space
is made of all the caches. There is a cache
directory (D) that helps in remote cache
access. The Kendall Square Research’s
KSR-1 machine is an example of such

architecture. Figure 4.5 shows the
organization of COMA.
4.2 BUS-BASED SYMMETRIC

MULTIPROCESSORS

Shared memory systems can be designed
using  bus-based or  switch-based
interconnection networks. The simplest
network for shared memory systems is the
bus. The bus/cache architecture alleviates
the need for expensive multiported
memories and interface circuitry as well
as the need to adopt a message-passing
paradigm when developing application
software. However, the bus may get
saturated if multiple processors are trying
to access the shared memory (via the bus)




simultaneously. A typical bus-based
design uses caches to solve the bus
contention problem. Highspeed caches
connected to each processor on one side
and the bus on the other side mean that
local copies of instructions and data can
be supplied at the highest possible rate.

If the local processor finds all of its
instructions and data in the local cache,
we say the hit rate is 100%. The miss rate
of a cache is the fraction of the references
that cannot be satisfied by the cache, and
so must be copied from the global
memory, across the bus, into the cache,
and then passed on to the local processor.
One of the goals of the cache is to
maintain a high hit rate, or low miss rate
under high processor loads. A high hit
rate means the processors are not using
the bus as much. Hit rates are determined
by a number of factors, ranging from the
application programs being run to the
manner in which cache hardware is
implemented.

A processor goes through a duty cycle,
where it executes instructions a certain
number of times per clock cycle.
Typically, individual processors execute
less than one instruction per cycle, thus
reducing the number of times it needs to
access memory. Subscalar processors
execute less than one instruction per
cycle, and superscalar processors execute
more than one instruction per cycle. In




any case, we want to minimize the
number of times each local processor tries
to use the central bus. Otherwise,
processor speed will be limited by bus
bandwidth.

We define the variables for hit rate,
number of processors, processor speed,
bus speed, and processor duty cycle rates
as follows:

. N = number of processors;
. h = hit rate of each cache, assumed
to be the same for all caches;

. (1 — h) = miss rate of all caches;

. B = bandwidth of the bus,
measured in cycles/second;

. | = processor duty cycle, assumed

to be identical for all

fetches/ cycle; and

processors, in

. V = peak processor speed, in
fetches/second.

The effective bandwidth of the bus is Bl
fetches/second. If each processor is
running at a speed of V, then misses are
being generated at a rate of V(1 — h). For
an N-processor system, misses are
simultaneously being generated at a rate
of N(1 — h) V. This leads to saturation of
the bus  when N processors
simultaneously try to access the bus. That
IS, N(1 — h)V < BIl. The maximum




number of processors with cache
memories that the bus can support is
given by the relation,

Example 1 Suppose a shared memory
system is constructed from processors that
can execute V = 107 instructions/s and
the processor duty cycle | = 1. The caches
are designed to support a hit rate of 97%,
and the bus supports a peak bandwidth of
B = 106 cycles/s. Then, (1 — h) = 0.03,
and the maximum number of processors
N is N < 106/(0.03 * 107) = 3.33. Thus,
the system we have in mind can support
only three processors!

We might ask what hit rate is needed to
support a 30-processor system. In this
case, h = 1 BI/NV = 1
(106(1))/((30)(107)) = 1 — 1/300, so for
the system we have in mind, h = 0.9967.
Increasing h by 2.8% results in supporting
a factor of ten more processors.

43 BASIC CACHE COHERENCY
METHODS

Multiple  copies of data, spread
throughout the caches, lead to a coherence
problem among the caches. The copies in
the caches are coherent if they all equal
the same value. However, if one of the
processors writes over the value of one of
the copies, then the copy becomes
inconsistent because it no longer equals
the value of the other copies.




If data are allowed to become inconsistent
(incoherent), incorrect results will be
propagated through the system, leading to
incorrect final results. Cache coherence
algorithms are needed to maintain a level
of consistency throughout the parallel
system.

4.3.1 Cache-Memory Coherence

In a single cache system, coherence
between memory and the cache is
maintained using one of two policies: (1)
write-through, and (2) write-back. When a
task running on a processor P requests the
data in memory location X, for example,
the contents of X are copied to the cache,
where it is passed on to P. When P
updates the value of X in the cache, the
other copy in memory also needs to be
updated in order to maintain consistency.
In write-through, the memory is updated
every time the cache is updated, while in
write-back, the memory is updated only
when the block in the cache is being
replaced. Table 4.1 shows the write-
through versus write-back policies.

4.3.2 Cache-Cache Coherence

In multiprocessing system, when a task
running on processor P requests the data
in global memory location X, for
example, the contents of X are copied to
processor P’s local cache, where it is




passed on to P. Now, suppose processor Q
also accesses X. What happens if Q wants
to write a new value over the old value of
X?

There are two fundamental cache
coherence policies: (1) write-invalidate,
and (2) write-update. Write-invalidate
maintains consistency by reading from
local caches until a write occurs. When
any processor updates the value of X
through a write, posting a dirty bit for X
invalidates all other copies.

For example, processor Q invalidates all
other copies of X when it writes a new
value into its cache. This sets the dirty bit
for X. Q can continue to change X
without further notifications to other
caches because Q has the only valid copy
of X. However, when processor P wants
to read X, it must wait until X is updated
and the dirty bit is cleared. Write-update
maintains consistency by immediately
updating all copies in all caches. All dirty
bits are set during each write operation.
After all copies have been updated, all

TABLE 4.1 Write-Through vs. Write-
Back

dirty bits are cleared. Table 4.2 shows the
write-update  versus  write-invalidate




policies.

4.3.3 Shared Memory System Coherence

The four combinations to maintain
coherence among all caches and global
memory are:

. Write-update and write-through;

. Write-update and write-back;

. Write-invalidate and write-through;
and
. Write-invalidate and write-back.

If we permit a write-update and write-
through directly on global memory
location X, the bus would start to get busy
and ultimately all processors would be
idle while waiting for writes to complete.
In write-update and write-back, only
copies in all caches are updated. On the
contrary, if the write is limited to the copy
of X in cache Q, the caches become
inconsistent on X. Setting the dirty bit
prevents the spread of inconsistent values
of X, but at some point, the inconsistent
copies must be updated.

4.4 SNOOPING PROTOCOLS

Snooping protocols are based on watching
bus activities and carry out the
appropriate coherency commands when
necessary. Global memory is moved in
blocks, and each block has a state
associated with it, which determines what
happens to the entire contents of the
block. The state of a block might change
as a result of the operations Read-Miss,




Read-Hit, Write-Miss, and Write-Hit. A
cache miss means that the requested block
Is not in the cache or it is in the cache but
has been invalidated. Snooping protocols
differ in whether they update or invalidate
shared copies in remote caches in case of
a write operation. They also differ as to
where to obtain the new data in the case
of a cache miss. In what follows we go
over some examples of snooping
protocols that maintain cache coherence.

TABLE 4.3 Write-Invalidate Write-

Through Protocol

Read-Hit
cache.

Use the local copy from the

Read-Miss Fetch a copy from global
memory. Set the state of this copy to
Valid.

Write-Hit ~ Perform the write locally.
Broadcast an Invalid command to all
caches. Update the global memory.

Write-Miss Get a copy from global
memory. Broadcast an invalid command
to all caches. Update the global memory.
Update the local copy and set its state to
Valid.




Block replacement Since  memory s
always consistent, no write-back is
needed when a block is replaced.

4.4.1 Write-Invalidate
Through

In this simple protocol the memory is
always consistent with the most recently
updated cache copy. Multiple processors
can read block copies from main memory
safely until one processor updates its
copy. At this time, all cache copies are
invalidated and the memory is updated to
remain consistent. The block states and
protocol are summarized in Table 4.3.

and Write-

Example 2 Consider a bus-based shared
memory with two processors P and Q as
shown in Figure 4.6. Let us see how the
cache coherence is maintained using
Write- Invalidate Write-Through
protocol. Assume that that X in memory
was originally set to 5 and the following
operations were performed in the order
given: (1) P reads X; (2) Q reads X; (3) Q
updates X; (4) Q reads X; (5) Q updates
X; (6) P updates X; (7) Q reads X. Table
4.4 shows the contents of memory and the

Figure 4.6 A bus-based shared memory
system with two processors P and Q.

...............................

two caches after the execution of each




operation when Write-Invalidate Write-
Through was used for cache coherence.
The table also shows the state of the block
containing X in P’s cache and Q’s cache.

4.4.2 Write-Invalidate and Write-Back
(Ownership Protocol)

In this protocol a valid block can be
owned by memory and shared in multiple
caches that can contain only the shared
copies of the block. Multiple processors
can safely read these blocks from their
caches until one processor updates its
copy. At this time, the writer becomes the
only owner of the valid block and all
other copies are invalidated. The block
states and protocol are summarized in
Table 4.5.

Example 3 Consider the shared memory
system of Figure 4.6 and the following
operations: (1) P reads X; (2) Q reads X;
(3) Q updates X; (4) Q reads X; (5) Q
updates X; (6) P updates X; (7) Q reads
X. Table 4.6 shows the contents of
memory and the two caches after the
execution of each operation when Write-
Invalidate Write-Back was used for cache
coherence. The table also shows the state
of the block containing X in P’s cache
and Q’s cache.

4.4.3 Write-Once




This write-invalidate protocol, which was
proposed by Goodman in 1983, uses a
combination of write-through and write-
back. Write-through is used the very first

TABLE 4.5 Write-Invalidate Write-Back
Protocol

Read-Miss If no Exclusive (Read-Write)
copy exists, then supply a copy from
global memory. Set the state of this copy
to Shared (Read-Only). If an Exclusive
(Read-Write) copy exists, make a copy
from the cache that set the state to
Exclusive (Read-Write), update global
memory and local cache with the copy.
Set the state to Shared (ReadOnly) in both
caches.

Write-Hit  If the copy is Exclusive
(Read-Write), perform the write locally. If
the state is Shared (Read-Only), then
broadcast an Invalid to all caches. Set the
state to Exclusive (Read-Write).

Write-Miss Get a copy from either a
cache with an Exclusive (Read- Write)
copy, or from global memory itself.
Broadcast an Invalid command to all
caches. Update the local copy and set its
state to Exclusive (Read-Write).




Block replacement If a copy is in an
Exclusive (Read-Write) state, it has to be
written back to main memory if the block
Is being replaced. If the copy is in Invalid
or Shared (Read-Only) states, no write-
back is needed when a block is replaced.

time a block is written. Subsequent writes
are performed using write-back. The
block states and protocol are summarized
in Table 4.7.

Example 4 Consider the shared memory
system of Figure 4.6 and the following
operations: (1) P reads X; (2) Q reads X;
(3) Q updates X; (4) Q reads X; (5) Q
updates X; (6) P updates X; (7) Q reads
X. Table 4.8 shows the contents of
memory and the two caches after the
execution of each operation when Write-
Once was used for cache coherence. The
table also shows the state of the block
containing X in P’s cache and Q’s cache.

4.4.4 Write-Update and Partial Write-
Through

In this protocol an update to one cache is
written to memory at the same time it is
broadcast to other caches sharing the
updated block. These caches snoop on the
bus

...............................




and perform updates to their local copies.
There is also a special bus line, which is
asserted to indicate that at least one other
cache is sharing the block. The block
states and protocol are summarized in
Table 4.9.

Example 5 Consider the shared memory
system of Figure 4.6 and the following
operations: (1) P reads X; (2) P updates
X; (3) Q reads X; (4) Q updates X; (5) Q
reads X; (6) Block X is replaced in P’s
cache; (7) Q updates X; (8) P updates X.
Table 4.10 shows the contents of memory
and the two caches after the execution of
each operation when Write-Update Partial
Write-Through was used for cache
coherence. The table also shows the state
of the block containing X in P’s cache
and Q’s cache.

4.4.5 Write-Update and Write-Back

This protocol is similar to the previous
one except that instead of writing through
to the memory whenever a shared block is
updated, memory updates are done only
when the block is being replaced. The
block states and protocol are summarized
in Table 4.11.

Example 6 Consider the shared memory
system of Figure 4.6 and the following
operations: (1) P reads X; (2) P updates
X; (3) Q reads X; (4) Q updates X; (5) Q
reads X; (6) Block X is replaced in Q’s
cache; (7) P updates X; (8) Q updates X.
Table 4.12 shows the contents of memory




and the two caches after the execution

TABLE 4.7 Write-Once Protocol

State Description
Invalid [INV]
inconsistent.

The copy IS

Valid [VALID]  The copy is consistent
with global memory.

Reserved [RES] Data have been written
exactly once and the copy is consistent
with global memory. There is only one
copy of the global memory block in one
local cache.

Dirty [DIRTY] Data  have  been
updated more than once and there is only
one copy in one local cache. When a copy
is dirty, it must be written back to global
memory.

Event Actions

Read-Hit  Use the local copy from the
cache.
Read-Miss If no Dirty copy exists, then

supply a copy from global memory. Set
the state of this copy to Valid. If a dirty
copy exists, make a copy from the cache
that set the state to Dirty, update global
memory and local cache with the copy.
Set the state to VALID in both caches.




Write-Hit  If the copy is Dirty or
Reserved, perform the write locally, and
set the state to Dirty. If the state is Valid,
then broadcast an Invalid command to all
caches. Update the global memory and set
the state to Reserved.

Write-Miss Get a copy from either a
cache with a Dirty copy or from global
memory itself. Broadcast an Invalid
command to all caches. Update the local
copy and set its state to Dirty.

Block replacement If a copy is in a Dirty
state, it has to be written back to main
memory if the block is being replaced. If
the copy is in Valid, Reserved, or Invalid
states, no write-back is needed when a
block is replaced.

TABLE 4.8 Example 4 (Write-Once
Protocol)

State Description

Use the local copy from the cache. State
does not change.

If no other cache copy exists, then supply
a copy from global memory. Set the state
of this copy to Valid Exclusive. If a cache
copy exists, make a copy from the cache.
Set the state to Shared in both caches. If
the cache copy was in a Dirty state, the
value must also be written to memory.




Perform the write locally and set the state
to Dirty. If the state is Shared, then
broadcast data to memory and to all
caches and set the state to Shared. If other
caches no longer share the block, the state
changes from Shared to Valid Exclusive.

The block copy comes from either
another cache or from global memory. If
the block comes from another cache,
perform the update and update all other
caches that share the block and global
memory. Set the state to Shared. If the
copy comes from memory, perform the
write and set the state to Dirty.

If a copy is in a Dirty state, it has to be
written back to main memory if the block
is being replaced. If the copy is in Valid
Exclusive or Shared states, no write-back
is needed when a block is replaced.

of each operation when Write-Update
Write-Back was used for cache
coherence. The table also shows the state
of the block containing X in P’s cache
and Q’s cache.

45 DIRECTORY
PROTOCOLS

BASED




Owing to the nature of some
interconnection networks and the size of
the shared memory system, updating or
invalidating  caches using  snoopy
protocols might become unpractical. For
example, when a multistage network is
used to build a large shared memory
system, the broadcasting techniques used
in the snoopy protocols becomes very
expensive. In such situations, coherence
commands need to be sent to only those
caches that might be affected by an
update. This is the idea behind directory-
based protocols. Cache coherence
protocols that somehow store information
on where copies of blocks reside are
called directory schemes. A directory is a
data structure that maintains information
on the processors that share a memory
block and on its state. The information
maintained in the directory could

TABLE 4.10 Example 5 (Write-Update
Partial Write-Through)

be either centralized or distributed. A
Central directory maintains information
about all blocks in a central data structure.
While  Central  directory includes
everything in one location, it becomes a
bottleneck and suffers from large search
time. To alleviate this problem, the same
information can be handled in a
distributed fashion by allowing each
memory module to maintain a separate
directory. In a distributed directory, the




entry associated with a memory block has
only one pointer one of the cache that
requested the block.

4.5.1 Protocol Categorization

A directory entry for each block of data
should contain a number of pointers to
specify the locations of copies of the
block. Each entry might also contain a
dirty bit to specify whether or not a
unique cache has permission to write this
memory Dblock. Most directory-based
protocols can be categorized under three
categories: full-map directories, limited
directories, and chained directories.

Full-Map Directories In a full-map
setting, each directory entry contains N
pointers, where N is the number of
processors. Therefore, there could be N
cached copies of a particular block shared
by all processors. For every memory
block, an N-bit vector is maintained,
where N equals the number of processors
in

Read-Miss If no other cache copy exists,
then supply a copy from global memory.
Set the state of this copy to Valid
Exclusive. If a cache copy exists, make a
copy from the cache. Set the state to
Shared Clean. If the supplying cache copy
was in a Valid Exclusion or Shared Clean,
its new state becomes Shared Clean. If the
supplying cache copy was in a Dirty or
Shared Dirty state, its new state becomes
Shared Dirty.




Write-Hit  If the sate was Valid
Exclusive or Dirty, perform the write
locally and set the state to Dirty. If the
state is Shared Clean or Shared Dirty,
perform update and change state to
Shared Dirty. Broadcast the updated
block to all other caches. These caches
snoop the bus and update their copies and
set their state to Shared Clean.

Write-Miss The block copy comes from
either another cache or from global
memory. If the block comes from another
cache, perform the update, set the state to
Shared Dirty, and broadcast the updated
block to all other caches. Other caches
snoop the bus, update their copies, and
change their state to Shared Clean. If the
copy comes from memory, perform the
write and set the state to Dirty.

Block replacement If a copy is in a Dirty
or Shared Dirty state, it has to be written
back to main memory if the block is being
replaced. If the copy is in Valid
Exclusive, no write back is needed when
a block is replaced.




the shared memory system. Each bit in
the vector corresponds to one processor.
If the i * bit is set to one, it means that
processor i has a copy of this block in its
cache. Figure 4.7 illustrates the fully
mapped scheme. In the figure the vector
associated with block X in memory
indicates that X is in Cache C0O and Cache
C2. Clearly the space is not utilized
efficiently in this scheme, in particular if
not many processors share the same
block.

Limited Directories Limited directories
have a fixed number of pointers per
directory entry regardless of the number
of processors. Restricting the number of

TABLE 4.12 Example 6 (Write-Update
Write-Back)

simultaneously cached copies of any
block should solve the directory size
problem that might exist in full-map
directories. Figure 4.8 illustrates the
limited directory scheme. In this example,
the number of copies that can be shared is
restricted to two. This is why the vector
associated with block X in memory has
only two locations. The vector indicates
that X is in Cache CO and Cache C2.

Figure 4.7 Fully mapped directory.

Figure 4.8 Limited directory (maximum
sharing = 2).




Chained Directories Chained directories
emulate full-map by distributing the
directory among the caches. They are
designed to solve the directory size
problem without restricting the number of
shared block copies. Chained directories
keep track of shared copies of a particular
block by maintaining a chain of directory
pointers. Figure 4.9 shows that the
directory entry associated with X has a
pointer to Cache C2, which in turn has a
pointer to Cache CO. That is, block X
exists in the two Caches CO and Cache
C2. The pointer from Cache CO is
pointing to terminator (CT), indicating the
end of the list.

4.5.2 Invalidate Protocols

Centralized Directory Invalidate When a
write request is issued, the central
directory is used to determine which
processors have a copy of the block.

...................................

Invalidating signals and a pointer to the
requesting processor are forwarded to all
processors that have a copy of the block.

Each invalidated cache sends an
acknowledgment to the requesting
processor. After the invalidation is

complete, only the writing processor will
have a cache with a copy of the block.




Figure 4.10 shows a write-miss request
from Cache C3. Upon receiving the
request, the memory sends invalidating
signals and a pointer to the Cache C3 to
Cache CO and Cache C2. These caches
invalidate  themselves and  send
invalidation acknowl-edgment to Cache
C3. After the invalidation is done, Cache
C3 will have exclusive read-write access
to X.

Scalable Coherent Interface (SCI) The
scalable  coherent interface  (SCI)
protocols are based on a doubly linked list
of distributed directories. Each cached
block is entered into a list of processors
sharing that block. For every block
address, the memory and cache entries
have additional tag bits. Part of the
memory tag identifies the first processor
in the sharing list (the head). Part of each
cache tag identifies the previous and
following sharing list entries. Without
counting the number of bits needed in the
local caches for the pointers, the directory
size in memory equals the number of
memory blocks times log2 (number of
caches).

Initially memory is in the uncached state
and cached copies are invalid. A read
request is directed from a processor to the
memory controller. The requested data is
returned to the requester’s cache and its
entry state is changed from invalid to the
head state. This changes the memory state
from uncached to cached. When a new




requester directs its read request to
memory, the memory returns a pointer to
the head. A cache-to-cache read request
(called Prepend) is sent from the requester
to the head cache. On receiving the
request, the head cache sets its backward
pointer to point to the requester’s cache.
The requested data is returned to the
requester’s cache and its entry state is
changed to the head state. The head of the
list has the authority to purge other entries
in the list to obtain an exclusive (read-
write) entry. The initial transaction to the
second sharing list entry purges that entry
and

Figure 4.10 Centralized
invalidation.

returns its forward pointer. The forward
pointer is used to purge the next entry and
so on. Entries can also delete themselves
from the list when they are needed to
cache other block addresses. Figure 4.11
shows the sharing list addition and

removal operations in SCI.

directory




Stanford Distributed Directory (SDD)
The Stanford distributed directory (SDD)
protocol is based on a singly linked list of
distributed directories. Similar to the SCI
protocol, memory points to the head of
the sharing list. Each processor points
only to its predecessor. The sharing list
additions and removals are handled
differently from the SCI protocol.

On a read-miss, a new requester sends a
read-miss message to memory. The
memory updates its head pointers to point
to the requester and send a read-miss-
forward signal to the old head. On
receiving the request, the old head returns
the requested data along with its address
as a read-miss-reply. When the reply is
received, at the requester’s cache, the data
is copied and the pointer is made to point
to the old head.

On a write-miss, a requester sends a
write-miss message to memory. The
memory updates its head pointers to point
to the requester and sends a write-miss-
forward signal to the old head. The old
head invalidates itself, returns the
requested data

.................................

as a write-miss-reply-data signal, and
send a write-miss-forward to the next
cache in the list. When the next cache




receives the write-miss-forward signal, it
invalidates itself and sends a write-miss-
forward to the next cache in the list.
When the write-miss-forward signal is
received by the tail or by a cache that no
longer has a copy of the block, a write-
miss-reply is sent to the requester. The
write is complete when the requester
receives both write-miss-reply-data and
write-miss-reply. Figure 4.12 shows the

sharing list addition and removal
operations in SDD.
4.6 SHARED MEMORY

PROGRAMMING

Shared memory parallel programming is
perhaps the easiest model to understand
because of its similarity with operating
systems programming and  general
multiprogramming.  Shared  memory
programming is done through some
extensions to existing programming
languages, operating systems, and code
libraries. In a shared memory parallel
program, there must exist three main
programming constructs:

Figure 4.12 Stanford distributed directory
(@) sharing list addition (SDD); and (b)
write miss sharing list removal (SDD).

4.6.1 Task Creation
At the large-grained level, a shared
memory system can provide traditional




timesharing. Each time a new process is
initiated, idle processors are supplied to
run the new process. If the system is
loaded, the processor with least amount of
work is assigned the new process. These
large-grained processes are often called
heavy weight tasks because of their high
overhead. A heavy weight task in a
multitasking system like UNIX consists
of page tables, memory, and file
description in addition to program code
and data. These tasks are created in UNIX
by invocation of fork, exec, and other
related UNIX commands. This level is
best suited for heterogeneous tasks.

At the fine-grained level, lightweight
processes makes parallelism within a
single application practical, where it is
best suited for homogeneous tasks. At this
level, an application is a series of fork-
join constructs. This pattern of task
creation is called the supervisor-workers
model, as shown in Figure 4.13.

4.6.2 Communication

In general, the address space on an
executing process has three segments
called the text, data, and stack. The text is
where the binary code to be executed is
stored; the data segment is where the
program’s data are stored; and the stack is
where activation records and dynamic
data are stored. The data and stack
segments expand and contract as the




program executes. Therefore, a gap is
purposely left in between the data and
stack segments. Serial processes are
assumed to be mutually independent and
do not share addresses. The code of each
serial process is allowed to access data in
its own data and stack segments only. A
parallel process is similar to the serial
process plus an additional shared data
segment. This shared area is allowed to
grow and is placed in the gap between
private data and stack segments. Figure
4.14 shows the difference between a serial
process and a parallel process.

Figure 4.13 Supervisor-workers model
used in most parallel applications on
shared memory systems.

Communication among parallel processes
can be performed by writing to and
reading from shared variables in the
shared data segments as shown in Figure
4.15.

4.6.3 Synchronization

Synchronization is needed to protect
shared variables by ensuring that they are
accessed by only one process at a given
time (mutual exclusion). They can also be
used to coordinate the execution of




parallel processes and synchronize at
certain points in execution. There are two
main synchronization constructs in shared
memory systems: (1) locks and (2)
barriers. Figure 4.16a shows three parallel
processes using locks to ensure mutual
exclusion. Process P2 has to wait until P1
unlocks the critical section; similarly P3
has to wait until P2 issues the unlock
statement. In Figure 4.16b, P3 and P1
reach their barrier statement before P2,
and

Figure 4.15 Two parallel processes
communicate using the shared data
segment.

Figure 4.16 Locks and barriers.

they have to wait until P2 reaches its
barrier. When all three reach the barrier
statement, they all can proceed.

................................................

................................................




Parallel Programming in the Parallel

Virtual Machine

The Parallel Virtual Machine (PVM) was
originally developed at Oak Ridge
National Laboratory and the University of
Tennessee. It makes it possible to develop
applications on a set of heterogeneous
computers connected by a network that
appears logically to the users as a single
parallel computer. The PVM offers a
powerful set of process control and
dynamic resource management functions.
It provides programmers with a library of
routines for the initiation and termination
of tasks, synchronization, and the
alteration of the virtual machine
configuration. It also facilitates message
passing via a number of simple
constructs. Interoperability =~ among
different heterogeneous computers is a
major advantage in PVM. Programs
written for some architecture can be
copied to another architecture, compiled
and executed without modification.
Additionally, these PVM executables can
still communicate with each other. A
PVM application is made from a number
of tasks that cooperate to jointly provide a
solution to a single problem. A task may
alternate  between computation and
communication with other tasks. The
programming model is a network of
communicating sequential tasks in which
each task has its own locus of control, and
sequential  tasks communicate by
exchanging messages.




81 PVM ENVIRONMENT AND
APPLICATION STRUCTURE

The computing environment in PVM is
the virtual machine, which is a dynamic
set of heterogeneous computer systems
connected via a network and managed as
a single parallel computer. The computer
nodes in the network are called hosts,
which could be uniprocessor,
multiprocessor  systems, or clusters
running the PVM software. PVM has two
components: a library of PVM routines,
and a daemon that should reside on all the
hosts in the virtual machine. Before
running a PVM application, a user should
start up PVM and configure a virtual
machine. The PVM console allows the
user to interactively start and then alter
the virtual machine at any time during
system operation. The details of how to
set up the PVM software, how to
configure a virtual machine, and how to
compile and run PVM programs can be
found at http://www.epm.ornl.gov/pvm
and in Geist et al. (1994).

The PVM application is composed of a
number of sequential programs, each of
which will correspond to one or more
processes in a parallel program. These
pro-grams are compiled individually for
each host in the virtual machine. The
object files are placed in locations




accessible from other hosts. One of these
sequential programs, which is called the
initiating task, has to be started manually
on one of the hosts.

The tasks on the other hosts are activated
automatically by the initiating task. The
tasks comprising a PVM application can
all be identical but work on different
ranges of data. This model of parallel
programming is called SPMD, which
stands for Single Program Multiple Data.
Although SPMD is common in most
PVM applications, it is still possible to
have the tasks perform different
functions. A pipeline of parallel tasks that
perform input, processing, and output is
an example of parallel tasks that are
performing different functions.

Parallel  virtual ~ machine  parallel
applications can take different structures.
One of the most common structures is the
star graph in which the middle node in the
star is called the supervisor and the rest of
the nodes are workers. The star structure
Is often referred to as a supervisor-
workers or a master-slaves model.

In this model, the supervisor is the
initiating task that activates all the
workers. A tree structure is another form
of a PVM application. The root of the tree
Is the top supervisor and underneath there




are several levels in the hierarchy. We
will use the terms supervisor-workers and
hierarchy to refer to the star and the tree
structures, respectively.

8.1.1 Supervisor-Workers Structure

There is only one level of hierarchy in
this structure: one supervisor and many
workers. The supervisor serves as the
initiating task that is activated manually
on one of the hosts. The supervisor, which
is also called the master, has a number of
special  responsibilities. It normally
interacts with the user, activates the
workers on the virtual machine, assigns
work to the workers, and collects results
from the workers.

The workers, which are also called slaves,
are activated by the supervisor to perform
calculations. The workers may or may not
be independent. If they are not
independent, they may communicate with
each other before sending the result of the
computation back to the supervisor.

For example, a simple idea to sort an
array of numbers using the supervisor-
workers structure can be described as
follows. The supervisor creates a number




of workers and divides the array elements
among them such that each worker gets
an almost equal number of elements. Each
worker independently sorts its share of
the array and sends the sorted list back to
the supervisor. The supervisor collects the
sorted lists from the workers and merges
them into one sorted list. Figure 8.1
shows an example of sorting an array of
elements using one supervisor (S) and
four workers (W1, W2, W3, and W4).
Note that in this example the workers are
entirely independent and communicate
only with the supervisor that performs the
merge procedure on the four sorted
sublists while the workers remain idle.

(b) The supervisor is idle and the four
workers are sorting their sublists

(d) The supervisor is merging the four
sorted sublists and the four workers are
idle

Figure 8.1 Supervisor-workers structure
of sorting using a supervisor S and four
independent workers W1, W2, W3, and
W4. The solid edges indicate message
passing. The dashed edges between S and
W1, W2, W3, and W4 indicate that the
workers were created by S.




Another way of sorting a list using the
supervisor-workers structure is to make
the workers help in the merge process and
let the supervisor eventually merge only
two sorted sublists. Figure 8.2 illustrates
how this procedure works using one
super-visor (S) and four workers (W1,
W2, W3, and W4). First, the supervisor
divides the list among the four workers.
Each  worker sorts its  sublist
independently. Workers W2 and W4 then
send their sorted sublists to W1 and W3,
respectively. Worker W1 will merge its
sorted sublist with the one received from
W2. Similarly, W3 will merge its sorted
sublist with the one received from WA4.
Eventually the supervisor receives two
sorted sublists from W1 and W3 to
perform the final merge.

8.1.2 Hierarchy Structure

Unlike the supervisor-workers structure,
the hierarchy structure allows the workers
to create new levels of workers. The top-
level supervisor is the initiating task,
which creates a set of workers at the
second level. These workers may create




other sets of

(b) The supervisor is idle and the four
workers are sorting their sublists

(c) Workers W2 and W4 send their
sorted sublists to W1 and WS,
respectively
merge merge

(d) Workers W1 and W3 are merging
two sublists each and W2 and W4 are idle

() Workers W1 and W3 send two
sorted sublists to the supervisor workers
at the next level, and so on. (A task that
creates another task is also called its
parent.) This task creation process can
continue to any number of levels, forming
a tree structure. The leaves of the tree are
the workers at the lowest level. This
structure matches very well with the
organization of divide and conquer
applications.

For example, sorting an array of elements
using the hierarchy structure can be
performed as follows. The top supervisor
creates two workers and passes to each of
them one-half of the array to sort. Each




worker will in turn create two new
workers and send to each of them one-
half of the already halved array to sort.
This process will continue until the leaf
workers have an appropriate number of
elements to sort. These leaf workers will
independently sort their lists and send
them up to their parent to perform the
merge operation. This process will
continue upward until finally the top
supervisor merges two sorted lists into the
final sorted array.

Figure 8.3 illustrates the sorting algorithm
using the hierarchy structure when eight
leaf workers are used for sorting. Note
that dashed edges in the tree signify a
parent-child relationship between the
tasks.

8.2 TASK CREATION

A task in PVM can be started manually or
can be spawned from another task. The
initiating task is always activated
manually by simply running its
executable code on one of the hosts.
Other PVM tasks can be created
dynamically from within other tasks. The
function pvm_spawn () is used for
dynamic task creation. The task that calls
the function pvm_spawn() is referred to
as the parent and the newly created tasks
are called children. To create a child from
a running parent, a programmer must at




least specify the following:

1. The machine on which the child
will be started.

2. A path to the executable file on the
specified machine.

3. The number of copies of the child
to be created.

4. An array of arguments to the child
task(s).

As all PVM tasks are identified by an
integer task identifier, when a task is
created it is assigned a unique identifier
(TID). Task identification can be used to
identify senders and receivers during
communication. They can also be used to
assign functions to different tasks based
on their TIDs.

8.2.1 Task Identifier Retrieval

Parallel virtual machine provides a
number of functions to retrieve TID
values so that a particular task can
identify itself, its parent, and other tasks
in the system.

Task’s TID A running task can retrieve its
own TID by calling the PVM function
pvm_myid() as follows:




(c) W3, W4, W5, and W6 merge two
sublists each

Child’s TID When a task calls the
function  pvm_spawn(), an array
containing the TIDs of the children
created by this call will be returned. For
example, the array tid in the following
pvm_spawn() call will have the TIDs of
all the children.

[* The TIDs of the children created by
this call are saved in the array tid */
Parent’s TID A task can retrieve the TID
of its parent (the task from which it was
spawned) by calling the function
pvm_parent() as follows:

The value PvmNoParent will be returned
if the calling task is the one that was
created manually and does not have a
parent. This is an easy way to distinguish
the supervisor from the workers in an
application.

Daemon’s TID A task can retrieve the
TID of the daemon running on the same
host as another task whose TID is id by
calling the function pvm_tidtohost() as
follows:

..............................




This function is useful for determining on
which host a given task is running.

8.2.2 Dynamic Task Creation

The pvm_spawn() function is used to
create one task or more on the same or a
different machine in the PVM
configuration. The format of this function
Is given as follows:

This function has six parameters and
returns the actual number of the
successfully created tasks in the variable
num. The first two parameters are the
executable file name of the program to be
activated and the arguments to be passed
to the execu-table (in standard argv
format, terminated with a NULL).

The next two parameters specify where to
start the process. The Flag parameter
controls the target of the spawn operation.
A value of zero lets PVM decides on the
appropriate machine on which to start the
task. Other values specify that the where
parameter signifies a machine name, or an
architecture type. Specifying a machine
name gives the programmer ultimate
control over the task allocation process.
Spe-cifying an architecture type may be
more appropriate in  some  cases,
especially when the virtual machine is
configured from a widely dispersed set of
architectures. One of the requirements of
the spawn command is that the executable
must already exist on whatever machine it




is to run on.

TABLE 8.1 Parameters for Dynamic Task
Creation

Parameter Meaning

Child The executable file name of the
program to be started. The executable
must reside on the host on which it will
run.

Arguments A pointer to an array of
arguments to the program. If the program
takes no arguments this pointer should be
NULL.

Flag A flag value of zero lets the PVM
system decides what machine will run the
spawned task(s). Other values signify that
a particular host name or architecture type
will be specified to run the spawned tasks.
Where A  host name or an
architecture type to run the created tasks
depending on the value of the above flag.

HowMany The number of identical

children to be started.

Tids The TIDs of the children created by
this call.

The final two parameters contain control
information, such as the number of
processes to spawn with this call, and an
array in which to return information, such
as task identifiers and error codes. The
different parameters and their meanings
are summarized in Table 8.1.




Example 1 Suppose that we want to create
two and four copies of the program
“worker” on the two hosts: homer and
fermi, respectively. Assume that the
execu-table file “worker” resides in the
directory “/user/rewini” in both machines.
The following two statements in the
initiating task should create the required
tasks:

The second parameter is 0 when there is
no arguments to “worker”. The third par-
ameter is the spawn type flag, which was
set to 1 so that we can specify homer and
fermi as our target hosts. The TID values
of the created tasks are returned in tidl
and tid2 . Finally nl and n2 are the actual
number of created tasks on homer and
fermi, respectively.

8.3 TASK GROUPS

PVM allows running tasks to belong to
named groups, which can change at any
time during computation. Groups are
useful in cases when a collective
operation is performed on only a subset of
the tasks. For example, a broadcast
operation, which sends a message to all
tasks in a system, can use a named group
to send a message to only the members of
this group. A task may join or leave a
group at any time without informing other
tasks in the group. A task may also belong
to multiple groups. PVM provides several
functions for tasks to join and leave a
group, and retrieve information about




other groups.

A task can join a group by calling the
function pvm_joingroup() as follows: i =
pvm_joingroup(group_name)

This function adds the task that calls it to
the group named group_name. It returns
the instance number of the task that just
joined the group. The group itself is
created when pvm_j oingroup is called for
the first time. In this case, the first caller
gets 0 as instance number. The returned
instance number starts at 0 and is
incremented by 1 every time a new task
joins the group. However, this set of
instance numbers may have gaps as a
result of having one or more tasks leave
the group. When a task joins a group with
gaps in the set of instance numbers, this
new member will get the lowest available
instance number. Maintaining a set of
instance numbers without gaps is the
programmer’s responsibility.

A member of a group may leave the
group by calling the  function
pvm_Ivgroup () as follows:

.............................




The task that successfully calls this
function  will leave the  group
group_name. In case of an error, info will
have a negative value. If this task decides
to rejoin this group at a later time, it may
get a different instance number because
the old number may have been assigned
to another task that may have joined.

There are a number of other functions that
can be called by any task to retrieve
information without having to be a
member of the specified group. For
example, the function pvm_gsize() can be
used to retrieve the size of a group. It
takes as input the group name and returns
the number of members in the group. The
function pvm_gettid () is provided to
retrieve the TID of a task given its
instance number and its group name.
Similarly, the function pvm_getinst ()
retrieves the instance number of a task
given its TID and the name of a group to
which it belongs.

Example 2 Suppose that tasks TO, T1, T2,
and T3 have TIDs 200, 100, 300, and 400,
respectively. Let us see what happens
after the execution of each of the
following statements.

1. Task TO calls the function i1 =
pvm_joingroup(“slave")

The group "slave" is created, TO joins this
group and TO is assigned the instance
number 0 (i1 = 0).




2. Task T1 calls the function i2 =
pvm_joingroup(*'slave")

T1 joins the group "slave" and is assigned
instance number 1 (i2 = 1).

3. Task T2 calls the function i3 =
pvm_joingroup(*'slave")

T2 joins the group "slave” and is assigned
the instance number 2 (i3 = 2).

4. Task T1 calls the function info =
pvm_lvgroup(“slave™)

T1 leaves the group "slave™ and the
instance number 1 becomes available to
other tasks that may wish to join the
group “"slave" in the future.

5. Some task calls the function size =
pvm_gsize ("slave™)

The variable size will be assigned the
value 2, which is the number of tasks that
currently belong to the group "slave".

6. Task T3 calls the function 14 =
pvm_j oingroup(*'slave")

T3 joins the group "slave" and is assigned
instance number 1 (i4 = 1).

7. Task T1 calls the function
pvm_j oingroup(*'slave™)

15 =

T1 rejoins the group "slave" and is now
assigned the instance number 3 (i5 = 3).

8. Some task calls the function tid =
pvm_gettid ("slave",1)




The variable tid will be assigned the value
400, which is the TID of the task T3
whose instance number is 1.

9. Some task calls the function inst =
pvm_getinst("slave”,100) The variable
inst will be assigned the value 3, which is
the instance number of the task T1 whose
TID is 100.

8.4 COMMUNICATION
TASKS

Communication among PVM tasks is
performed using the message passing
approach, which is achieved using a
library of routines and a daemon. During
program execution, the user program
communicates with the PVM daemon
through the library routines.

AMONG

The daemon, which runs on each machine
in the PVM environment, determines the
destination of each message. If the
message is sent to a task on the local
machine, the daemon routes the message
directly. If the message is for a task on a
remote host, the daemon sends the
message to the corresponding daemon on
the remote machine. The remote daemon
then routes the message to the right
receiving task.

The operations Send and Receive are the
heart of this communication scheme,
which is generally asynchronous. A
message can be sent to one or more
destinations by calling one of the PVM




send functions. A message can be
received by calling either a blocking or
nonblocking receive function. Figure 8.4
schematically illustrates communication
in PVM. The arrows from the user
applications to the daemons represent
communication calls (crossing the API
boundary). The arrows from the daemons
back to the user applications represent the
return from the API calls. The thread of
control of the user task briefly blocks on
the daemon.

Using standard PVM asynchronous
communication, a sending process issues
a send command (point 1 in Fig. 8.4). The
message is transferred to the daemon
(point 2), then control is returned to the
user application (points 3 and 4). The
daemon will transmit the message on the
physical link sometime after returning
control to the user application (point 3).
At some other time, either before or after
the send command, the receiving task
issues a receive command (point 5 in Fig.
8.4). In the case of a blocking receive, the
receiving task blocks on the daemon
waiting for a message (point 6). After the
message arrives, control is returned to the
user application (points 7 and 8). In the
case of nonblocking receive, control is
returned to the user application
iImmediately (points 7 and 8) even if the
message has not yet arrived.




Sending Task Receiving Task

Figure 8.4 Communication in PVM.

A sender task can send a message to one
or more receivers in three steps as
follows:

1. A send buffer must be initialized.

2. The message is packed into this
buffer.

3. The completed message is sent to
its destination(s).

Similarly, receiving a message is done in
two steps as follows:
1. The message is received.

2. The received items are unpacked
from the receive buffer.

8.4.1 Message Buffers

Before packing a message for
transmission, a send buffer must be
created and prepared for data to be
assembled into it. PVM provides two
functions for buffer creation;
pvm_initsend() and pvm_mkbuf(). These
two functions agree on the input and
output parameters. They take as input an
integer value to specify the next
message’s encoding scheme, and they
return an integer value specifying the
message buffer identifier. The two
functions are listed below.




bufid = pvm_initsend(encoding_option)
bufid = pvm_mkbuf(encoding_option)

There are three encoding options in
creating the buffer. The default encoding
option is XDR, which is useful when a
message is sent to a different machine that
may not be able to read the message
native format. However, if this is not the
case, another option is to skip the
encoding step and a message is sent using
its original format. A third option is to
leave data in place and to make the send
operation copy items directly from the
user’s memory. The buffer is used only to
store the message size and pointers to the
data items in this case. Clearly, the third
option saves time by reducing the copying
time but it requires that the user does not
modify

TABLE 8.2 Encoding Options for Buffer
Creation

data before they are sent. The different
values and the meanings of the different
encoding options are summarized in
Table 8.2.

If the user is using only one send buffer,
pvm_initsend() should be the only
required function. It clears the send buffer




and prepares it for packing a new mess-
age. The function pvm_mkbuf(), on the
other hand, is useful when multiple mess-
age buffers are required in an application.
It creates a new empty send buffer every
time it is called. In PVM 3, there is only
one active send buffer and one active
receive buffer at any time. All packing,
sending, receiving, and unpacking
functions affect only the active buffer.
PVM provides the following functions to
set the active send (or receive) buffers to
bufid. They save the state of the previous
buffer and return its identifier in oldbuf.

oldbuf = pvm_setsbuf(bufid) oldbuf =
pvm_setrbuf(bufid)

PVM also provides the functions
pvm_getsbuf() and pvm_getrbuf() to
retrieve the identifier of the active send
buffer and the active receive buffer,
respectively.

8.4.2 Data Packing

PVM provides a variety of packing
functions pvm_pk* () to pack an array of
a given data type into the active send
buffer. Each of the packing functions
takes three arguments as input. The first
argument is a pointer to where the first
item is, and the second argument specifies
the number of items to be packed in an
array. The third argument is the stride to
use when packing (that is, how many




items to skip between two packed items).
For example, a stride of 1 means a
contiguous array is packed, a stride of 2
means every other item is packed, and so
on. The packing functions return a status
code, which will have a negative value in
case of an error.

There are several packing functions for all
kinds of data types such as byte, double,
string, and so on. All the functions have
the same number of arguments except the
string packing function pvm_pkstr(),
which takes only one argument (a pointer
to the string). PVM also provides the
function pvm_packf() that uses a printf
like format expression to specify what to
pack in the buffer before sending. Packing
functions can be called multiple times to
pack data into a single message. Other
packing functions for the different data

types include: pvm_pkbyte(),
pvm_pkeplx(), pvm_pkdcplx(),
pvm_pkdouble(), pvm_pkfloat(),
pvm_pkint(), pvm_pklong(),

pvm_pkshort(), pvm_pkuint(),
pvm_pkushort(), pvm_pkulong().

Example 3 The following function calls
pack a string followed by an array, called
my_array, of n items into the message
buffer:




info = pvm_pkstr("This is my data");
info=pvm pkint(my array, n, 1)

First, the string is packed and then n
integers from the array list are packed into
the send buffer. Note that there is no limit
to the complexity of the packed message,
but it should be unpacked exactly the
same way at the receiving end.

8.4.3 Sending a Message

Sending messages in PVM is done in an
asynchronous fashion. The sending task
will resume its execution once the
message is sent (points 3 and 4 in Fig.
8.4). It will not wait for the receiving task
to execute the matching receive operation
as in synchronous communication. Note
that synchronous communication
constructs for PVM were suggested in
Lundell et al. (1996).

After the buffer is initialized and the
packing process is completed, the
message is now ready to be sent. A
message can be sent to one or multiple
receivers. All we need to specify at this
point are an identifier for each task that
should receive the message and a label
(tag) for the message.

Sending to One Receiver The function
pvm_s end() performs a point-to- point
send operation. It takes two arguments:
the TID of the destination task and an
integer message identifier (tag). For




example, the function call

info=pvm_send(tid, tag)

will label the message packed in the send
buffer with the label tag that is supplied
by the programmer and send it to the task
whose TID is tid. The call returns integer
status code info. A negative value of info
indicates an error.

Sending to Multiple Receivers To send
the message to multiple destinations, the
function pvm_mcast() should be used.
The TIDs of the tasks that will receive the
message should be saved in an array. A
pointer to the TIDs array, the number of
recipient tasks, and the message label are
the arguments to pvm_mcast (). For
example, the function call
info=pvm_mcast(tids, n, tag)

will label the message with the integer tag
and send it to the n tasks whose TIDs are
specified in the array tids. Again the
status code info indicates whether the call
was successful. Note that the message
will never be sent to the caller task even if
its TID was included in the array tids.

Sending to a Group A message can be
broadcast to all members of a group using
the function pvm_bcast(). Any task can
call this function without having to be a
member of the group. The arguments of
this function are the group name and the




message tag. It first determines the TIDs
of the group members and then uses
pvm_mcast () to broadcast the message.
For example, the function call

info = pvm_bcast(group_name, tag)

will label the message with the integer tag
and send it to all members of the group
group_name. Note that if the group
changes during the broadcast, the change
will not be reflected. Since group changes
are not collective operations over the
group, the result of collective operations
cannot be predicted unless
synchronization is done by hand.

Packing and Sending in One Step PVM
also provides another function to send
messages without the need to prepare and
pack the buffer manually. The operation
pvm_psend() does  the packing
automatically for the programmer. In
addition to the destination TID and the
message label, pvm_psend() takes a
pointer to a buffer, its length, its data type
as arguments. For example, the call

info=pvm_psend(tid, tag, my_array, n,
int)

packs an array of n integers called
my_array into a message labeled tag, and
sends it to the task whose TID is tid.




8.4.4 Receiving a Message

PVM supports three types of message
receiving functions: blocking,
nonblocking, and timeout. When calling a
blocking receive function, the receiving
task must wait until the expected message
arrives in the receive Dbuffer. A
nonblocking receive immediately returns
with either the expected data or a flag that
the data have not arrived. Timeout receive
allows the programmer to specify a period
of time for which the receive function
should wait before it returns. If the
timeout period is very large, this function
will act like the blocking receive. On the
other hand, if the timeout period is set to
zero, it acts exactly like the nonblocking
case. Figure 8.5 illustrates the three types
of receive operations.

Blocking Receive

bufid=pvm_recv(tid, tag)

This function will wait until a message
with label tag is received from a task with
TID = tid. A value of — 1 can be used as
a wild card to match anything in either
one of the arguments: tid or tag. A
successful receive will create a receive
buffer and return the buffer identifier to
be used in unpacking the message.




Time is expired

Figure 8.5 The three types of receive
operations.

Nonblocking Receive
bufid=pvm_nrecv(tid, tag)

If the message has arrived successfully
when this function is called, it will return
a buffer identifier similar to the case of
blocking receive. However, if the
expected message has not arrived, the
function will return immediately with
bufid = 0.

Timeout Receive

bufid=pvm_trecv(tid, tag, timeout)

This function blocks the execution of its
caller task until a message with a label tag
has arrived from tid within a specified
waiting period of time. If there is no
match-ing message arriving within the
specified waiting time, this function will
return with bufid = 0, which indicates that
no message was received. The waiting
time argu-ment (timeout) is a structure
with two integer fields tv_sec and
tv_usec. With both fields set to zero, this
function will act as a nonblocking receive.
Passing a null pointer as timeout makes
the function act like a blocking receive. If
pvm_trecv() is successful, bufid will have
the value of the new active receive buffer




identifier.

Receive and Unpack in One Step Similar
to the pvm_psend() function, PVM
provides the function pvm_precv(), which
combines the functions of

blocking receive and unpacking in one
routine. It does not return a buffer
identifier; instead it returns the actual
values. For example, the following call

will block until a matching message is
received. The contents of the message
will be saved in my_array up to length
len. In addition to the status code info, the
actual TID of the sender, actual message
tag, and the actual message length are
returned in src, atag, and alen,
respectively. Again the value — 1 can be
used as a wild card for the arguments: tag
or tid.

8.4.5 Data Unpacking

When messages are received, they need to
be unpacked in the same way they were
packed in the sending task. Unpacking
functions must match their corresponding
packing functions in type, number of
items, and stride.

PVM provides many unpacking functions
pvm_upk* (), each of which corresponds
to a particular packing function. Similar




to packing functions, each of the
unpacking  functions  takes  three
arguments as input. These arguments are
address of the first item, number of items,
and stride. PVM also provides the two
functions pvm_upkstr() and
pvm_unpackf() to unpack the messages
packed by pvm_pkstr () and pvm_packf(),
respectively.

Other unpacking functions for the
different data types include: pvm_
upkbyte(), pvm_upkeplx(),

pvm_upkdcplx(),
pvm_upkfloat(),
pvm_upklong(),
pvm_upkuint(),
pvm_upkulong().

pvm_upkdouble(),
pvm_upkint(),
pvm_upkshort(),
pvm_upkushort(),

Example 4 The following function calls
unpack a string followed by an array of n
items from the receive buffer:

info = pvm_upkstr(string)
info=pvm_upkint(my_array, n, 1)

Note that the string and the array must
have been packed using the corresponding
packing functions.

85 TASK SYNCHRONIZATION

Synchronization constructs can be used to
force a certain order of execution among
the activities in a parallel program. For
example, a task that uses certain variables
In its computation must wait until these
variables are computed (possibly by other
tasks) before it resumes its execution.




Even  without data dependence
involvement, parallel tasks may need to
synchronize with each other at a given
point in the execution. For example,
members of a group that finish their work
early may need to wait at a
synchronization point until those tasks
that take a longer time reach the same
point. Synchronization in PVM can be
achieved using several constructs, most
notably blocking receive and barrier
operations.

8.5.1 Precedence Synchronization

Message passing can be used effectively
to force precedence constraints among
tasks. Using the blocking receive
operation  (pvm_recv()) forces the
receiving task to wait until a matching
message is received. The sender of this
matching message may hold its message
as long as it wants the receiver to wait.
For example, con-sider the two tasks; TO
and T1 in Figure 8.6. Suppose that we
want to make sure that the function g() in
T1 is not executed until TO has completed
the execution of the function f(). This
particular order of execution can be
guaranteed using a send operation after
calling f() in TO, and a matching blocking
receive operation before calling g() in T1.




8.5.2 Barriers

Parallel tasks can be synchronized
through the use of synchronization points
called barriers. No task may proceed
beyond a barrier until all participating
tasks have reached that barrier. Members
of a group can choose to wait at a barrier
until a specified number of group
members check in at that barrier. PVM
provides barrier synchronization through
the use of the function pvm_barrier ().
This function takes two inputs: the group
name, and the number of group members
that should call this function before any of
them can proceed beyond the barrier as
follows.

info =pvm_barrier(group_name, ntasks)

Again the status code info will return a
negative integer value in case of an error.
The number of members specified could
be set to any number less than or equal to

..................

Figure 8.6 Precedence synchronization
using message passing. The function f() in
TO is guaranteed to be executed before the
function g() in T1.

the total number of members. However, it
is typically the total number of members
in the group. In any case, the value of this
argument should match across a given
barrier call. If this argument is set to — 1,




PVM will use the value of pvm_gsize (),
which returns the total number of
members. Since it is possible for tasks to
join the group after other tasks have
already called pvm_barrier (), it is
necessary to specify the number of tasks
that should check in at the barrier. It is not
allowed for a task to call pvm_barrier ()
with a group to which it does not belong.

Example 5 Figure 8.7 shows three
members of the group slave (TO, T1, T2)
using a barrier to synchronize at a certain
point in their execution. Each of the three
tasks should call the following function:
info=pvm_barrier("slave", 3)

The execution will block until three
members of the group slave have issued
the call to function pvm_barrier () as
shown in the figure. Task T1 calls the
function first, followed by TO, and then
finally T2. Tasks TO and T1 wait at the
barrier until T2 reaches the barrier before
they can all proceed.

8.6 REDUCTION OPERATIONS

Reduction is an operation by which
multiple values are reduced into a single
value. This single value could be the
maximum  (minimum)  value, the
summation (product) of all elements, or
the result of applying an associative
binary operator that yields a single result.
PVM supports reduction through the use
of the function pvm_ reduce(). The format




of this function is given as follows:
info=pvm_reduce(func, data, n, datatype,
tag, group_name, root)

Parameter Meaning

func The function that defines the
operation to be performed.

data An array of data elements.

n The number of elements in the data

array.
datatype  The type of entries in the
data array.

tag Message tag.

group_name The name of an existing
group.

root Instance number of a group

member who gets the result.

The function returns an integer status
code (info). The different parameters and
their meanings are summarized in Table
8.3.

The reduction operation is performed on
the corresponding elements in the data
array across the group. The reduced value
for each element in the array across the
group will be returned to the root
specified in the parameters. In fact, the
data array on the root will be overwritten
with the result of the reduction operation
over the group. Users can define their
own functions or can use several PVM




predefined functions such as PvmMin,
PvmMax, PvmSum, and PvmProduct for
the minimum, maximum, summation, and
product, respectively.

Example 6 Figure 8.8 shows an example
of a reduction summation of the entries of
data_array over the group "slave"”, which
has three members: TO, T1, and T2. The
reduced values are returned to the root,
which is assumed to be task T1 in this
example. The following function must be
called by the three tasks.

8.7 WORK ASSIGNMENT

Assigning work to workers can be done
either by writing a separate program for
each worker or writing a single program
for all workers. If the workers perform the
same computation on different sets of
data concurrently, it is appropriate to use
a single program for all workers. On the
other hand, if the workers perform
different functions, it is possible to do it
either way. In this section, we show how
to assign work to the parallel tasks.

8.7.1 Using Different Programs

If the workers forming the parallel
application perform completely different
oper-ations, they can be written as
different programs. These different




workers can be activated by the initiating
task (supervisor) using pvm_spawn(). The
supervisor can communicate with the
workers since it knows their TIDs, which
are returned when pvm_spawn() is called.
To communicate with the supervisor, the
workers need to know the supervisor’s
TID. The function pvm_parent() returns
the supervisor’s TID when called by the
workers.

Example 7 Suppose that we want to
activate four different tasks: “workerl”,
“worker2”, “worker3”, and “worker4” on
the hosts cselabOl, cselab02, cselab03,
and cselab04, respectively. Assume that
the executable files reside in the directory
“/user/rewini” in all machines. The
following statements in the initiating task
will create the required tasks.

.........................................

8.7.2 Using the Same Program

Assigning work to parallel tasks running
the same program can be done easily if
we know in advance the identification
numbers assigned by the system. For

example, if we know that the
identification numbers of n — 1 workers
running the same program are 1,2, ... , n

— 1, we can assign work to these tasks as
follows:




.........................................

Unfortunately, a task in PVM s assigned
any integer as its identification number.
Tasks are not necessarily identified by the
integers 1, 2, 3, and so on, as shown in the
above example. In what follows, we show
how to overcome this problem.

Using Task Groups In this method, all the
tasks join one group and the instance
numbers are used as the new task
identifiers. The supervisor is the first one
to join the group and gets 0 as its instance
number. The workers will get instance
numbers in the range from 1 ton — 1.
Using Task ID Array In this method, the
supervisor sends an array containing the
TIDs of all the tasks to all the workers.
The supervisor TID is saved in the zeroth
element of the array, and the workers’
TIDs are saved in elements 1 to n — 1.
Each worker searches for its own TID in
the array received from the supervisor and
the index can be used to identify the
corresponding worker as shown in Figure
8.9.











































1. What has been the trend in
computing from the following points of
Views:

(@)  cost of hardware;

(b)  size of memory;

(c) speed of hardware;

(d number of processing elements;
and

(e) geographical locations of system
components.

2. Given the trend in computing in the
last 20 years, what are your predictions
for the future of computing?

3. What is the difference between
cluster computing and grid computing?

4, Assume that a  switching
component such as a transistor can switch
in zerotime. We propose to construct a
disk-shaped computer chip with such a
component. The only limitation is the
time it takes to send electronic signals
from one edge of the chip to the other.
Make the simplifying assumption that
electronic signals can travel at 300,000
km/s. What is the limitation on the
diameter of a round chip so that any
computation result can by used anywhere
on the chip at a clock rate of 1 GHz?
What are the diameter restrictions if the
whole chip should operate at 1 THz =
1012 Hz? Is such a chip feasible?

5.  Compare uniprocessor systems

1. Xu hudéng cua may tinh s la gi

theo cac quan diém sau day:

a. Chi phi cta phan ctng

b. Dung Iuwgng cua bd nho

Téc do cua phan ctng

S6 lwong bo xur ly

Vi tri dia ly cua céc thanh phan
hé théng

® oo

. Biét dugc xu hudng cua may tinh

20 niam vé trudc, hdy du doan
tuong lai cia may tinh?

. Su khéac biét gitra dién toan cum va

dién toan ludi la gi?

. Gia st rang linh kién chuyén mach

nhu transistor ¢6 thé chuyén mach
ngay tic khic. Ching to6i dé nghi
nén ché tao chip may tinh c6 dang
dia bang linh kién loai nay. Nhugc
diém duy nhat 1a thoi gian can dé
gui tin hiéu dién tir canh nay dén
canh kia cua chip. Cr cho mot gia
dinh don gian rang (Pé don gian
ching ta gia st rang) tin hiéu dién
c6 thé truyén voi téc d¢6 300,000
km/s. Buong kinh cua chip tron
phai nhu thé nao dé bat ky moi két
qua tinh toan c6 thé sir dung ¢ bat
ctr noi dau trén con chip cé xung
nhip 1 GHz? Buong kinh gi¢i han
la gi néu toan bo chip phai van
hanh & 1 THz = 1012 Hz? D6 cb
phai la chip kha thi khong?

5. So sanh gitra hé thong bo xu Iy don




with multiprocessor systems for the
following aspects:

(@) ease of programming;

(b)  the need for synchronization;

(c) performance evaluation; and

(d)  runtime system.

6. Provide a list of the main

advantages and disadvantages of SIMD
and MIMD machines.

1. What has been the trend in
computing from the following points of
views:

(@)  cost of hardware;

(b)  size of memory;

(c) speed of hardware;

(d) number of processing elements;
and

(e) geographical locations of system

components.

2. Given the trend in computing in the
last 20 years, what are your predictions
for the future of computing?

3. What is the difference between
cluster computing and grid computing?

4, Assume that a  switching
component such as a transistor can switch
in zerotime. We propose to construct a
disk-shaped computer chip with such a
component. The only limitation is the
time it takes to send electronic signals
from one edge of the chip to the other.
Make the simplifying assumption that
electronic signals can travel at 300,000
km/s. What is the limitation on the
diameter of a round chip so that any
computation result can by used anywhere
on the chip at a clock rate of 1 GHz?

va hé thong da xtr ly & céac khia
canh sau:

Dé lap trinh

Nhu cau dong bo hoa

Panh gia hiéu suat; va

H¢ thoi gian chay.

ap oy

6. Cung cap bang liét ké vé cac uu va
nhuoc diém chinh cua may tinh
SIMD va MIMD.

1. Hay néu xu hudng tin hoc tir nhitng
quan diém dudi day:

(@)  hao ton phan cang;

(b)  dung lugng bd nho;

(c)  tdc d6 phan cung;

(d) s luong phan ti xir ly; va

(e) i tri dia ly cta cac thanh phan hé
théng.

2. Vi xu hudng trong tin hoc 20 nam
gan day, ban du doan gi vé tuong lai cua
nganh tin hoc?

3. Pau 1a su khac nhau gitta dién toan
cum va dién toan luai?

4, Gia st 1 thiét bi dong ngat mach
nhu tran-zit-to ¢6 thé dong ngat ngay tac
thi. Ta dy dinh ndi 1 vi mach may tinh
hinh dia voi 1 thiét bi nhu vay. Han ché
duy nhat 1 thoi gian truyén tin hiéu dién
tr canh nay tgi canh khac cua vi mach.
L4y gia dinh don gian la tin hiéu dién
truyén di v6i téc do 300.000km/s. Gidi
han duong kinh cia mot vi mach tron la
bao nhiéu dé bat ky két qua xu Iy nao
cling c6 thé dugc sur dung ¢ bat ¢t vi tri
nao trén vi mach véi toc do xir ly 1 GHz?
Giéi han duong kinh 1a bao nhiéu néu




What are the diameter restrictions if the
whole chip should operate at 1 THz =
1012 Hz? Is such a chip feasible?

5. Compare  uniprocessor  systems
with multiprocessor systems for the
following aspects:

(@) ease of programming;

(b)  the need for synchronization;
(c) performance evaluation; and
(d)  runtime system.

6. Provide a list of the main
advantages and disadvantages of SIMD
and MIMD machines.

toan bo vi mach xu Iy véi tbe d6 1 THz =
1012 Hz? Vi mach nhu vay c6 kha thi
khong?

5. Sosanh h¢ théng don xu ly véi hé
thong da xur 1y trén cac phuong dién sau:

(@) Dé lap trinh;

(b)  yéu cu ddng bo hoda;

(c)  danh gia sy hiéu suit; va
(d)  hé thdng thoi gian chay.

6. Hay dua ra danh sach nhtng vu va
nhugc dieém chinh cia cac may SIMD va
MIMD.

7. Cung cdp mot danh sach cac uu va
khuyét diém chinh cua mé hinh bd nhé
dung chung va truyén thdng béo;

8. Liét ké 3 trng dung ky thuat, ma ban
biét trong d6 SIMD thich hop nhat dé s
dung, va 3 ung dung khac thich hop voi
MIMD;

9. Gia sir rang mot phép cong don gian 2
phan tir yéu cau 1 don vi thoi gian. Ban
can tinh thoi gian can thiét dé thuc hién
cong mang 40x40 phan tir sit dung mot
trong céac cach sap xép sau day :

a) Mot hé thong SIMD c6 64 phan tir X
1y duoc két ndi voi theo kiéu 1an can gan
nhat. Gia sir rang mdi bo xir ly chi ¢6 bo
nhé riéng cua no;

b) Mot hé thong SIMD c¢6 64 phan tir xir

ly duoc két ndi voi bd nhé ding chung
qgua mang lién thong. Bo qua thoi gian




trao doi thong tin.

¢) Mot hé thong may tinh MIMD c6 64
phan ta doc 1ap truy cap mot bo nhé ding
chung qua mang lién thong. Bo qua thoi
gian trao doi thong tin;

d) Lap lai b) va c) & trén néu thoi gian
trao doi théng tin c6 t6i 2 don vi thoi
gian.

10. Tién hanh nghién ciu so sanh giita
cac mang lién thdng theo gia thanh, hiéu
suat, kha nang khang 15i:

a) bus;

b) siéu lap phuong (siéu khdi):
C) ludi;

d) Két ndi hoan toan;

e) Mang dong da tang;

7. Liét k& danh sich cac diém wu va
nhugc diém chinh ciia bo nhd dung chung
va mo hinh truyén thong diép.

8. Liét ké ba tng dung ky thuat quen
thuoc véi ban st dung SIMD hiéu qua
nhat va ba tng dung k¥ thuat khac sir
dung MIMD hiéu qua nhét.

9. Gia sir mot phép cong don gian gom
hai phan tir can mot don vi thoi gian. Ban
dugc yéu cau tinh thoi gian can thiét dé
thuc hién mot phép cong mang 40x40




gl

phan t st dung mot trong cac cau hinh
dudi day:

(a) Mot hé théng don 1énh da dir liéu
(SIMD) ¢c6 64 don vi xir 1y dugc két ndi
theo kién trdc 1an can gan nhat. Coi mdi
bo xir ly chi sir dung mot bo nhé riéng.

(b)Mot hé théng don 1énh da dir liéu
(SIMD) ¢c6 64 don vi xir 1y dugc két ndi
voi mot bé nhd dung chung qua mét
mach lién két. Bo qua thoi gian truyén
thong.

(c) Mot hé théng may tinh da 1énh da dix
litu (MIMD) c6 64 don vi xu 1y doc lap
két ndi véi mot bo nhé dung chung qua
mot mang lién thong. Bo qua thoi gian
truyén thong.

(d) Lam nhu (b) va (c) néu thoi gian két
ndi 1a 2 don vi thoi gian.

10. Tién hanh mot nghién ciu so sanh
gitta cac mang lién két du6i day trén cac
phuong dién chi phi, hiéu suat va kha
ning khang 16i cua ching:

() kénh truyén (bus)

(b) siéu lap phuong (hypercube)

(c) luai (mesh)

(d) két ndi hoan toan (fully connected)

(&) mang ddéng da ting (multistage
dynamic network)




crossbhar switch.

(f)

PROBLEMS

1. Design a nonblocking Clos network
that connects 16 processors and 16
memory modules. Show clearly the
number of crossbar switches needed,
together with their interconnection
pattern.

2. Consider the case of an 8 x 8
single-stage recirculating Shuffle-
Exchange network. Determine all input-
output combinations that require the
maximum number of passes through the
network.

3. Consider the case of an 8x8 Banyan
multistage  interconnection  network
similar to the one shown in Figure 2.8.
Determine whether it is possible to
connect input #l to output (i mod 8) for all
| simultaneously. If it is possible show the
routing in each case.

4, Consider a simple cost comparison
between an n x n crossbar and an n x n
Shuffle-Exchange MIN. While the
crossbar uses cross points, the Shuffle
network uses 2 x 2 switching elements
(SEs). Assume that the cost of a 2 x 2SE
is four times that of a cross point. What is
the relative cost of an n x n Shuffle-
Exchange network with respect to that of
a crossbar of the same size? Determine
the smallest value of n for which the cost
of the crosshar is four times that of the
Shuffle-Exchange.

(f) Bo chuyén mach thanh ngang (chuyén
mach ngang doc)

CAC BAI TAP

1. Thiét két hé thdong mang Clos
khong chd két ndi 16 bo xtr Iy voi
16 md dun bd nhd. Biéu dién rd sb
bo chuyén mach thanh chéo can
thiét, cung véi md hinh lién két.

2. Xét mang Shuffle-Exchange xoay
vong don tang 8 x 8. Xac dinh tat
ca cac két hop vao ra can sé lan di
gua mang nhiéu nhat.

3. Xét mot hé thong mang lién thong
da ting 8 x 8 twong tu nhu hé thong
& hinh 2.8. Xem xét kha ning két
ndi dau vao #1 vai dau ra( 1 mod 8)
cung luc ddi véi tat ca 1. Néu cd
thé, hay phat hoa su dinh tuyén cho
tung trueong hop.

4. Xét mot phép so sanh chi phi don
gian gitra mot hé théng crossbar n x
n va mot hé théng Shuffle-
Exchange n x n MIN. Trong khi,
crosshar st dung cac diém chéo,
Shuffle st dung cac phan tir
chuyén mach 2 x 2 ( PTCM ). Gia
str chi phi cia mét PTCM 2 x 2 gap
4 1an chi phi ciia diém chéo. Chi phi
twong db6i cua mot hé thdng
Shuffle-Exchange n x n so véi hé
thdng crossbar cung kich c¢& nhau la
bao nhiéu? Xac dinh gid tri nho
nhat caa n dé chi phi caa hé théng
crossbar gip bdn lan hé thdng




5. In computing the number of
connections for different multiple-bus
systems, it is noticed that all multiple-bus
systems require at least BN connections.
However, they differ in the number of
additional connections required. For
example, while the MBFBMC requires
BM  additional  connections,  the
MBSBMC requires only M additional
connections. You are required to compare
the four multiple-bus systems in terms of
the additional number of connections
required for each. You may assume some
numerical values for B, N, M, g, and k.
Consider the case of connecting N = 100
processors to M = 400 memory modules
using B = 40 buses. Determine the
optimal values for g and k such that the
MBCBMC system is always better that
the MBPBMC in terms of the number of
additional connections.

crossbar switch.

PROBLEMS

1. Design a nonblocking Clos network
that connects 16 processors and 16
memory modules. Show clearly the
number of crossbar switches needed,
together with their interconnection
pattern.

2. Consider the case of an 8 x 8

Shuffle-Exchange.

5. Trong qua trinh tinh toan s lién két
cho cac hé théng nhiéu bus khéc
nhau, can phai luu ¥ rang tat ca hé
théng nhiéu bus can phai c6 it nhat
BN lién két. Tuy nhién, sé luong
lien két bo sung s& khac nhau. Vi
du, MBFBMC can thém BM lién
két bo sung trong khi MBSBMC
chi can M lién két bo sung. Ban can
phai so sanh bdn hé théng da bus
dua trén sb luong lién két bd sung
cua tirng hé thong. Ban co thé gia
dinh mét s gié tri cu thé cho B, N,
M, g, va k. Xét truong hop noi
N=100 bd xt ly vai M=400 mo-dun
bo nhé sir dung B= 40 bus. Xéac
dinh gié tri tbi uu cta g va k dé hé
théng MBCBMC ludn tét hon hé
théng MBPBMC duya trén (theo) s6
luong lién két bo sung.

Bo chuyén mach thanh ngang (chuyén
mach ngang doc)

CAC BAI TAP

Thiét ké mot mang Closs khdng cho ma
lien két 16 bo vi xir Iy va 16 modun bo
nhé. Chi ra mot cach rd rang sé bo
chuyén mach thanh ngang can duing, cting
véi md hinh két néi cua chung.




Trong qué trinh tinh toén sé lugng két noi
cho nhitng hé théng nhiéu bus khac nhau,
chiing ta thay ring tat ca nhirng hé théng
a kénh yéu cau it nhat BN két ndi. Tuy
nhién, chiing khac nhau vé sé két néi bo
sung can thiét. Vi du nhu, trong khi

o




BM  additional  connections,  the
MBSBMC requires only M additional
connections. You are required to compare
the four multiple-bus systems in terms of
the additional number of connections
required for each. You may assume some
numerical values for B, N, M, g, and k.
Consider the case of connecting N = 100
processors to M = 400 memory modules
using B = 40 buses. Determine the
optimal values for g and k such that the
MBCBMC system is always better that
the MBPBMC in terms of the number of

additional connections.

MBFBMC yéu cau BM két noi bo sung,
thi MBSBMC chi yéu cau M két ndi bo
sung. Ban dwoc y&u ciu so sanh 4 hé
thng da kénh theo sb két ndi bo sung can
thiét cho mdi loai. Ban c6 thé gia dinh
mot vai gia tri sb cho B,N,M,g va k. Xét
truong hop két ndi N=100 bo vi xir Iy voi
M=400 modun b6 nhé sir dung B=40 bus.
Xac dinh nhitng gia tri toi vu cua g va k
dé hé théng MBCBMC luén lubn tét hon
MBPBMC theo sé luong két ndi bo sung.

6.Xét hai MIN trong hinh 2.10 va 2.11.
Thoat nhin, ching ta c6 thé thay su khac
nhau gira hai mang nay. Bac biét, trong
khi mang dau tién [EREISHUTIE EXChance)
st dung cac két ndi thang giita gitra cac
bo xtr 1y ddu vao va cac dau vao mang va
két néi thang gitta dau ra mang va cac mo
dun bd nhé dau ra, mang thir hai [(fRENg
BaRYARN s dung cac két néi thing tai
cac dau vao nhung st dung két ndi
SHUIFFI8 tai diu ra. Néu ching ta tong quat
hda nguyén tac d6 sao cho & cac dau vao
va dau ra ching ta co két co cac két ndi
thang hodc két ni SHURHE trong khi van
git két ndi giita cac ting nhu da biéu
dién, c6 bao nhiéu loai khac nhau duoc
hinh thanh? Xac dinh tinh chét dic trung
cua cac loai mang nay theo kha ning két
ndi dong thoi tat ca cac dau vao voi tat ca
cac dau ra cua ching.

7.Lam lai bai tap 6 ¢ trén cho truong hop




mé hinh két ndi giita cac tang cd thé
thang hoic shuffle.

8.Gia str rang ching ta dinh nghia mot
phép toan mai. goi la shuffle nguoc (1S),
nd dugc dinh nghia 1a

Lam lai bai tap 7 va 8 & trén néu dung
phép toan IS thay cho shuffle.

9.X4c dinh d6 ting téc cuc dai cta hé da
xu 1y don bus c6 N bo xtr Iy néu mdi bo
xt Iy ding bus trong khoang mot phan f
ctia mdi chu ky.

10. Thao luan tinh chat khanh 13i cua céc
IN dong chiang han nhu nhiéu bus, céc
MIN, va crossbar. Bac biét, thao luan anh
huéng cia sy hu hong cua cac nut
va/hoic link dén kha niang dinh tuyén
trong méi mang. Lap lai diéu tuong tu
cho cac mang tinh ching han nhu cac
mang siéu khdi lap phuong, ludi va cay.

Xac dinh diéu kién can thiét dé mot cay
nhi phan chiéu cao h c¢6 dudng kinh 16n
hon va sb lién két 16n hon mdi ddi tuong
sau ddy: (a) 1 siéu lap phuong n chiéu,
BlViot [u6i 2D rxr vaoi r = VN, va khéi
lap phuong n chiéu [l

Khoang cach tdi thiéu va téi da ma mot
thong diép phai di chuyén trong mot siéu
lap phuong n chiéu 1a bao nhiéu? Chuing
ta ¢6 thé st dung thoéng tin d6 dé tinh
khoang cach trung binh ma mot théng
diép phai si chuyén trong mot siéu lap




phuong (siéu khdi) d6? Trinh bay cu thé.

Lam lai bai tap 12 cho truong hop mang
luai 2D rxr véir= VN

Lam lai bai tap 12 cho truong hop mot
cay nhi phan c6 chiéu cao 1a h va gia su
rang tit ca cac cap ngudn / dich déu cé
kha nang nhu nhau.

Su dinh tuyén tin nhan gitta hai nat A va
B trong mot cay nhi phan da dugc mo ta
mot cach tong quat trong muc 2.4 cua
chuong ndy. Ban duoc yéu cau xay dung
mot thuat todn timg budc dé dinh tuyén
thong diép gitta bat ky hai nat trong mot
cay nhi phan, véi cac théng tin sau:

Nut géc duoc danh s 1 va duoc coi la &
muc 1;

CA&c nut bén trai va bén phai cua mot nat
cO 56 1a x lan luot 12 2x va 2x + 1

biéu di&n nhi phan caa s nit & cap i dai i
bit, va

Nhanh con bén trai va bén phai cua mot
nut dang ¢ s6 0 hodc 1 ndi vao sé nhanh
cha twong rng cua chang,

Chi rd cach thuc &p dung thuat toan cua
ban dé dinh tuyén tin gitra nat sé 8 va sb
13 trong mot cay nhi phan 4 cap.

Xét truong hop hé théng nhiéu bus bao




gom 50 bo vi xtr 1y, 50 bo nhé va 10 bus.
Gia st rang mot bo xir 1y tao ra mot yéu
cau bo nhé vai xac suat p trong mot chu
ky nhat dinh. Tinh toan bang thong cua
hé théng nhu vay khi p = 0.2, 0.5, va 1.0.
Pong thoi hdy chiing to anh huong dén
bing théng néu sé bus ting 1én B = 20,
30, va 40 dbi véi cac gia tri xac suat yéu
cau nhu nhau .

11.X4c dinh diéu kién dé mot cay nhi
phan cd chiéu cao 13 h c6 duong kinh va
s6 luong lién két Ion hon cac duong kinh
va s6 luong lién két caa cac truong hop
sau day :(a) mang siéu lap phuong n
chiéu, (b) mét 2D r x r véi r= VN, (c) mot
khéi lap phuong n chiéu k phuong.

12.Khoang céch I6n nhat va nhé nhat ma
mét tin nhan phai di chuyén trong mot
siéu lap phuong n chiéu 1a bao nhiéu ? C6
thé dung théng tin vira rdi dé wéc tinh
khoang céch trung binh ma tin nhan phai
di chuyén trong siéu lap phuong n chiéu
do duoc khong? Giai thich ré cach thuc
hién?

13.Lam lai bai tap 12 ddi véi truong hop
mot ludi 2D r X r véi r=VN

14.Lam lai bai tap 12 dbi voi truong hop
mot cay nhi phan c6 chiéu cao 1a h va gia
thiét rang céac cap nguon/dich dén déu co
kha nang nhu nhau.




15.Qua trinh dinh tuyén tin giita hai nit
A&B trong mot cdy nhi phan da dugc mo
ta trong phan Thuat ngir chung ¢ Phan 2.4
ctia chuong ndy. Yéu cau ban tao ra thuat
toan tirng budc mot dé dinh tuyén tin gitra
hai nat trong mot cdy nhi phan véi cac
thong tin cho trudc sau day:

(a) NGt goc duge danh s6 1a 1 va duoc coi
la cap 1.

(b) Nat trai va nut phai cia moét nat ma
duoc danh s 12 x 1an luot 12 2x va 2x+1.

(¢) Biéu dién nhi phan cta sb nit & cap i
dai I bit; va

(d)Nut con trai va nut con phai cia mot
nit duoc lan luot cong thém mot s6 0 va
1 vao s6 nat bé (me) ching.

Trinh bay rd cach ung dung thuat toén
ctia ban vao viéc truyén théng tin gitra nit
s6 8 va nit s6 13 & mot cay nhi phan 4
muec.

1.Xét trudng hop mot hé théng nhiéu bus
gom 50 bd xtur ly, 50 md-dun bd nhé, va
50 bus. Gia str rang mot bo xt 1y tao ra
mot yéu cau bd nhd véi xac sut p trong
mot chu trinh cho truéc. Ubc tinh bang
thong cua hé thong nay khi p= 0.2, 0.5,
1.0. Ngoai ra, ching to anh hudong dén
bang thong néu sd bus duogc ting 1én dén




mirc B=20, 30 va 40 v&i cac gia tri xac
Suit y&u cau nhu trén.

2. Trong qué trinh rat ra biéu thic bing
thdng cua hé théng EHOSSBEN, ta coi moi
bo xu 1y déu tao ra cac ydu cau toi cac
modun bd nhd trong mot chu trinh nhét
dinh. Rt ra biéu thic tuong tu cho
truong hop trong d6 chi mot phan bo xu
ly f tao ra cac yéu cau trong mot chu trinh
nhat dinh. Xét hai truong hop- khi mot bo
xt |y tao ra mot yéu cau bd nhé vai xac
suat p trong mot chu trinh nhat dinh va
khi mot b xir Iy c6 thé yéu ciu bét ky
modun bo nhé nao.

3. Xét biéu thuc hoi quy cua bing
thong d6i véi mang [DERGININ bao gom
cac ting cd cac bd chuyén mach thanh
ngang a x b. Gia su a=2, b=4 va ra=5,
tinh bang thong ctiia mang nay.

4. Xét truong hop mang lap phuong n
chiéu nhi phan c6 N nit. Tinh bang thong
cia mang lap phuong nay khi p 1a xac
suat n(t mang nhan yéu cau bén ngoai va
n 1a xac suat nGt mang tao yéu cau (ca
truyén noi bo 1an truyén sang yéu cau bén
ngoai). Gia st mot phan yéu cau bén
ngoai f do ndt mang nay nhan dugc va
truyén sang nut mang khéc.

5. Xét cac biéu thuac hiéu suét thu
duoc theo hai m6 hinh dién todn néu &




trong chuong nay. Tinh cac gia tri hi¢u
suat ky vong ddi véi cac gia tri tc va ts
khac nhau.

6. Bat dau tir phuong trinh hé s ting

toc
S(n)=1

Thiét 1ap mot hé thac biéu dién méi quan
hé gitra mot phan thuat toan chudi f va sb
luong bo xir 1y dwoc sir dung n néu hiéu
suat dat 50%.

7. D6i chiéu (so sanh) hai phap xay dyung
hé thong song song sau diy. Trong
phuong thirc dau tién, mot sé luong nho
bo xir Iy manh duoc sir dung trong d6 moi
bo xa ly c6 thé thuc hién cac phép toan
ndi tiép voi mot tbe do nhat dinh 1a C.
Trong phuong thuc tha hai, mot s6 luong
I6n bo x& 1y don gian duoc su dung trong
d6 mdi bo xtr Iy ¢o thé thuc hién cac phép
toan noi tiép vai téc do thip hon F<C.
Trong truong hop nao hé thdng tha hai s&
thuc hién mot phép toan cho trudc cham
hon mét bo xir Iy don trong hé thong dau
tién?

8. Xét mot kién tric song song st
dung cac bd xur Iy ma méi bo xir ly ¢ kha
ning dat tbc do 0,5 megaflop. Xét mot
siéu may tinh c6 kha ning dat tbc d6 100
megaflop. Trong diéu kién nao (theo f)
kién trdc song song song nay c6 thé c6
hiéu suat cao hon hiéu suat cua siéu may




tinh.

9. Xét mot thuat toan trong do (1/a)
thoi gian dung thuc hién phép toan theo
phuong thiic néi tiép. Sy ting toc toi da
dat dugc theo phuong thirc song song cua
thuat toan la bao nhiéu?

10. Chuang minh can dudi cua ham
dang suat cua hé théng song song phu
thudc vao Q (n). Goi y: Néu ksich thudc
bai toan m ting vai toe do cham hon Q
() khi sb bo xir 1y ting thi sb bo xir Iy c6
thé vuot qua kich thuét bai toan m.

11. Tinh dang suat caa hé thong song
song c6 tong chi phi Toh= n4/3 + m3/4 x
n3/2.

12.  Ngoai hai dinh nghia néu trong
Muc 3.4, ching ta ciing ¢6 thé dinh nghia
diém song song trung binh Q 14 giao diém
gitta bién phan cang va bién phan mém
khi ting toc. Piéu nay cho thay 3 dinh
nghia twong duong nhau.

................................................

................................................

1. Giai thich hién tuong loai trir lan
nhau va méi lién quan giita né vai van dé
tuong hop cache.

2. Thao luan wu va nhuoc diém khi sir

cung cac mang lién thdng sau trong thiét
ké hé théng bo nhé ding chung




(@)
(b)
(©)
3.

(@)
(b)

To

A=
B =

Bus
B6 chuyén mach thanh ngang;
Mang nhiéu tang.

Mot sé loai may c6 huéng dan sir
dung phan cung dic biét cho phép
hoan ddi nodi dung cua hai tir trong
cung mot chu ky bd nhg. Hay trinh
bay cach sir dung huéng dan hoan doi
nham thuc hién phuong phap loai trir
lan nhau.

Xem mot hé da xir ly véi bo nhé dung
chung dua trén bus. N6 duoc hinh
thanh trén co s& cac bo xir Iy voi toc
do 106 Iénh/s va bus véi bang thong
tdi da 105 fetch/s. Thiét ké bo nhé
cache s& hé tro [llll@ 1én dén 90 %.

Héy cho bict hé thong nay c6 thé hd
tro toi da bao nhiéu bo xur ly?

Can hit rate bang bao nhiéu dé hb tro
mot hé thong vai 20 bo xui ly?

Trong trudng hop mdi mot bo xu Iy
st dung bus cho mot phan s f cua
moi chu ky, hidy xac dinh do ting toc
t6i da ctia mot hé da xir ly dang bus
don (single-bus) c6 N bo xur ly.

Xét 2 tac vu TO va T1 chay song song
trén cac bo xu ly P1 va P2 trong cung
1 hé théng b nhé ding chung. Gia six
rang phat biéu in khéng thé ding va
A, B, C, D déu bt dau tur 0.

Ti
1:.C=3;
2: D=4




InAvaD;inBvaC;

Hay trinh bay 4 dau ra khac nhau co thé
Xay ra trong truong hop chay song song 2
tac vu nay.

7. Xét 1 hé théng bé nhé dung chung
dang bus gdom cé 3 bo xir ly. Chia bo
nhé nay thanh 4 khéi x, y, z, w. MOi
bo xir Iy déu c6 1 cache riéng chi cé
thé tuong thich vai 1 khéi tai bat ky
thoi diém nhat dinh. Mai khéi co thé
6 1 trong 2 trang thai: Valid va
Invalid. Gia sur cac cache lac ban dau
déu rdng va bo nhd ¢6 nodi dung nhur
sau:

Khéibonhedx vy z w

Noidung 10 30 80 20

Xeét trinh tu su Kién truy cap b nhé sau
theo thur tu:

1) Pi: DPoc(x), 2) P2: boc(x), 3) P3:
boc(x), 4) Pi: x = x + 25, 5) Pi: Boc(z),
6) P2: Boc(x), 7) P3:x=15,8)Pi.z=z +
1

cho biét noi dung cua bo nhé cache va
trang thai cua khéi cache mdi phép toan ¢
trén trong cac truong hop sau: (1) write-
through va write-invalidate va (2) write-
back va write-invalidate.

8. Lam lai bai tap 7 voi gia thuyét sau:

(a) Mbi bo vi xtr Iy c6 mot bo nhd cache
gom 4 khung dix liéu khéi duge danh sb
0, 1, 2, 3. Bd nhé chung dugc chia thanh




8 khoi tir 0,1,..., 7. Gia dinh rang noi
dung cta bo nhé chung nhu sau:

S6 khéi 01234567 Noi dung 10 30 80 20
70 60 50 40

(b) Bé dam bao tinh twong hop cache, hé
théng su dung giao thic ghi mot lan
(write-once)

(c) Cac luot (su kién) truy cap bd nhéd
nhu sau:

1) Pi: Boc (0), 2) P2: Boc (0), 3) P3: Boc
0),

4) P2: Boc (2), 5) Pi: Boc (i5 trong 0),

6) P3: Boc (2), 7) Pi: Ghi (25 trong 0), 8)
Pi: Boc (2), 9) P3: Ghi (85 trong 2), i0)
P2: Boc (7)

Luu y: Ghi (x trong 1) tic la gia tri x duoc
ghi trong khoi i

1. Néu diém khac biét gitra ham
pvm_initsend() va pvm_mkbuf()?

2. Thao luan mot sé tinh hudng sir
dung chtrc nang nhan khdng cho
tdt hon nhan cho

3. Xem xét nhitng rang budc wu tién
(tién d¢) tai myc 8.10 trong céc tac
vu TO, T1, T2, T3, T4. Chl Y ring
mot arc tr T; dén T dong nghia
Vi viéc T phai duoc hoan tat
trudc khi Tj khoi dong. Chi ra




cach dé ap dat uwu tién (tién de,
diéu kién tién quyét) nay trong
PVM.

1) Pi: Doc (x), 2) sP2: Boc (x), 3) P3: boc
(x), 4) Pi: x = x + 25, 5) Pi: Boc (2), 6)
P2:doc (x), 7)P3: x=15,8)Pi.z=z+1

Hién thi cac noi dung cua bo nhé cache
va bo nhd va trang thai cua cac khoi bo
nhd cache sau moi phép toan trén trong

cac truong hop sau day: -

8. Lam lai bai toan 7 voi gia thuyét nhu
sau:

(@) Mbi bo vi xir Iy c6 mot bd nhé cache
véi bon c6 nhan 0, 1, 2, 3. Bo
nhé ding chung dugc chia thanh tdm khdi
0,1, .., 7. Gia st rang rang cac noi dung
cua b nhé dung chung nhu sau:

Ma sé khéi 01234567 Noi dung 10 30 80
20 70 60 50 40

(b) Bé duy tri sy tuong hop cache, hé
thong str dung giao thuc ghi mot lan.

(c) Cac su kién truy cap bo nhé nhu sau:
1) Pi: Boc (0), 2) P2: Boc (0), 3) P3: Boc
(0),

4) P2: doc (2), 5) Pi: Viet (i5 trong 0),

6) P3: doc (2), 7) Pi: Viét (25 0), 8) Pi:
doc (2), 9) P3: Viét (85 2), i0) P2: Poc
(7),

i1) P3: Boc (7), i2) Pi: Boc (7)




4. Consider the four tasks in Figure
8.11, which are synchronized using

barriers corresponding to the
synchronization points shown. Show how
to implement the given barrier structure in
PVM.

Figure 8.10 Precedence constraints for
Problem 3.

5. Suppose that we want to extend
PVM to support fully synchronized
communication among processes. What
parts of PVM should be altered to provide
a fully synchronous send operation?
Discuss all possible methods to achieve
this goal.

6. Suppose that you were hired to
develop techniques for assigning tasks to
machines in a PVM environment. What
performance measures should you
optimize? What parameters should be

(Luu y réng,_ co nghia 1a gia
tri x duogc viet trong khoi i.)

1. Sy Kkhac biét gira cac ham
pvm_initsend () va pvm_mkbuf () la gi?

2. Thao luan vé& mot sb truong hop trong
d6 nhan khéng chd chiém wu thé hon so
véi nhan cho?

3. Xeét cac rang buoc uu tién trong hinh
8.10 trong céac tac vu TO, T1, T2, T3, T4.
Luu y rang mot cung tr T, T, T ¢6 nghia
la T; phai hoan thanh trugc Tj bat dau.
Chting to céach thic dé ap dat nhiing diéu
kién tién quyét nay trong PVM.

4.Xét bbn tac vu trong hinh 8.11, ching
duoc ddng bo hoéa bing cac hang rao
tuong tng voi cac diém dong bd hoa
duoc biéu dién. Chang to cach thuc thi
C4u triic hang rao nhu thé trong PVM.

Hinh 8.10 Cac rang budc uu tién dbi voi
Bai toan 3.

5.Gia st chiing ta muén mé rong PVM dé
ho tro su truyén thong duge dong bo hoa
hoan toan gitra cac qua trinh. Phan nao
cia PVM nén dugc thay thé dé cho ra
mot hoat dong (thao tac, phép toan) gui
hoan toan dong bo? Thao luan mot s6
phuong phap tiém ning dé dat dugc muc
tiéu nay.

6.Gia sur ban dugc thué xay dung cac ky
thuat dé 4n dinh cac tac vu cho cac may
trong méi truong PVM. Ban nén tdi wu
tham sb hiéu suit nao? Céc tham s nao




considered? Should the assignment be
done statically or dynamically? Why?

7. Devise a static algorithm for task
allocation that can be used to schedule a
PVM application on a given virtual
machine. Devise another dynamic method
to balance the load among the PVM hosts.

8. A task can be partitioned at
different levels of granularity: fine-grain,
medium-grain, and large-grain. Which
level of granularity fits the PVM
programming approach the most? Justify
your answer.

9. Develop a matrix multiplication
program in  PVM. This program
multiplies two n x n matrices in parallel
(C = A x B). The program consists of a
supervisor and n — 1 workers. The
supervisor sends each worker one row of
the first matrix and the entire second
matrix. Each worker calculates one row in
the resulting matrix and sends it to the
supervisor.

10. Rewrite the program of Problem 9
such that each task calculates (a) exactly
one cell in the matrix C, (b) part of a row
in C, (c) more than one row in C. Contrast
all the methods. Discuss the advantages
and disadvantages of each method.

Két thic phan dich mau cta Thoai An

can xem xét? Viéc phan cong nén duoc
thuc hién tinh hay dong? Tai sao?

7. Hay nghi ra mot thuat toan tinh dé
phan cong tac vu co thé dugc dung dé xay
dung mét ing dung PVM trén mot may
40 nhat dinh. Nghi ra mot phuong phap
dong khac dé can bang tai gitra cac host
PVM.

9.Mbt tac vu co thé dugc phan ving & cac
muc hat khac nhau: hat min, hat trung
binh, hat Ién. Muc hat nao khaop véi mo
hinh 1ap trinh PVM nhat? Ching minh
cau tra loi cua ban.

9.Xay dung mot chuong trinh nhédn ma
tran trong PVM. Chuong trinh nay nhan
hai ma tran nxn song song (C = A x B).
Chuong trinh bao gom mat giam sét vién
va n-1 nguoi thi hanh (cong nhan). Giam
sat vién giri cho mdi cong nhan mot hang
ctia ma tran dau tién va toan bé ma tran
tha hai. Mdi ngudi thi hanh (céng nhan)
tinh mot hang trong ma tran cudi ciing va
gui né cho giam sat vién.

10.Viét lai chuwong trinh cua Bai toan 9
sa0 cho moi tac vu tinh (a) ding mot 0
trong ma tran C, (b) mét phan caia mot
hang trong C, (¢) hon mét hang trong C.
Phan biét tit ca cac phuong phap. Thao
luan wu va nhuge diém cua mdi phuong
phap.









