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Gidi thiéu

Luan vin ndy mang mot muc tiéu thuc té.
Két qua cua nghién ctu ndy nham muc dich
tra 161 cho cau hoi sau: “C6 thé xac dinh
nhitng tram goc (base stations — BS) dit sai
vi tri trong mot mang Kha nang tuong tac
toan cau v6i truy nhap vi ba WiIMAX?”.
Cau hoi nay c6 vai tro rat quan trong trong
viéc hoach dinh va khai thac cac
WIMAX. Cau tra 1oi c6 thé 1a loi giai thich
vi sao hiéu suit cua cac [l WiMAX do
dugc trén thuc té lai thip hon so véi hiéu
suat duoc xac dinh trong giai doan thiét ké.

Phuong phap cua chung t6i la phan tich luu
lwong thong tin tai mot [igMg WiMAX bao
gom 67 tram gdc trong khoang thoi gian 1a
8 tuan. Pé xem xét mot luong thong tin Ion
nhu vay thi phuong phap khai thac dir liu
la t6t hon ca. Phuong phép nay dua trén
quy trinh chuan tham chiéu cong nghiép cho
khai thac dir licu CISP-DM. Phuong phap
nay duoc ap dung trong luan van nham trinh
xuat thdng tin, giai ma thong tin va dé ra
giai phap. Chuang toi lya chon Ivu luwgng lam
dbi tuong nghién ctiru vi nhitng ly do sau:

1, C6 thé do dugc luu luong

2, Str dung nhitng chién lugc khai thac va
hoach dinh gilp nang cao hiéu suit cua
mang (dac biét 1a trong truyén théng khdng
day nhu cong nghé¢ WiMAX)

Chon lya nay hudng luan van theo nghién
ctru phuong phap phan tich chudi thoi gian.
Phén tich chudi thoi gian di va dang 1a mot
thach thirc ddi vai rat nhiéu nha nghién ctu.
Khai ngudn cta phuong phap nay co thé




duoc tim thiy trong cac nghién ctu toan
hoc, nhung ngay nay, phan tich chudi thoi
gian 1a mot linh vuc da nganh, khai thac két
qua trong toan hoc, xu 1y tin hiéu thdng ke,
khai thac da liéu hay ky thuat. Do l1a 1y do
tai sao luan van nay ciing mang tinh chat da
nganh, két hop khan ning tin hoc tir phong
LUSSI (Logics in Uses, Social Science and
Information Science — Thiét ké may tinh
trong tng dung, Khoa hoc x& hdi va Khoa
hoc may tinh) cua vién thong Bregtagne,
Brest, Phap va vién théng tir phong truyén
théng thuoc khoa Dién tir va Vién Thong
cua truong Pai hoc Bach Khoa Timisoara,
Romania.

Mot trong nhitng khé khin chua yéu cia viéc
phan tich chudi thoi gian dai (twong (ing Voi
mot luong dit liéu 16n) d6 la mac do phirc
tap trong tinh toan. C6 thé giam thiéu do
phiic tap d6 bang cach trinh bay dit liéu theo
mot cach thuan lgi hon. Chuan bi dit liéu 13
mot trong nhitng budc cua phuong phap
CRISP-DM, dua ra mot biéu dién dit liu
theo kiéu thuan loi hon. C6 thé sir dung cac
wavelet dé co6 duoc mot biéu dién nhu vay.
Mot phép bién dbi wavelet roi rac (DWT)
cta chudi thoi gian rat hiém va c6 mac do
phtc tap trong tinh toan it hon. Bién doi
wavelet da dugc su dung cho phén tich
chudi thoi gian trong rat nhiéu nghién ctu
trong nhitng nim gan day. AFTV03],
[PTZD03], [RMBS10],  [RSML10],
[SMLI10], [WS02]. Mét trong nhitng dac
tinh chinh cua wavelet d6 1a chung bi cuc bo
hoa theo thoi gian (hoac khong gian), vi vay
ma chang phu hop cho viéc phan tich céc
tin hiéu khong tinh (nhitng tin hiéu ngin




han va cd cau trdc fractan)

CAu truc cua luan van nay gdbm nhitng trong
tam sau:

1, Ung dung bién d6i Wavelets - So luoc
vé tng dung bién d6i wavelets dugc trinh
bay trong Chuong 1,

2, Xt ly tin hiéu thong ké — cé&c cong cu co
ban dugc trinh bay trong Chuong 2

3, Phan tich chudi thoi gian — duoc trinh
bay trong Chuong 3 va chuong 4.

4. Khai thac dir ligu-dugc trinh bay trong
chuong 3 (Chuong 3 ciing dong thoi phat
trién va nhan manh phuong phap CRISP-
DM) va chuong 4

5, Cac [l WiMAX — dugc mo ta trong
Chuong 3 va dugc phan tich trong ca
Chuong 3 va Chuong 4.

Nhu di dugc dé cap & trén, muc tiéu cua
luan van nay 1a tra loi cAu hoi “Co thé xac
dinh duoc nhitng tram goc dugc dit sai vi
trf trong mot topo [l WiMAX bing phan
tich luu lugng hay khong?” Gia thiét rang
lru lwong cua tram géc sai vi tri 16n hon luu
lugng cua tram goc dung vi tri, hai phuong
phap dé danh gia luu luong duoc dua ra.
Phuong phap thir nhat dya trén gia thiét
rang mot tram géc c6 luu luong 1on s& giam
nguy co bi bdo hoa. Vi vay, can danh gia
nguy co bdo hoa ctia mdi tram gbc. Tuc la
ddng nghia véi viéc xac dinh thoi diém tram
g6c bdo hoa. Vi vay, muc tiéu truéc hét cua
luan van 1a dé xuat mot phuong phap du
doan chudi thoi gian. C6 hai hinh thuc du




doan trong ngan han va dai han. Ca hai hinh
thirc nay déu co thé dugc thuc hién trong
mién wavelets v&i su tro gilp cua phép
phan tich da phan giai cua tin hiéu, st dung
SWT (bién doi wavelets tinh). Tiép do la
md hinh trung binh truot két hop tu hdi quy
ARIMA trong truong hop du doan dai han
hodc bang viéc ung dung cac md hinh hé
thong noron (Neural Networks - NNs) trong
truong hop du doan ngan han. Hai hinh thtc
du doan nay duoc so sanh trong mot sé
nghién ctru twong tu tai phong LUSSI from
Telecom Bretagne, cho thay su vuot troi cua
NNs doi v6i du doan ngan han. Néu xem
xét viéc thoi diém bdo hoa c6 thé ¢ tuong
lai xa thi phuwong phap du doan dai han dua
trén ARIMA duogc chung t61 ua thich hon
trong luan van nay. Phuong phap nay duoc
ap dung cho tat ca cc vét (traces) trong co
s¢ dir liéu cua chung toi, cho phép phén loai
cac tram goc theo luu lugng, va duoc trinh
bay & cudi Chuong 3.

Phuong phap thir 2 dé danh gia heaviness
cua luu lugng tin dya trén phén tich tinh
phu thuéc nhau thoi gian dai ( Long Range
Dependence — LRD) Pay la mot khai niém
thong ké tuong ddi méi trong phan tich luu
lugng truyén thong va ciing c6 thé dugc
thuc hién bang cach st dung cac wavelet.
LRD duoc gidi thi¢u trong Chuong 2 cung
VGi mot s6 wdc luong cua nd. Viéc danh gia
mirc d0 LRD duogc thuc hién thong qua
danh gia thong s6 Hurst caa chudi thoi gian
dang dugc phan tich.




Phén tich LED cua luu lugng WiMAX dugc
trinh bay trong Chuong 4. Co thé gia thiét
rang luu luong 16n hon s& ¢6 LED manh
hon. Tinh chat ndy ciia luu luong c6 ¥ nghia
quan trong ddi véi hiéu suat, thiét ké va viéc
xac dinh kich thudc cua [{i@. Bing céach
thuc hién mé phong va phan tich, ching toi
c6 duoc nhirng két qua cho thiy luu luong
WIMAX thé hién dic tinh LED. Muc tiéu
ctia Chuong 4 13 nhidn manh nét dic thi cua
lwu lwong WiMAX trén quan diém LED va
phan loai tram géc dua trén heaviness (muc
do6 day dac) cua luu lugng. Phan loai tram
géc lan hai nay duoc trinh bay trong
Chuong 4, phu hop véi phan loai lan mot o
cubi Chuong 3, mac du ca hai phan loai nay
duoc thuc hién thong qua udc tinh théng ké.
Vi vay, cau tra loi cho cau hoi chung cua
luan van nay 1a cau khang dinh, nhitng tram
goc sai vi tri cd thé duoc xac dinh bang
phan tich luu luong. Két qua chi ra dau 1a
nhitng tram gbc cO vi tri dep trong topd
W8 v2 dau 1a nhitng tram goc co vi tri
khong dep. Nhitng tram gdc c6 vi tri khéng
dep sé phai duoc di doi trong dot bao tri
sap toi.

Két qua ma chang tdi s& trinh bay trong luan
van nay vua mang tinh ly luan lai vira co y
nghia thuc tién. Mot s6 két qua mang tinh ly
luan c6 thé ké dén nhu sau:

1, Phan tich théng ké bac hai cta cac hé sb
wavelet trong Chuong 2 la mot phan tich
dau tién, giai thich vé udc luong Abrv-
Veiteh cua tham sé Hurst. Viéc danh gia
tham s& Hurst 1a can thiét dé xac dinh su
xuat hién cta LED trong chudi thoi gian. O




muc do co ban, phan tich thong ké twong tu
la mot dong gop khac cua luan van nay udc
luong tham sé Hurst dua trén wavelets, c6
tac dung dbi v&i chudi thoi gian dau vao
dirng theo nghia rong duoc dé& xuit trong
Chuong 2. Pay 1a mot udc lugng dau tién,
rat don gian nhung tng dung han ché vi lop
cadc qua trinh ngau nhién tinh theo nghia
rong c6 mie d6 tong quat hda giam

2, Mét cudc kiém tra vé mac do 6n dinh dua
trén viéc lap lai phuong phap Box-Jenkins
duge dé& xuat trong Chuong 3. Ung dung
ctia n6 duoc nhan manh bang viéc so sanh
v6i nhitng cudc kiém tra mic do 6n dinh ¢b
dién dya trén su twong quan hoic cac ham
tuong quan mot phan. Nhitng két qua mang
tinh ly luan nay khong khai quat nhung la
diém xuét phat cho nhitng nghién ctu trong
tuong lai.

Mot s6 két qua cé ¥ nghia thyc tién dugc dé
cap dudi day:

1, Ung dung thuat toan timg duoc cong bd
dé du doan chudi thoi gian luu luong mang
khong day duogc trinh bay trong Chuong 3.

2, Xac dinh bién dbi wavelet tot nhat dé du
doan luu lugng va nhimg dic trung ndi bat
nhiat ctia nd, ciing dugc trinh bay trong
Chuong 3.

3, Chon ra nhitng wéc luong thong sé Hurst
t6t nhat dua trén cac md phong duoc trinh
bay ¢ Chuong 4.

4, Ban phan tich tuong dbi cac két qua duoc
trinh bay & cudi Chuong 3 va 4.

Cac ma Matlab can thiét dé thuc hién céc
phuong phap danh gia dugc md ta o
Chuong 3 va 4 thé hién nhirng déng gop
riéng cua tac gia dbi voi luan van nay.




Chapter 1 Wavelet Transforms

The purpose of this chapter is to give a short
introduction to the wavelet transforms and the
wavelet families which will be used in the
following sections. The transform of a signal is
another form to represent it. It does not affect
the information carried by the signal. In this
context, a wave (see Figure 1,1, left) is an
oscillating periodic function of time or space.
In contrast, wavelets (see Figure 1,1, right) are
localized waves. They have their energy
concentrated in time or space and are suited to
analysis of transient signals. While Fourier
transform uses waves to analyze signals, the
wavelet transform uses wavelets of finite
energy.

Wave Wavelet

Figure 1,1: Plots of a wave and of a wavelet.
The wavelet theory deals with the properties of
wavelets. It is a relatively new mathematical
tool which appeared around 1980 when
Grossman and Morlet [GM84], a physicist and
an engineer, broadly defined wavelets in the
context of quantum physics. Based on physical
intuition, these two researchers provided a new
way of thinking for wavelets based on physical
intuition.

In 1985, Stephane Mallat [Mal99] gave
wavelets an additional jump-start through his
work in digital signal processing. He
discovered some relationships  between
quadrature mirror filters, pyramid algorithms,
and orthonormal wavelet bases. An
orthonormal wavelet basis of a given Hilbert
space is an orthonormal basis of this space
whose elements are obtained by translations
with integers of a unique function named
mother wavelets.




A couple of vyears later, in 1988, Ingrid
Daubechies [Dau88] used Mallat’s work to
construct a set of wavelet orthonormal basis
functions that are perhaps the most elegant, and
have become the cornerstone of wavelet
applications today.

Wavelet theory is used for analyzing various
data studied in wvarious domains such as
mathematics [VK95], science [JMRO01],
engineering [SSPWO02], economics [GSWO01]
and social studies: time series (as will be shown
in the following sections of this thesis), radar
signal [Kolll], image [CS05], sound [Che96],
video, mathematical functions, etc,

1.1 The Wavelet Transform

In the following we will present the main steps
in the evolution of the wavelet transform (WT),
As already said, the transform of a signal is
nothing more than another form of
representation of that signal. We will consider
as starting point the Fourier transform. It is an
alternative representation of a signal in the
frequency domain. It has various forms: the
Fourier series used for the representation of
periodic signals, the Fourier transform in
discrete time used for the representation of
discrete in time signals, the short time Fourier
transform  which is a time-frequencv
representation and so on. Accordingly, there are
different WTs, the wavelet series, the discrete
WTs, the continuous WT.

1.1.1 Fourier Transform

Fourier series are named in honor of the french
mathematician and physicist Joseph Fourier
(1768-1830), who made important
contributions to the study of trigonometric




series. In 1807, Fourier presented a memoir
[Fou08] to the "Institut de France" in which he
claimed that any periodic signal could be
represented by a series of harmonically related
sinusoids. The concept can be extended to the
Fourier transform (FT), which applies to
aperiodic signals. The development of this
representation for aperiodic signals in
continuous time is one of Fourier’s most
important contribution, [OW96], FT is a
mathematical tool used to transform a signal
from time-domain into frequeney-domain.
Being given a signal x(t), the FT, or the
spectrum of this signal, X(u), is defined as:

(i.i)

while the inverse FT is given by:

(1.2)

The difference between the FT and the Fourier
series is the following: a Fourier series can only
be applied to periodic signals and separates
them into a number of discrete frequency
components, while the FT can be used to break
aperiodic signals into an infinite number of
continuous frequency components using the
integral, [Bou05],

1.1.2 Short-Time Fourier Transform

The FT do not clearly indicate how the
frequency content of a signal changes over
time. Therefore, the Short-Time Fourier
Transform (STFT), or windowed Fourier
transform, was introduced, STFT extracts
several frames of the signal which can be
assumed to be stationary, to be analyzed with a
window that moves with time, [Add02],

The STFT of a signal x(t) is defined as:

where w(t) is the window function and X(T,U)




is the FT of x(t)w(t — t), a complex function
representing the phase and the magnitude of the
signal over time and frequency.

The time resolution and frequency resolution of
a STFT basis element is equal to those of the
window. Narrow windows give good time
resolution, but poor frequency resolution. Wide
windows give good frequency resolution, but
poor time resolution and may also violate the
condition of stationaritv, for signals which are
stationary on portions. The effect of the
selection of a window too long will be the
smoothening of the analyzed signal and the
information contained in its parts with rapid
variations will be recovered with difficulty
from its STFT, So, the window should be
carefully chosen because it does not change
during the period of analysis. Therefore, the
time and frequency resolutions will remain
unchanged on the entire duration of the analysis
performed using the STFT, these resolutions
being imposed by the window selected, A
particular case of STFT is the Gabor Transform
(1946) [Gab46] which uses a Gaussian
window,

1.1.3 Wavelet Transform

The Continuous Wavelet Transform (CWT),
introduced by Grossman and Morlet, was
developed as an alternative approach to the
STFT, to overcome the problem of constant
resolution. It is done in a similar way as the
STFT, in the sense that the signal is multiplied
with a function, the wavelet, similar to the
window function in the STFT, The transform is
computed separately for different segments of
the time-domain. This transform is capable of
providing the time and frequency information
simultaneously, hence giving a time-frequencv
representation of the signal,

A wavelet is used to analyze a given function




or continuous-time signal at a specified scale.
This function plays the role of the window from
the case of STFT, but it has a second
parameter, additional to the position, the scale.
It can be moved to various locations of the
signal as shown in Figure 1,2, To highlight the
influence of the additional parameter, in Figure
1,3 are represented three wavelets of the same
type, having the same position but different
scales. Each of these three wavelets allows the
analysis of a signal at a different scale by
translations across its waveform, obtaining
three different representations which will be
named in the following scale components.
Usually one can assign a frequency range to
each scale component. Each one can then be
studied with a resolution that matches its scale.

Figure 1,2: Location in time of a wavelet with a
given scale.

Figure 1,3: Same wavelet at a specified position
and different scales.

To analyze signal structures of very different
sizes, it is necessary to use time-frequency
atoms with different time supports, A linear
time-frequency transform correlates the signal
with a family of waveforms that are well
concentrated in time and in frequency. These
waveforms are called time-frequency atoms
|Fla93|,

The CWT decomposes signals over dilated and
translated wavelets, A mother wavelets is a
function, / e L2("R), with a zero average:
/(tdt=0, (1,4)

normalized (||/|| = 1), and centered in the
neighborhood of t = 0,

A family of time-frequencv atoms (wavelet
functions) /u,s(t) are generated bv translating
and dilating the mother wavelets, /:

"N, (L.5)




that can form a basis. These atoms remain
normalized: ||/u,s|| = 1.

1.1.4 Wavelet Transform versus Fourier
Transform

Wavelet theory extends the ideas of the
traditional Fourier theory. While the FT is
useful for analyzing the spectral content of a
stationary signal and for transforming difficult
operations into very simple ones in the Fourier
dual domain, it can not be used for the analysis
of non-stationarv signals or for real time
applications. In this case are required time-
frequencv representations such as the STFT or
the CWT, The CWT is a powerful time-
frequencv signal analysis tool which it is used
in a wide variety of applications including
biomedical signal processing, data mining,
Image compression, pattern recognition, etc.
The CWT is one of the most important methods
that are used to reduce the noise which perturbs
non-stationarv signals and to analyze the
components of non-stationarv signals, for
which the traditional Fourier methods cannot be
applied directly.

The wavelets have some properties: have good
time-frequencv (time-scale) localization, can
represent data parsimoniously, can be
implemented with very fast algorithms and are
well suited for building mathematical models of
data. The wavelet approach of signal analysis is
also flexible in handling irregular data sets.
Singularities and irregular structures often carry
essential information in a signal. So, the CWT
has advantages over the STFT for representing
functions that have discontinuities and sharp
peaks, and for accurately decomposing and
reconstructing finite, non-periodic and/or non-
stationarv signals.




The most interesting dissimilarity between
these two kinds of transforms is that individual
wavelet functions are localized in time, Fourier
sine and cosine functions are not. This
localization feature, along with wavelets
localization in frequency, makes many
functions and operators using wavelets “sparse"
when transformed into the wavelet domain.
This sparseness, in turn, results in a number of
useful applications such as data compression,
detecting features in images, and removing
noise from time series.

Mathematically speaking, the CWT of a signal
is a collection of scalar products which factors
are the analyzed signal and a family of
wavelets, defined in equation (1,5), All these
wavelets are generated bv translations (see the
index u in (1.5)) and dilations (see the index s)
of the mother wavelets, ~ , Hence the CWT is a
bivariate function, having as variables u and s,
One thing to remember is that the CWT has a
large set of possible kernels (mother wavelets).
Thus wavelet analysis provides immediate
access to information that can be obscured by
other time-frequencv methods such as Fourier
analysis.

There are also some similarities between the
transforms obtained by the discretization of the
CWT and STFT, The discrete transforms
obtained by the discretization of continuous
transforms are expressed by matrices. The
mathematical properties of the matrices
involved in the discrete transforms obtained by
the discretization of the CWT and STFT are
similar. The inverse transform matrix for both
the Fast Fourier Transform (FFT) and the
discrete WT is the transposed of the original.
As a result, both transforms can be viewed as a




rotation in functions space. For the FFT, this
new domain contains basis functions that are
sines and cosines. For the WT, this new domain
contains more complicated basis functions
called analyzing wavelets [Mal99],

1.2 Time-frequency Representations
Fourier transform theory states that a given
function of time can be characterized either in
time or in frequency (spectral) domain. The
transformation of a signal x(t) between the time
domain and the frequency domain can be done
by computing the Fourier transform, Fourier
transform is indispensable as data analysis tool
for stationary signals. But if we deal with non-
stationary signals the conventional Fourier
transform becomes inadequate.

Time-frequency (time-scale) representation
techniques overcome this problem as they are
capable of representing a given function of time
in both time and frequency domain
simultaneously. These kind of representations
aim to identify the parameters of a given signal:
the starting/ending moments, the energy or the
power, the instantaneous amplitude, the
instantaneous frequency, the instantaneous
frequency band, etc |1X98|.

In Figure 1,4 is presented an ideal time-
frequencv representation of a given signal x(t),
composed by three non-overlapping sinusoids
with frequencies in increasing order, each one
truncated at its period. The representation is
done in three dimensional space having as
dimensions the time, the frequency and the
amplitude.

This time-frequencv representation realizes the
perfect localization in time and frequency (the
moments of time ti — t6 and the frequencies f1
— f3 can be perfectly localized in the time-
frequency plane).




The projection of the time-frequencv
representation on the plane (A, t) represents the
oscillogram of the signal x(t) and allows the
analysis of this signal in the time domain. The
projection of the time-frequencv representation
on the plane (f, A) represents the ideal
spectrum of x(t) and permits us to analyze the
signal x(t) in the frequency domain, while the
projection on the plane (f, t) represents the
instantaneous frequency ofx(t)and allows the
analysis of x(t) in the modulation domain.

1,2, Time-frequency Representations

1.2.1 The Effective Duration and Effective
Bandwidth

In [IN98] it is highlighted, based on the duality
of the Fourier transform, that signals perfectly
localized in time have an unlimited bandwidth,
meaning that they are not localized in
frequency. As well, band limited signals have
an infinite duration. Therefore, to measure
these quantities two concepts are used: the
effective duration, at, and the effective
frequency band au. A measure of the time-
frequencv localization of a given signal can be
obtained bv the product a” m of, [0109],

Heisenberg uncertainty principle states that the
following inequality is true:

The shorter is the effective duration of a signal,
the wider is its effective frequency band. In the
case of the WT, both time and frequency
localizations depend on the scale factor s,
[IN98], The CWT can be stated as a scalar
product for every value of the scale factor s:

If ~>(r) E K, we will have:
Therefore, for every s>0 the wavelet transform
of a signal x(t) represents the response of a




linear time invariant system at x(t), having the
impulse response t/js(t). The system has the
frequency response:

So, the temporal “window" “s(t) s
“responsible” for the temporal localization of
the signal x(t), while the frequency "window"
F{"s(t)}(-w) is "responsible” for the
localization in frequency, at the scale s.

The effective duration and the effective
bandwidth are:

where ta and wa represent the duration of the
temporal "window", respective the bandwidth
of the frequency "window" associated to the
mother wavelets. See [IN98] for more
theoretical details.

It is noticed that the time localization is getting
worse with the increasing of the factor s, while
frequency localization improves with the
increasing of s.

Also,

Regardless of the value of s, the time-frequencv
localization determined by /s(t) is identical with
the one realized by the generating "window"
(),

In 101091 is stated that the Haar functions
(defined in equation (1.24) and represented in
Figure 1,9 c¢) have good time localization, but
they have an infinite effective bandwidth,
meaning that they are not localized in
frequency Contrary, cardinal sinus functions
have good frequency localization, but they have
an infinite duration. These two examples
represent extreme cases, but between them
there are mother wavelets (for example the
elements of the Daubechies family) for which
the product gives finite values. These functions




have poorer time localization than Haar
functions and poorer frequency localization
than the cardinal sinus, but they provide a
better time-frequency “"compromise” than Haar
or cardinal sinus functions. Some conclusions
can be drawn from |0109|: the -effective
duration of Daubechies wavelets functions is
stronger influenced by the number of vanishing
moments (we will define this term in Section
1,6), than their effective bandwidth, meaning
that it increases mono- tonically with the
number of vanishing moments (an opposite
evolution is observed for the effective
bandwidth) and the time-frequency localization
of wavelets from the Daubechies family
monotonically increases with the number of
vanishing moments.

1.2.2 Time-frequency Resolution Cell

We will present in the following a comparison
between Fourier Series and the CWT in terms
of time-frequency representations, Fourier
Series, have a very good frequency localization
but they have not a localization in time. Figure
1,5 presents the time-frequency localization of
Fourier Series,

Figure 1,5: Time-frequency localization of the
Fourier Series.

All the discrete frequencies which correspond
to the harmonics of a periodic signal are
perfectly localized but there is no time
localization. All the harmonics already
mentioned have infinite durations. The CWT,
on the other hand, has a good frequency
localization and poor time localization for low-
frequencies, and poor frequency localization
and good time localization for high-
frequencies, as it can be seen in Figure 1,6,
Figure 1,6: Time-frequency localization of the
CWT,




1.3 Theoretical  Aspects of Wavelet
Transform

There are two main types of wavelet transforms
- continuous and discrete.

1.3.1 Continuous Wavelet Transform

Any oscillating function with zero mean can be
a mother wavelet. The wavelet transform of f G
L2("R) at time u and scale s, (1.6), is a
convolution of the mother wavelet function $ G
L2(R) with the function f G L2(R) :

By applying Parseval formula, we can also
write (1.12) as:

......................... (1.13)

The wavelet coefficients, Wf(u,s), depend on
the signal f(t) and its spectrum f (u) in the time-
frequencv region where the energy of $U,s and
$U,s is concentrated. Since it has a zero
average, a wavelet coefficient Wf(u,s)
measures the variation of / in the neighborhood
of u, whose size is proportional to s.

The wavelet transform maps a raw data
(observation of an underlying signal) into a
collection of coefficients which provide the
information on the behavior of the signal at
certain point, during a certain time interval
around that point. The coefficients tell us what
the signal is doing and at what time. More
precisely, it measures the change of the local
average at a specific scale, around a specific
moment.

The translation parameter u relates to the
location of the wavelet function as it is shifted
along the signal, while the scale parameter s is
defined as the inverse of frequency.

The main disadvantage of the CWT is that it is
computed for a large number of values both for
the scale and for the translation, so it is a very




redundant transform. Therefore, a discretization
of the scale and translation variables was
introduced.

1.3.2 Discrete Wavelet Transform

The Discrete Wavelet Transform (DWT) is
obtained by the discretization of the CWT in
the time-frequencv plane [Fla93] and is used to
decompose discrete time signals. The result
obtained at each decomposition level is
composed by two types of coefficients:
approximation  coefficients and  detail
coefficients. The approximation coefficients are
obtained by low- pass filtering the input
sequence, followed by down-sampling. The
detail coefficients are obtained by high-pass
filtering the input sequence followed by down-
sampling. The sequence of approximation
coefficients constitutes the input for the next
iteration. Each decomposition level
corresponds to a specified resolution. The
resolution decreases with the increasing of the
number of decomposition levels. The DWT is
invertible. Its inverse is named Inverse DWT
(IDWT), At each resolution level, the
approximation and the detail sequences are
needed for the reconstruction of the
approximation signal from the previous
resolution level. The Discrete Wavelet
Transform has two features: the wavelet mother
A and the number of decomposition levels.
Discrete wavelets can be scaled and translated
in discrete steps and a wavelet representation is
the following:

(1.14)

where j is the scale factor and n is the
translation index.

Classical DWT is not shift invariant meaning
that the DWT of a translated version of a signal
IS not the same as the same translation of the




DWT of the original signal. In order to achieve
shift-invarianee, several wavelet transforms
have been proposed. One of them is presented
in the following.

The Stationary Wavelet Transform (SWT)
overcomes the absence of translation invariance
of the DWT, The SWT, also known as the
Undecimated Discrete Wavelet Transform
(UDWT) is a time-redundant version of the
standard DWT [She92].

Unlike the DWT which down-samples the
approximation  coefficients and  detail
coefficients at each decomposition level
[Mal99], in the case of SWT no down-sampling
iIs performed, This means that the
approximation coefficients and the detail
coefficients at each level have the same length
as the original signal. This determines an
increased number of coefficients at each scale
and more accurate localization of signal
features. Instead, the filters are up-sampled at
each level.

The SWT has the translation-invarianee, or
shift-invarianee, property. Thus, the SWT gives
larger amount of information about the
transformed signal as compared to the DWT,
Larger amount of information is especially
Important when statistical approaches are used
for analyzing the wavelet coefficients. The
shift-invariant property is important in feature-
extraction  applications,  denoising  and
detection.

The SWT can be implemented using the "a
trous" algorithm, which will be detailed in a
following section,




1.4 Multiresolution Analysis

The multiresolution analysis (MRA) was
introduced in 1988 by Stephane Mallat and
Yves Meyer [Mal99] and uses the wavelet
transform to decompose a data series in a
cascade from the smallest scales to the largest
ones. Adapting the signal resolution allows one
to process only the relevant details for a
particular task. The MRA is a method for
analyzing x(t), that takes into account its
representation at multiple time resolutions.

When the original signalx(t) is involved, the
maximal resolution is exploited. When a
variant of the original signal (for example the
signal x(2t)) is used, then a poorer resolution is
exploited. Combining few analysis realized at
different resolutions, a MRA is obtained. The
motivation of MRA is to use a sequence of
embedded subspaces to approximate L2(K),
allowing the selection of a proper subspace for
a specific application task, to get a balance
between accuracy and efficiency.

Mathematically, MRA represents a sequence of
closed subspaces Vj, | E Z which approximate
L2(K) and satisfy the following relations,
[Mor97]:

................................ (1.16)

meaning that L2(K) space is the closure of the
union of all subspaces Vj, J E Z.

..............................




The multiresolution is reflected by the
additional requirements:

There exists a function, 0(t), such that its
translates form an Riesz basis for V0. Using the
scale invariance condition, we see that {4>(2t
— Kk)} is an Riesz basis for VA

Similarly, if we define j (t) = 2j/20(2j t — k),
the n j (t) forms a Riesz bas is for Vj. The
function 0, which generates all the basis
functions for all the spaces Vj, is called the
scaling function of the multi-resolution
analysis. Any Riesz basis [Mal99] can be
transformed into an orthonormal basis using the
Gram-Schmidt orthogonalization procedure
|Wik|, Therefore, an orthonormal scaling
functions basis corresponds to each scaling
functions basis mentioned above.

Another important property of MRA is that,
considering the subspace Wj, with Wj = Vf

The operator in the right hand side of equation
(1.20) represents the direct sum of Hilbert
spaces and the sequence of Hilbert spaces...

A direct application of multi-resolution analysis
Is the fast discrete wavelet transform algorithm
used to implement the DWT [Mal99|, The fast
discrete wavelet transform decomposes signals
into low-pass and high-pass components sub-
sampled by 2, while the inverse transform
performs the reconstruction. Each mother
wavelets ” has a corresponding scaling function
0, The subspaces V] are generated using bases
obtained bv the translations of a scaled variant
of a scaling function. The subspaces Wj are
generated using bases obtained by translations
of a scaled version of the corresponding mother
wavelets. In this case the subspaces Wj from




(1,20) form an orthogonal decomposition of
L2("R).

1.4.1 The Algorithm of Mallat

Generally, the MRAs are implemented based
on the algorithm of Mallat [Mal99| corresponds
to the computation of the DWT, represented in
Figure 1,7:

Figure 1,7: A three order Mallat decomposition
tree.

The signal x[n] is passed through a series of
high pass filters with the impulse response (gd),
to analyze the high frequencies and it is passed
through a series of low pass filters with the
impulse response (hd) to analyze the low
frequencies. At each level, the high-pass filter
produces after down sampling, the detail
information dk (k = 1, 2, 3 in this example),
while the low-pass filter associated with scaling
function produces, after down-sampling, coarse
approximations, ak (k = 1, 2, 3), The filtering
operations determine the signal’s resolution,
meaning the quantity of detail information in
the signal, while the scale is determined by up-
sampling and sub-sampling operations.

There is a correspondence between the
concepts of MRA and  orthogonal
decomposition mentioned above, and the
diagram depicted in Figure 1,7, If Xx[n]
represents the decomposition coefficients of a
signal x(t) in the space Vo, then the sequence
ai[n] represents the decomposition coefficients
of x(2t) in V1 and the sequ ence d1[n]
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represents the decomposition Wi

The reconstruction operation is the reverse
process of decomposition. The IDWT of the
original signal is obtained by concatenating all
the coefficients aK and dk, k = 1...K, starting
from the last level of decomposition K, Due to
successive sub-sampling bv 2, the signal length
must be a power of 2, or at least a multiple of
power of 2 and it determines the number of
levels that the signal can be decomposed into.
The IDWT is implemented with the aid of up-
samplers and finite impulse response (FIR)
filters. The sequence of approximation
coefficients corresponding to a certain
decomposition level is reconstructed starting
from the sequences of approximation and detail
coefficients corresponding to the next
decomposition level. These approximation
coefficients are up-sampled and the result is
filtered with a low- pass filter. The detail
coefficients are up-sampled and the result is
filtered with a high-pass filter. The two new
results are then added. The low-pass and high-
pass filters used in the IDWT can be
constructed starting with the corresponding
filters used for the implementation of the DWT.
The disadvantage of the Mallat;s algorithm is
that the length of the coefficient sequences
decreases with the increasing of the iteration
index due to the decimators utilization. This
fact produces translation variance, but the
DWT is not redundant.

1.4.2 The Algorithm of Shensa

Another way to implement a MRA is the use of
the algorithm "a trous" proposed by Shensa
|She92| which corresponds to the computation
of the Stationary Wavelet Transform (SWT),




The decomposition tree is represented in Figure
1,8,

Figure 1,8: System for the computation of the
SWT (3 levels).

In this case the use of decimators is avoided but
at each iteration different low-pass (hdl, hd2,
and hd3) and high-pass filters (gdl, gd2 and
gd3) are used. Each level filters are up-sampled
versions of the previous ones.

So the differences between SWT and DWT are
that the signal is never down-sampled, while
the filters are up-sampled at each level in the
case of SWT, The SWT is an inherently
redundant scheme as each set of coefficients
contains the same number of samples as the
input - so for a decomposition of N levels there
IS a redundancy of 2 N. Because no
downsampling is performed, al and d1 are of
length N instead of N/2 as in the DWT case. At
the next level of the SWT,a; is split into two
using modified filters obtained by dyadic up-
sampling the filters from the previous level.
This process is continued recursively. The
SWT is invertible and its inverse is named the
Inverse SWT (ISWT), The implementation of
the ISWT supposes to apply the inverse of the
operations applied for the implementation of
the SWT in inverse order. The SWT is
translation invariant because all the filters
composing the scheme in Figure 1,8 are linear
time invariant systems.

1.5 Wavelet Families
There are several types of wavelet families
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whose qualities vary according to several
criteria such as: the support of the mother
wavelets, the symmetry, the number of
vanishing moments, the regularity. These are
associated with two properties that allow fast
algorithm and space-saving coding: the
existence of a scaling function and the
orthogonality or the biorthogonality of the
resulting analysis. They may also be associated
with these less important properties: the
existence of an explicit expression, the ease of
tabulating, or the familiarity with use, A
possible classification of wavelets is into two
classes: orthogonal and biorthogonal.

We have already mentioned that the set of
functions obtained by translations and dilations
of orthogonal mother wavelets forms an
orthogonal basis and that the set of functions
obtained by translations and dilations of
biorthogonal mother wavelets forms a Riesz
basis. Further details about the biorthogonal
wavelets will be given in this section.

There is a variety of mother wavelets such as
Daubechies, Symmlet, Haar or Coiflet, which
generate orthogonal wavelet bases. An example
of several mother wavelets waveforms,
generated in Matlab®, is presented in Figure
1,9,

Figure 1,9: Several different mother wavelets:
a) Gaussian wave; b) Mexican hat; c) Haar; d)
Morlet,

The Haar mother wavelets is used for the
computation of the Discrete Wavelet
Transform, DIWT, the other three mother
wavelets showed in Figure 1.9 are used for the




computation of the CWT.

Since the mother wavelet produces all wavelet
functions used in the transformation through
translation and scaling, it determines the
characteristics of the resulting DiWT.
Therefore, the details of the particular
application should be taken into account and
the appropriate mother wavelets should be
chosen in order to use the DiIWT effectively.

1.5.1 Vanishing Moments

The number of vanishing moments (or zero
moments) is used to measure the local
regularity of a signal [Mal99], According to
[Dau92] vanishing moments are a necessary
condition for the smoothness of the wavelet
function.

A wavelet ~(t) has p vanishing moments if:
Substituting the mother wavelets in the integral
from the left hand side of equation (1.21)

The local regularity of mother wavelets is
important because it can be chosen equal with
the local regularity of the signal currently
analyzed. This is an optimization technique for
the procedure of selection of the mother
wavelets. There are some features of mother
wavelets which depend on its number of
vanishing moments as the length of its support
or its time, frequency or time-frequencv
localizations. The length of the support of a
mother wavelets increases with the increasing
of the number of vanishing moments. The time
localization and the time-frequencv localization
of a mother wavelets decrease with the
increasing of the number of vanishing
moments. The frequency localization of a
mother wavelets increases with the increasing
of the number of vanishing moments.




Theorem 1 [Mal99] associates the number of
vanishing moments of 0O with the number of
vanishing derivatives of tf(u) at w = 0,
respective of hd(u) at w = n.

Theorem 1

Let -0 and O be a wavelet and the
corresponding scaling function that generates
an orthogonal basis. Suppose that |*(t)| = O((1
+ t2)-p/2-i) and [0(t)] = O((1 + t2)-p/2-i). The
following four statements are equivalent:

1. The wavelet -0 has p vanishing
moments;

2. if(u) and its first p-1 derivatives are O at
w =0;

3, hd(u) and its first p-1 derivatives are 0 at

4, forany 0 <k <p,

............ (1.22)

is a polynomial of degree k. hd

In this theorem...... represents the Fourier
transform of the conjugate mirror filter in
Figure 1.7, while ™ represents the Fourier
transform of A conjugate mirror filter
represents a discrete filter that characterizes any
scaling function, 0,

The proof of the theorem is presented in
[Mal99], The Theorem 1 highlights the
importance of the selection of the number of
vanishing moments of mother wavelets.
Condition 2 refers to the opportunity of the use
of wavelets in spectral analysis. There are
signals, as for example the long range
dependent random signals (which will be
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studied in Chapter 4), whose spectral analysis is
very difficult at low frequencies, because their
Fourier transform tends to infinity when the
frequency tends to zero.

This spectral analysis can be successfully done
with the aid of wavelets having an appropriate
number of vanishing moments. Condition 3 in
Theorem 1 gives indications about the
construction of the quadrature mirror filter
associated with the mother wavelets. The
construction of this filter is related to the length
of the support of mother wavelets. The mother
wavelet with the shortest support is the Haar
mother wavelets. It has only one vanishing
moment. Finally, Condition 4 specifies the
degree of the polynomial which can be
represented Dby linear combination of the
corresponding scaling function. This degree
depends on the number of vanishing moments
as well.

1.5.2 Orthogonal Wavelet Families

In the case of orthogonal wavelets, vanishing
moments, support, regularity and symmetry of
the wavelet and scaling function are determined
by the scaling filter. A scaling filter is a low-
pass finite impulse response (FIR) filter of
length 2N with the sum of coefficients of the
impulse response equal with 1.

The coefficients of digital filters in Figures 1.7
and 1.8 are real numbers, the filters are of the
same length and are not symmetric. The two
filters h and g from a decomposition level are
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alternating flip of each other. This means that:
g[n] = (—21)nh[M - n], (1.23)

where M is an odd integer.

The alternating flip automatically gives double-
shift orthogonality between the low-pass and
high-pass filters. Perfect reconstruction is
possible with alternating flip.

Orthogonal scaling functions and wavelets
could have a high number of vanishing
moments, This property is useful in many
signal and image processing applications. They
have regular structure which leads to easy
implementation and scalable architecture.

An orthogonal wavelet has p vanishing
moments if and only if its scaling function can
generate polynomials of degree smaller than or
equal to p.

If we refer to symmetry, it is well known that
there is no symmetric compactly supported
orthogonal mother wavelets, besides the
wavelet of Haar,

Daubechies Wavelets

Daubechies wavelet family is named in the
honor of its inventor, the Belgian physicist and
mathematician Ingrid Daubechies and is one of
the most widely used wavelet family. They
represent a collection of orthogonal mother
wavelets with compact support, characterized
by a maximal number of vanishing moments
for some given length of the support.
Corresponding to each mother wavelets from
this class, there is a scaling function (also
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called father wavelet) which generates an
orthogonal MRA,

The Daubechies mother wavelets are not
symmetric, A selection of Daubechies wavelets
(left) and their scaling functions (right) is
presented in Figure 1,10,

Mother D4 Wavelet Father D4 Wavelet

Figure 1,10: A selection of Daubechies
wavelets (left) and their scaling functions
(right): db4, db6 and dblO,

The elements of the Daubechies’ family mostly
used in practice are dbl - db20. The index refers
to the number of vanishing moments. The
number of vanishing moments is equal to half
of the length of the digital filters length,N, in
the case of Daubechies family of mother
wavelets. For example, dbl (the Haar wavelet)
has one vanishing moment, db2 has two
vanishing moments and so on.

Haar wavelet (Daubechies wavelet of order 1)
(represented in Figure 1,9, ¢) was the first
mother wavelets proposed by Alfred Haar in
1909 [HaalO] and has the shortest support
among all orthogonal wavelets. The Haar
mother wavelets generates, by translations and
dilations, orthogonal wavelets. It is the single
symmetric orthogonal mother wavelets. It is not
well adapted for approximating smooth
functions because it has only one vanishing
moment. Only Haar wavelets has an explicit
expression, all other orders Daubechies
wavelets are represented by  wavelet
coefficients and dilation equation.

Haar mother wavelet function ~(t) has the
expression:




(L 0<t<l2ti(t)=1-1,1/2<t<1 (1.24)
The advantages of Haar wavelet transform are
the following: it is conceptually simple and fast
(the impulse response of its associated
quadrature mirror filter has only two
coefficients and the number of operations
required by the implementation of the Haar
transform is of the order of 2N, where N
represents the number of the samples of the
input signal), it is memory efficient, and it is a
good choice to detect time localized
information. Because of these advantages we
will use it with predilection in Chapters 3 and
4,

Symmlets

Daubechies wavelets are quite asymmetric. To
improve symmetry Daubechies proposed
Symmlets as a modification to her original
wavelets [Dau92].

Svmmlets (symN, where N is the order), also
known as Daubechies least asymmetric mother
wavelets, are compact supported, orthogonal,
continuous, but only nearly symmetric mother
wavelets. The purpose was to create wavelets
with the same size and same number of
vanishing moments as Daubechies, but with
near linear phase filters.

Symmlets have the highest number of
vanishing moments for a given support width.
Their construction is very similar to the
construction of Daubechies wavelets, but the
symmetry of Symmlets is stronger than the
symmetry of Daubechies mother wavelets,
Symmlets have N/2 vanishing moments,
support length N — 1 and filter length N,




Some examples of Symmlets (svm6 and svm8)
and their associated scaling functions are
presented in Figure 1,11,

Mother S6 Symmlet Father S6 Symmlet

Figure 1,11: Symmlets (left) and their
associated scaling functions (right): sym6 and
sym8.

Coiflets

Coifman wavelets or "Coiflets" (coifN, where
N is the order) are discrete wavelets designed
by Ingrid Daubechies [Dau92| and named in the
honor of Ronald Coifman (another researcher
in the field of wavelets theory), Ronald
Coifman suggested the construction of a
orthonormal wavelets family with the same
number of vanishing moments as the scaling
functions they came from.

Coiflets are compactly supported wavelets and
were designed to be more symmetrical than
Daubechies mother wavelets to have a support
of size N — 1 and filter length N, The wavelet
has N/3 vanishing moments, while the scaling
function has N/3 — 1 vanishing moments. The
number next to the wavelet’s name represents
the number of vanishing moments, related to
the number of wavelet coefficients.

Two examples of Coiflets (coifS and coif5) and
their associated scaling functions are shown in
Figure 1,12.

Mother C3 Coiflet Father C3 Coiflet

Figure 1,12: Coiflets (left) and their associated
scaling functions (right): coif3, coif5.

1.5.3 Biorthogonal and Reverse Biorthogonal
Wavelets




As already said the biorthogonal wavelets are
elements of Riesz bases generating MRAs, In
opposition with the orthogonal scaling
functions which generate a single MRA, the
biorthogonal scaling functions are associated in
pairs which generate a pair of MRAs, The first
element of the pair of biorthogonal scaling
functions generates a MRA used for analyzing
the input signal of the associated forward WT,
The second element generates a MRA used for
the synthesis associated with the inverse WT,
The elements of each MRA are orthogonal on
the elements of a corresponding orthogonal
decomposition. So, there are two orthogonal
correspondences. They form a biorthogonal
correspondence. More details about the concept
of Dbiorthogonality will be given in the
following.

Biorthogonal families include Biorthogonal and
Reverse Biorthogonal wavelets. Generally, the
biorthogonal scaling functions are selected
from the family of spline functions. The Haar
scaling function is a spline function of order
zero. The spline function of first order is
obtained bv convolving the spline function of
order zero with her self. The nth order spline
function is obtained by convolving the spline
function of order n — 1 with the spline
function of order 0, Both families of wavelets,
Biorthogonal and Reverse Biorthogonal, are
composed by compactly supported wavelets
associated with biorthogonal spline scaling
functions implemented with FIR filters. Both
symmetry and exact reconstruction are possible
with FIR filters, [Mal99,

Biorthogonal wavelets are families of
compactly supported symmetric wavelets.




Their construction can be made using an
infinite cascade of perfect reconstruction filters
which produce two scaling functions, ~d < and
two wavelets, 0 and 0. For any j E Z, <j,n and
4>j,n with n E Z, generate bases of Vj and Vj
and the corresponding wavelets 0j,n and 0 with
n E Z, generate bases of two detail spaces Wj
and Wj such that:

In Figure 1,13 is shown an example of
biorthogonal wavelets with their associated
scaling functions, for analvsis and svnthesis.

Figure 1,13: Biorthogonal wavelets, analysis
and synthesis (right) and their associated
scaling functions (left).

The digital filters associated with biorthogonal
mother wavelets exhibit the property of linear
phase which ensures the symmetry of the
mother wavelets. Instead of a single orthogonal
wavelet, in the case of biorthogonal wavelet
transforms two wavelets are used (one for
decomposition and the other for
reconstruction), as it can be seen in Figure 1,13,
Designing  biorthogonal  wavelets allows
additional degrees of freedom as compared to
orthogonal wavelets, for example the
possibility of constructing symmetric wavelet
functions, |[Mal99|, In the case of the
biorthogonal wavelet filters, the low pass and
the high pass filters do not have the same
length. The low pass filter is always symmetric,
while the high pass filter could be either
symmetric or asymmetric. The coefficients of
the filters are either real numbers or integers.
For perfect reconstruction, biorthogonal filter
bank has all filters of odd length or even length.
The two analysis filters can be symmetric with
odd length or one symmetric and the other




asymmetric with even length. Also, the two sets
of analysis and synthesis filters must be dual.
The linear phase biorthogonal filters are the
most popular filters for data compression
applications.

The biorthogonal wavelets are denoted as
biorNr.Nd, where Nr is the order of the wavelet
or the scaling functions used for reconstruction
and Nd is the order of the functions used for
decomposition.  The  reconstruction  and
decomposition functions have the support
width equal to 2Nr + 1 and 2Nd + 1,
respectively. The length of the associated filters
IS max(2Nr, 2Nd) + 2,

Reverse biorthogonal (rbioNr.Nd, where Nr
and Nd are the orders for the reconstruction and
decomposition respectively) is obtained from
biorthogonal wavelet pairs. This type of
wavelets are compactly supported biorthogonal
spline wavelets for which symmetry and exact
reconstruction are possible with FIR filters, A
comparison between the implementation of the
DIWT based on orthogonal and biorthogonal
wavelets is presented in Figure 1,14,
Z"Analysis
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Figure 1,14: A comparison between DIWT
implementations based on orthogonal wavelet
functions (a)) and biorthogonal wavelet
functions( b)).

1.6 Applications of Wavelet Transforms
Wavelet transforms are now used in many
applications, replacing the traditional Fourier
Transform, Wavelets are extensively used in
Signal and Image Processing [FirlO],
Communications [OltlO], Computer Graphics
[CS05], Finance [GSWO01], Medicine [OIklI],
Biology [Olkll], Geology [Kolll] and many
other fields.

Wavelets have been heavily utilized to find the
edges in digital images, to digitally compress
fingerprints, in the modeling of distant galaxies
or in denoising noisy data. Musicologists used
wavelets to reconstruct damaged recordings,
[BF09],

Wavelet analysis is proving to be a very
powerful tool for characterizing self-similar
behavior, over a wide range of time scales,
[Gra95].

1.7  Conclusions

As it was shown in sub-sections 1,2,4, where
the wavelet transform was compared with the
Fourier transform and 1,4,1, where the CWT
was introduced, the wavelet transforms are
Important tools for analysis and processing of
non-stationarv signals. The scaling functions
associated to wavelets allow the
implementation of MEASs as it was shown in
the sub-section 1,5, This is an important
concept because it allows the identification of
the most appropriate resolution for the
representation of a given signal in a specified




application. The details of a signal which does
not carry relevant information for the
considered application can be neglected on the
basis of MEA, speeding the implementation of
the application. We will use the MEA concept
in Chapter 3, for a traffic forecasting
application. There are two algorithms for the
implementation of a MEA, the algorithm of
Mallat associated with the DWT, presented in
sub-section 1,5,1 and the algorithm of Shensa
associated with the SWT, presented in sub-
section 1,5,2, We will use both algorithms in
the following chapters of this thesis. The
problem of WIMAX traffic forecasting is
solved in Chapter 3 with the aid of the SWT,
The problem of the long range dependence of
the WIMAX traffic detection is solved in
Chapter 4 with the aid of DWT, In both cases
the use of wavelets speed-up considerably the
application. The most used families of mother
wavelets were presented in section 1,6, One of
the goals of the present thesis is to find out the
most appropriate mother wavelets for traffic
forecasting and long range dependence
detection. This purpose will be achieved by
brute force search. Each element of the
orthogonal and biorthogonal wavelet families
presented in section 1,6 will be tested in both
applications and the mother wavelets which
will optimize the performance of each
application will be retained.

One of the most important parameters for the
selection of mother wavelets is its number of
vanishing moments, introduced in sub-section
1,6,1, Its importance will be highlighted in the
future sections of this thesis in relation with the
influence of non-stationarity of a random
process on the detection of its long range
dependence degree. Wavelets add literally




another dimension to Digital Signal Processing,
Instead of processing a signal in the
time/frequency domain, we can simultaneously
process the signal in time and frequency
(scale). From the time-frequencv methods
currently available for high resolution
decomposition in the time-frequency plane
(including STFT or Wigner-Ville transform),
the wavelet transform appeared to be the
favorite tool for researchers due to its high
flexibility and adaptability to a large set of
applications. Another key advantage of wavelet
transform is the variety of wavelet functions
available, that allows us to choose the most
appropriate for the signal under investigation.
Wavelet transform analysis has now been
applied to a wide variety of applications
including time series prediction. Generally, the
prediction is done with the aid of statistical
methods or with the aid of neural networks.
Both types of prediction are speed-up if they
are applied in the wavelets domain. This
increasing of speed is due to the sparsity of the
WTs, There are only few wavelet coefficients
with big values, the majority of the wavelet
coefficients have small values and can be
neglected without loosing a large amount of
information. We will refer in Chapter 3 to
wavelet based prediction method for WiMAX
traffic.

The performance of any signal processing
method based on wavelets can be improved by
the good selection of the wavelet transform
used and of its features. For this reason we will
investigate in section 3,4 the process of mother
wavelets selection for the proposed traffic
forecasting procedure, based on the quantities
defined in section 1,3,1, We will also refer in
Chapter 4 to a LRD detection method based on




wavelets. Different wavelet transforms are used
in the applications considered in Chapter 3 and
Chapter 4, The reasons for these choices are
indicated in the corresponding chapters.

Chapter 2 Statistical Tools

This chapter provides an introduction to some
basic concepts in statistics and time series
analysis. The aim of this section is to shortly
present the theoretical bases of the statistical
methods which will be used in the following
two chapters of the thesis. The traffic
forecasting methodology which represents the
subject of Chapter 3 is based on an ARIMA
model applied in the wavelets domain. The first
goal of the present section is to define the
ARIMA model, to show its utilization in
estimation applications and to introduce some
quality measures for this prediction. The long
range dependence of the traffic is detected in
Chapter 4 with the aid of Hurst parameter
estimators. The description of those estimators
represents the second goal of the present
section. Let’s present for the beginning some
basic concepts in statistics,

2.1  Simple Statistical Measures

In the following we will define some statistical
measures:

Definition 1. Mean (): the mean of a random
variable X can be defined as:

H=E[X], (2.1)




where E represents the statistical mean
operator.
......................... (2.2)

Definition 3.Standard deviation (): the standard
deviation of a random variable is the square
root of the variance.

Definition 4. Autocovariance (Y): the
autocovariance of a time-series Xt can be
defined as:

Y(i,j) = E[(X, - ,<HX] - rfj. (2.3)

Definition 5. Autocorrelation function (ACF):
the autocorrelation function of a time series Xt
IS given by:

Definition 6. Partial autocorrelation function
(PACF): the partial autocorrelation function at
the lag k is the autocorrelation between Xt and
Xt-k that is not explained by all lower-order
lags (1 to k-1, inclusive).

............ is the best linear projection of

The PACF will vary between -1 and +1, with
values near 1 indicating stronger correlation,
PACF is a commonly used tool for model
identification in Box-Jenkins methodology,
identifying the order p of an AR model: the
PACF for a AR(p) is nonzero if k < p and zero
for k > p, [BJR94].

Definition 7.Stationary process: A wide-sense
stationary processXt is a stochastic process
characterized by the fact that its probability
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distribution, mean and variance do not change
over time or position.

An example of stationary process is the White
Gaussian Noise (WGN), A Gaussian process is
a stochastic process whose realizations consist
in random values associated with every point in
a range of time such that each random variable
has a normal distribution:

where parameter is the mean and a2G is the
variance. The distribution with _ 0 and _ 1 is
called standard normal.

A WGN process is a Gaussian process which
has the following covariance function:
E {WGN()WGN(s)} _aG5(t-s). (2.7)

An example of non-stationarv process is the
fractional Brownian motion (fBm) [Cle04], It is
a continuous-time Gaussian process BH(t) on
[0,T], which starts at zero, has expectation zero
for all t G [0,T] and has the following
covariance function:

where H is a real number in the interval (0,1),
called Hurst parameter [Cle04], The values of
H determines what kind of process the fBm is:

. If H = 2 the process is in fact a Brownian
motion;

. if H > 2 increments of the process are
positively correlated;

. iIf H < 2 increments of the process are
negatively correlated.
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The increment process, X(t) = BH(t + 1) - BH
(t), i1s known as fractional Gaussian noise
(fGn), The increment process is stationary:
BH(t) - BH(s) ~ BH(t - s).

2.2 Basic Stochastic Model in Time-series
Analysis
Autoregressive (AR) Process of Order p

An Autoregressive model of order p (AR(p)) is
a weighted linear sum of the past p values
[ChaOl] and it is defined by the following
equation:

where Xt represent the time series which model
must be established, Op(.) is a pth degree
polynomial and Zt is a white noise time series.

Moving Average (MA) Process of Order q
Moving average (MA) process of order q is a
weighted linear sum of the past g random
shocks:

(2.11)

where Qq(.) is a gth degree polynomial and Zt
IS a white random process with constant
variance and zero mean [ChaOl],

Autoregressive  Moving Average Model
(ARMA)

Given a time series of data X; the
Autoregressive  moving average  model
(ARMA) is a tool for understanding and
predicting future values in this series. The
model consists of two parts, an autoregressive
(AR) part and a moving average (MA) part.
The model is usually then referred to as the

1Im




ARMA(p,g) model where p is the order of the
autoregressive part and g is the order of the
moving average part.

A time series Xt is an ARMA(p,q) process if Xt
Is stationary and if:

where Op(.) and 9q(.) are pt*d gth degree
polynomials, and B is the backward shift
operator (Bj Xt _ Xt-j; Bj Zt _ Zt-j , j = 0,
ilnn);

The ARM A model fitting procedure assumes
the data to be stationary If the time series
exhibits variations that violate the stationary
assumption, then there are specific approaches
that could be used to render the time series
stationary. As we will see in a following sub-
section a stationary time series is one whose
statistical properties such as mean, variance,
autocorrelation, etc, are invariant in time. Most
statistical forecasting methods are based on the
assumption that the time series can be rendered
approximately stationary (i.e., "stationarized")
through the use of  mathematical
transformations, A stationarized series is
relatively easy to predict: you simply predict
that its statistical properties will be the same in
the future as they have been in the past! The
predictions for the stationarized series can then
be "untransformed”, by reversing whatever
mathematical transformations were previously
used, to obtain predictions for the original
series. Thus, finding the sequence of
transformations needed to stationarize a time
series often provides important clues in the
search for an appropriate forecasting model.
One of the operations which can be used for the
stationarization of a time series is the
differencing operation. The first difference of a




time series is the series of changes from one
period to the next. If Y(t) denotes the value of
the time series Y at period t, then the first
difference of Y at period t is equal to Y(t) —
Yt — 1). If the first difference of Y s
stationary and also not autocorrelated, then Y is
described by a random walk model: each value
Is a random step away from the previous value.
If the first difference of Y is stationary but auto
correlated, then a more sophisticated
forecasting model such as exponential
smoothing or ARIMA may be appropriate.

2.2.1 Autoregressive  Integrated  Moving
Average Model (ARIMA)

Autoregressive integrated moving average
(ARIMA) model is a generalization of an
ARMA model. In statistics and signal
processing, ARIMA models, sometimes called
Box- Jenkins models after the iterative Box-
Jenkins methodology usually applied to
estimate them, are usually modeled for time
series data.

ARIMA models are fitted to time series data
either to better understand the data or to predict
future points in the series. They are applied in
some cases where data show evidence of non-
stationaritv, when some initial differencing
steps must be applied to remove the non-
stationarity.

The model is generally referred to as an
ARIMA(p,<i,g) model where p, d, and q are
integers greater than or equal to zero and refer
to the order of the autoregressive, integration
(number of differencing steps needed to
achieve stationaritv), and moving average parts




of the model respectively,
0(B)(1 - B)dXt _d(B)Zt. (2.14)

A generalization of standard ARIMA(p,<i,g)
processes is the Fractional ARIMA model
referred to as FARIMA (p,<i,g) [MMSO08], The
difference between ARIMA and FARIMA
consist in the degree of differencing d, which
for FARIMA models takes real values.

2.2.2 Box-Jenkins Methodology

The Box-Jenkins methodology [BJE94] applies
to ARM A or ARIMA models to find the best
fit of a time series to its past values, in order to
make forecasts.

The original methodology uses an iterative
three-stage modeling approach:

1. Model identification ~and  model
selection:

. making sure that the time-series are
stationary: Stationaritv can be assessed from a
run sequence plot. The run sequence plot
should show constant location and scale. It can
also be detected from an autocorrelation plot.
Specifically, non- stationaritv is often indicated
by an autocorrelation plot with very slow
decay.

. identifying seasonality in the dependent
series. Seasonality (or periodicity) can usually
be assessed from an autocorrelation plot, a
seasonal sub-series plot, or a spectral plot.

2.Parameters estimation used to arrive at
coefficients which best fit the selected ARIMA
model. Once stationaritv and seasonality have
been addressed, the next step is to identify the
order (i.e., the p and q) of the autoregressive
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and moving average parts. The primary tools
for doing this are the autocorrelation plot and
the partial autocorrelation plot. The sample
autocorrelation plot and the sample partial
autocorrelation plot are compared to the
theoretical behavior of these plots when the
order is known. Specifically, for an AR(1)
process, the sample autocorrelation function
should have an exponentially decreasing
appearance. However, higher-order AR
processes are often a mixture of exponentially
decreasing and damped sinusoidal components.
The autocorrelation function of a MA(Q)
process becomes zero at lag q + 1 and greater,
so we examine the sample autocorrelation
function to see where it essentially becomes
zero. For models with p > 0 and q > 0, the ACF
and PACF are difficult to recognize and have
less value in order selection than in the cases
where p or q equals 0. For these cases there are
other selection criteria that will be discussed in
the next sections.

3. Model checking by testing whether the
estimated model conforms to the specifications
of a stationary univariate process. In particular,
the residuals (elements of the time series that
have no signification) should be as small as
possible and should not follow a model. If the
estimation is inadequate, we have to return to
step one and attempt to build a better model.

Once the model has been selected, estimated
and checked, the next step is to compute
forecasts.

2.3 Parameter  Estimation and  Order
Selection Criteria

The determination of an appropriate ARMA(p,




q) model to represent an observed stationary
time series involves the order p and g selection
and estimation of the mean, the coefficients Op
and 9q, and the white noise variance a2.

When p and g are known, good estimators of 0
and Q can be found bv imagining the data to be
observations of a stationary Gaussian time
series and maximizing the likelihood with
respect to the parameters Op, Qg and a2. The
estimators obtained using this procedure are
known as maximum likelihood estimators,

2.3.1 Maximum Likelihood Estimation (MLE)

Maximum likelihood estimation (MLE) is the
most popular method used for parameter
estimation in statistics. The aim of this method
IS to determine the parameters that maximize
the probability of observations. The likelihood
function of data set represents the probability of
obtaining that particular data set given that the
probability density is known, A detailed
theoretical approach regarding MLE is
presented in [HT89],

In the following the problem of selecting
appropriate values for the orders p and g will be
discussed. Several criteria have been proposed
in the literature, since the problem of model
selection arises frequently in statistics, [BD02],

2.3.2 Final Prediction Error (FPE)

Developed by Akaike in 1969, FPE criterion is
used to select the appropriate order of an AR
process to fit to a time series X1; ...,Xn, The
most accurate model has the smallest FPE, The
FPE for an AR process of order p can be
estimated according to the following equation:
(2.16)

where n is the number of samples,




2.3.3 Akaike information criterion (AIC)

AIC is a measure of the goodness of fit of an
estimated statistical model. In fact, AIC is the
generalization of  maximum likelihood
principle. Given observations X1,...,Xn of an
ARMA process the AIC statistic is defined as:

where L is the likelihood function.

The AICC is a bias-correeted version of the
AIC, proposed by Hurvich, [HT89], This
criterion is applied as follows: choose p, g, Op,
and 99 to minimize:

where n is the number of samples.

2.3.4 Bayesian Information Criterion (BIC)

In the case of AICC and AIC statistics, for n »
ro, the factors 2(p + g + Dn/(n- p-g-2)
respective 2(p + g + 1) are asymptotically
equivalent, BIC is another criterion for model
selection, that attempts to correct the overfitting
nature of the AIC, [HT89], For a zero-mean
causal invertible ARMA(p, g) process, BIC is
defined by the following equation:

where a2 is is the maximum likelihood
estimator of a2 (the white noise variance of the




AR(p) model),

2.4 Analysis of Variance

The Analysis of Variance ( ANOVA) technique
Is a statistical method used to quantify the
amount of variability accounted by each term in
a multiple linear regression model. It can be
used in the reduction of a multiple linear
regression model process, identifying those
terms in the original model that explain the
most significant amount of variance.

We define the sum squared error (SSE):

where e(t) represents the error of the model.
We denote the following sum with (SSX):
where y(t) is the observed response of the
model.

The total sum of squares (SST) is defined as the
uncertainty that would be present if one had to
predict individual responses without any other
information. The best one could do is to predict
each observation to be equal to the sample
mean. So, we compute SST as:

where y(t) represents the me an of y(t).

The ANOVA methodology splits this
variability into two parts. One component is
accounted for by the model and it corresponds
to the reduction in uncertainty that occurs when
the regression model is used to predict the
response. The remaining component is the
uncertainty that remains even after the model is
used. We define the regression sum of squares,
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SSR, as the difference between SST and SSE.
This difference represents the sum of the
squares explained by the regression.

The fraction of the variance that is explained by
the regression determines the good-ness of the
regression and is called the coefficient of
determination, R2. The coefficient of
determination can be expressed by the
following formula:

The model is considered to be statistically
significant if it can account for a large fraction
of the variability in the response, i.e. yields
large values for R2

2.5 Measuring the Performance of a
Forecasting Model

The performance of the forecasting model can
be judged from its predictive ability in terms of
the following well-known evaluation criteria:

1, Symmetrical Mean Absolute Percentage

Error (SMAPE),
2, Mean Absolute Percentage  Error
(MAPE),

3, Mean Absolute Error (MAE),

SMAPE calculates the symmetric absolute
error between the actuals X and the forecast F
across all observations t of the test set of size n:

........................

MAE measures how close forecasts or
predictions are to the eventual outcomes and
has the following expression:

2.6  Second Order DWT Statistical Analysis
Let x(t) be a wide sense stationary random
signal. The DWT coefficients of its projection
on a space VO are:

The autocorrelation of this sequence is:
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Taking into consideration that the wavelets are
real functions:

The last integral can be decomposed into a
series of integrals on intervals of length 2n:
After changing again the variable w = v — 2pn
we obtain:

If the DWT is computed using orthogonal
wavelets, then:

The integral in equation (2.41) is proportional
with the inverse discrete Fourier transform of
the constant 1, which equals the sequence 5[k
— 1], So, equation (2.41) can be written:

Hence, the sequence d*[n] is not correlated. So,
we just proved that asymptotically (when the
number of decomposition levels tends to
infinity), the DWT decorrelates the input
random process.

The means and the variances of the DWT
coefficients are computed in the following,

.......................

After applying Fubini’s theorem, the equation
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(2.43) becomes:

Using the equation (2.33), the expectation of
the wavelet coefficients becomes:

E {dm[k]} = *2—mF{r} (0) =0 (2.45)
because F {r} (0) = 0.

So, the expectation of each wavelet coefficients
sequence is null. The variance of the detail
wavelet coefficients can be computed with the
aid of their autocorrelation function in (2.36)
because they have null expectation:

For m —— the previous equation becomes:

for orthogonal wavelets.

Hence, asymptotically, the detail wavelet
coefficients represent a zero mean white noise
with the variance equal with the value of the
power spectral density of the input signal
computed in zero. This variance depends only
on the input process being independent of the
mother wavelets used in the implementation of
the DWT.

In the following is analyzed an interesting
particular case when the input process is a zero
mean white noise with the variance equal to a2.
In this ease, F{Rx(t)} (u) = a2 and the equation
(2.38) becomes:

..............................

In the ease of orthogonal wavelets the previous
equation can be written:
(2.49)

So, if the input process is a white noise with
zero mean and variance a2, then all the wavelet
coefficients are zero mean white noises with
the same variance as the input process.
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The DWT does not correlate the white noise.
This result could seem a paradox, taking into
consideration the quadrature mirror filters used
for the implementation of the DWT because
any filter correlates the white noise. When the
input signal of the DWT is a white noise, then
the sequences of detail coefficients from any
decomposition level of the DWT are white
noises as well, having the same variance.

Another important particular case, when the
DWT’s input random process has long range
dependence, will be treated in a following
section, in connection with the problem of
Hurst parameter estimation. We will propose in
that section a new method for the estimation of
the Hurst parameter for long range dependent
stationary random processes.

2.7  Self-similarity and Long-Range
Dependence

In this section we will introduce the concepts of
self-similarity and long range dependence
which will be applied to the analysis of
communication networks traffic in Chapter 4.
Self-similarity, or seale-invarianee, is an
Important notion in the understanding of
network traffic, [KP99], A process is self-
similar if its statistical behavior is independent
of the time-scale, meaning that the statistical
characteristics of the process may appear
similar at different time scales, [Rut06], In the
last years there have been made a series of
empirical studies on traffic measurements from
various communication networks. These
studies have proved that the actual traffic is
self-similar (fractal) or long-range dependent,




[KFR02], [CB97], [LTWWS93], [KP99],
[UP02], [AV98], [OSOI], [GS09], Thus,
several models of long-range dependent
processes have been introduced. The most well-
known models of long-range dependent
processes are fGn (thus second-order self-
similarity) and KARIMA. [KMFO04], There is a
number of different definitions for self-
similarity. Considering a continuous-time
process Y = Y(t), we define its self-similarity
in the sense of finite dimensional distributions:
Definition 8. The process Y(t), t > 0 is self-
similar with self-similarity parameter H (Hurst
parameter) if:

Y () =aHY(at), Vt>0,Va>0,0<H< 1.

The process Y can never be stationary because
stationaritv implies Y(t) = Y(at), but Y IS
assumed to have stationary increments.

Considering a discrete time stochastic process
or time series (for example the traffic volume,
measured in packets, bytes, or bits), X(t), with t
G Z, we define the second-order self-similarity,
respective the asymptotically second-order self-
similarity, [KP99],

where 7(k) represents the autocovariance
function of the m-aggregated process X(m) of
X at aggregation level m.

X(m) is defined as:

If X is the increment process of a self-similar
process Y defined in (2,50),....., then for all
integers m:

X is self-similar when it has the same ACF p(k)
as the series X(m) for all m, where p(k) is
defined as follows:

X is exactly self-similar if the relation (2,53) is
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satisfied for every m, [WPT98],

A stationary sequence X is asymptotically self-
similar if the relation (2,52) is satisfied for m
——to, [WPT98],

From Definition 8 and 9 we can observe that a
random process could be self-similar or exactly
self-similar. The second concept, the exact self-
similarity, imposes a certain structure for the
autocorrelation of the corresponding random
process (given in equation (2,51)), This
constraint can be considered further in its exact
form or only asymptotically.

Processes with LED are often confused with
self-similar processes, but they are different,
meaning that some self-similar processes may
exhibit LED, but not all processes having LED
are self-similar.

The form 7(k) = (k + 1)2H — 2k2H + (k —
1)2H in equation (2,51) from Definition 9 is
related to LED, The autocorrelation function of
a fractional Gaussian noise (fGn) satisfies the
following equation, [OSOI]:

For k=0 the equation (2,55) will be:

We can observe that in this case the value in 0
of the ACF do not depend on H. For H=0 the
equation (2.55) will be:

p(k)=0,k=0,

meaning that:

PM={0;2'1=0 (2.58)




which represent the autocorrelation of a white
noise.

For H = 0 the fGn becomes a white noise,
which does not manifest LRD,

In [Cle05] the asymptotically behavior of the
autocorrelation of a fGn is analyzed.

If Hurst parameter is between 0 and 0,5:
p(K) — H(2H - 1)k2H-2, (2.59)

while if 0,5 <H <1, the autocorrelation has an
asymptotically behavior, [Cle05]:
p(k) —cpka,  (2,60)

with 0 <a < 1and cp is a positive constant. At
the border between the two asymptotically
behaviors described in equations (2,59) and
(2,60) lies the case : H = 0,5, In the case of
equation (2,59):

The series with the general term k2H-2
described in (2.59) is convergent. In  the
case of (2.60):

So, the convergence of the series with the
general term the autocorrelation of the input
signal depends on the values of the Hurst
parameter. This is why analyzing the
convergence of this series we can specify the
interval in which the value of H is situated: (0,
0.5) if the series is convergent and (0.5, 1) if
the series is divergent.

Finally, for H = 0, the fGn becomes a white
noise and:

...................................
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So, in this case the series with the general term
the ACF,(k), converges as well.

When the ACF(k) slowly decays and the
equation (2.62) is satisfied, we call the cor-
responding stationary process X(t) long-range
dependent, [KP99], On the contrary, short-
range dependence is characterized by quickly
decaying correlations. These two regions are
separated by the caseH=0.5. In this case, the
series with the general term(k)is divergent.

For 0 <H<0.5 the series with the general
term(k)is convergent.

The LRD of a stationary pro cess Xt can be also
defined in terms of p ower spectral density
[Cle04], taking into account the Winer-Hinein
theorem.

Definition 10.A stationary processXt presents
LRD if its power spectral density satisfies the
following relation:

with A— 0 ft G (0,1) and c, is a constant.

The term f() represents the power spectral
density of the stationary process and can be
computed applying the Wiener-Hinein theorem:
In this case, the relation between the Hurst
parameter H and ft is the following: ..........
Definition 11.A stationary processXt presents
LRD (seasonal long memory) with a pole at Ao
if the power spectral density satisfies the
following relation:

with, A— A0, AOG [O,n\, ft G (0,1) and c, is a
constant.

The expressions of the power spectral densities
from equations (2,67) and (2,68) enable the
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estimation of Hurst parameter by spectral
analysis. The major difficulty of this kind of
Hurst parameter estimation lays in the fact that
these power spectral densities are divergent
around O for the equation (2.67) and around 0
for the equation (2.68).

The standard spectral estimation techniques,
based on Fourier transform, fail due to these
divergences, but they can be successfully
substituted by spectral estimation techniques
based on wavelets, as we shall see in the
following sub-sections.

2.8  The Estimation of Hurst Parameter

The Hurst parameter (H) characterizes a
process in terms of the degree of self-similarity
and LED (the degree of persistence of the
statistical phenomenon).

The degree of self-similaritv and LRD
increases as H ™ 1, [Rut06], Theoretically, H
must be between 0 and 1, A value equal to 0,5
indicates the lack of self-similaritv or the
presence of short-range dependence (SRD),
[AV98], A wvalue of H smaller than 0,5
indicates that between the samples there is a
SRD (the autocorrelation function is absolutely
sumable), A value greater than 0,5 indicates the
existence of LRD (the ACF is not absolutely
summable). It is very important to know that
Hurst parameter can not be calculated, it can
only be estimated [KFRO02], because there are
not mathematical methods to calculate the H in
equation (2,55) for which the series with the
general term the ACF is convergent. There are
various statistical techniques to estimate Hurst
parameter (H), By definition, the LRD
phenomenon is related to the power-law
behavior of certain second-order statistics
(variance, covariance,,,,) of the process with
respect to the durations of observation [AV98],




Many estimators of H are therefore based on
the idea of measuring the slop e of a linear fit in
a log-log plot. The Hurst parameter estimators
can be classified into two categories: operating
in the time domain and operating in the
frequency domain.

. the estimators operating in the time
domain are:
— Rescaled Adjusted Range (R/S) Method,

—  Aggregated Variance Method,
—  Absolute Value method,

. the estimators operating in the frequency
domain are the following:

—  Periodogram,

—  Whittle estimator,

—  Wavelet based LRD estimators.

2.8.1 Time Domain Estimators

The so-called variogram or R/S estimators are
famous examples of the idea of measuring the
slope of a linear fit in a log-log plot.

Rescaled Adjusted Range (R/S) Method

Proposed by Hurst in 1951, the R/S statistic is
one of the oldest and better known methods for
estimating the Hurst parameter, H, in a time
series which presents LRD, For a selection of
subsets of the time series Ai, starting at U and
of size n+1, R/S statistic is defined as presented
in the following equation:
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where R represents the adjusted range of the
considered series, Ai, and S is the sample
variance of Al,

The adjusted range R(ti,n) has the following
physical interpretation. We suppose the time
series Ai represents the amounts of water per
time unit flowing into a reservoir. Furthermore,
water flows out of the reservoir with a constant
rate, such that the reservoir contains the same
amount of water at the tt+n time unit as at the
tp time unit. Then R(ti,n) is the minimum
capacity of the reservoir such that it will not
overflow in the period ti to ti+n inclusive.

The calculation of R(ti;n) proceeds as follows.
Given t and n, and the mean:

the standard deviation can be expressed as
follows:

The rescaled adjusted range is then just R(ti,
n)/S(ti, n). A single such calculation results in
one point on a graph of logl0 R(ti, n)/S(ti, n)
against log10 n. By varying ti and n we obtain a
plot of E/S. The size n is varied from 10 to
about N/8 (N is the total sample size) in 5,000
logarithmicallv-spaced steps (except for small
n, where several calculations of E/S are made
for the same n and different tl), [DSJX96]. The
starting value tl is chosen randomly in the
range 1 to N-n. Finally, linear regression is
used to fit a straight line to the E/S plot, the
slope of this line being an estimate of H,
[LTWW93],

Aggregated Variance Method
The variance-time plot method is one of the
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easiest methods wused to estimate Hurst
parameter. Being given a time series Xt with t
G (1, N), it is divided into blocks of length m

The plots are obtained bv computing
log(var(X(m))) against log(m) (“time") and bv
fitting a simple least squares line through the
resulting points in the plane, ignoring the small
values for m. If the estimate ft of the
asymptotic slope has values between -1 and 0 it
means LRD, and an estimate for the degree of
LRD is given by H=1 + ft/2, [LTWW93],

Absolute Value Method

Absolute value method uses different block
sizes m for defining an aggregated series X(m),
The absolute moment of a discrete time series
Xt is defined as:

where X(m)(k) is the aggregate series of level
m [PRO6],

The log-log plot of AMm versus m, for varying
levels m, should result in a straight line with
slope of H-1, if the data are LRD, [KFRO02],
The slope is computed using a least squares
regression on the points,

2.8.2 Frequency Domain Estimators

LRD determines the spectrum of a process to
behave as a power law for frequencies close to
0. Therefore, it is normal to think of using
spectral estimation to measure H parameter.

I
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Periodogram

Periodogram method plots the logarithm of the
spectral density of a time series X, versus the
logarithm of the frequency. In the case in which
X is a long-range dependent random process,
this plot becomes a line. The slope provides an
estimate of H, [KFRO2], The periodogram is
given by:

and represents an estimator for the spectral
density of X, where v is the frequency and N is
the length of the time series X.

The periodogram is a standard estimator for the
power spectral density. Taking into account the
limitations of the Fourier transform already
presented in Chapter 1, this estimator can be
improved by substituting the Fourier transform
with the Short Time Fourier Transform (STFT),
A new spectral estimator is obtained by
averaging smoothed periodograms computed
with STFT on different sequences of data:

where P is the number of data pieces, L their
length and wL a weighting window.

When applied to long-range dependent data,
such a spectral estimator results in an estimator
of H based on a linear fit in a log(u) versus
logE(u) plot, which is strongly biased. This
happens because the constant-bandwidth
spectral analysis performed does not match
with the structure of the power spectral density
of a long-range dependent process. The wavelet
based spectral estimators, which will be
presented in the following, perform a constant
relative bandwidth spectral analysis that




matches with the structure of the power spectral
density of a long-range dependent process,
[AV98],

Whittle Estimator

To di minish the drawbacks of the H estimator
based on periodogram already mentioned,
Whittle proposed the minimization of a
likelihood function, which is applied to the
periodogram of the time series. It involves to
find a function f (v; n) which minimize the
expression:

(2.79)

where n is the vector of unknown parameters
and I(v) is the periodogram. The minimization
is performed for the variable n- By normalizing
f (v; n), the term log f (v; n)dn becomes equal
to 0, Finding the value of n which minimizes Q,
the unknown parameters and the function f are
identified. Substituting the expression of the p
erio dogram (which depends on H), computed
with one of the metho ds already presented, in
the first term of the right hand side of equation
(2.79), the integral (which will dep end on Has
well) could be computed and the minimum
value of Q (which depends onHas well) will b e
found. This is the reason why the Whittle
estimator ¢ an b e used to estimateH. The
Whittle estimator is defined as the value of
...that minimize Q, [TT98]

The Discrete Whittle estimator

The MLE gives a coherent approach to
estimator design, which is capable of producing
an unbiased, asymptotically efficient estimator
for H. Proposed by Whittle in 1953, the Whittle
estimator  consists of two  analytic
approximations to the exact Gaussian MLE, in




order to avoid the huge computational
complexity of the exact algorithm, [AV98].

The first approximation basically replaces the
covariance matrix by an integral of a function
of the spectrum. Because the computational
difficulties remain after this approximation, a
second approximation is performed. It consists
in the discretization of the frequenev-domain
integration  rewritten in terms of the
periodogram. Performing the two
approximations, the Discrete-Whittle (D-
Whittle) estimator is obtained.

The D-Whittle estimator relies on the
periodogram, inheriting the structure of the
Whittle estimator (which relies on the
periodogram as it was already said) and the
periodogram has a low computational cost.
However, a minimization procedure is
involved. This procedure requires many
iterative evaluations, resulting a higher overall
cost. Furthermore, problems of convergence to
local minima may be found.

The use of periodogram makes the D-Whittle
estimator asymptotically unbiased only. This
asymptotic comportment is not enough for a
good estimator, which must be unbiased, robust
and efficient.

Wavelet based LRD estimators

Abrv and Veiteh [AV98] proposed a Hurst
parameter estimator at each scale of the wavelet
decomposition of the random process which
must be analyzed. The mth scale estimation is
realized computing the expectation of the
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random variable:

where nm represents the length of the sequence
of wavelet coefficients obtained at the mth
decomposition level.

For the beginning, let us consider that the input
random process is wide sense stationary. The
Abrv-Veich estimator takes the form:

For stationary input random processes, the
expectation of the wavelet coefficients square
represents their variance, which is constant.
Denoting this constant as ...... the previous
equation becomes:

with the aid of equation (2.46).

For a random input process, continuous in time
and with LED:

This estimator can be used in practice if the
integral from the right side is convergent. If the
mother wavelet (MW) ~ is selected from the
Daubechies family of MWs, then it has a finite
effective bandwidth um:

Hence, the integral in equation (2,84) can be
written as:

The convergence problem can appear only
around the point u =0, if:

Fortunately, Daubechies MWSs have a positive
number of vanishing moments, Nv, which
means that:

Taking in consideration the derivation in the
frequency domain property of the Fourier
transform, the previous equation can be written
as:

Hence, the Fourier transform and its Nv - 1
derivatives vanish in u = 0.
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It can be decomposed around u= 0:

obtaining a polynomial with the degree higher
or equal to Nv.

Hence, the power spectral density of MW, |F
{1} (u)|]2 behaves around the pointv =0 as a
polynomial with the degree higher or equal to
2Nv, So, the condition (2,87) is not
accomplished if:

So, the integral in equation (2.84) is convergent
for any MW from Daubechies family, because
for this family:

Bv making the substitution m » m — 1 in
equation (2.84) it results:

Applying the logarithm in the previous
equation, an estimator of the Hurst parameter is
obtained:

This is a very simpleHestimator, which requires
only the wavelet decomp osition of the input
process and the estimation of the wavelets
coefficient variances at two successive scales.
For non-stationarv input random processes this
estimator is improper, because the local
variance of wavelet coefficients is not longer
constant. In this case, the random variable from
equation (2.80) must be used. Abrv and Veiteh
[AV98] proposed the following estimator:

where C estimates the constant Zog2(c/ n |v|1—

Performing a weighted least squares fit between

e




the scales ml and m2 vyields the following
explicit formula:
where

and the weight sm = (n m /n22)/2m+1 is the
inverse of the theoretical asymptotic variance
of n*d n represents the length of the entire
sequence of wavelet coefficients [AV98],

Stationaritv hypothesis testing is difficult in the
presence of LED, where many classical
statistical approaches cease to hold.

The estimator (2,98) was treated in [AV98] for
non-stationary random processes with LRD
which have stationary increments as the fBm
processes. This kind of non stationaritv appears
frequently in practice. For example in the
context of Ethernet traffic the first thing to note
is that data is not stationary and this is caused
by the hidden periodicities or of the diurnal
cycle, lunch breaks etc. On the other hand, it is
reasonable to expect that for smaller timescales
where network conditions are relatively stable,
stationaritv will be a natural and useful
assumption. So, Ethernet traffic is stationary at
same scales and not stationary at other scales.
For this reason were considered the scales mi
and m2 in the design of Abrv- Veiteh estimator.
Finally, the input random process could have
overall trends. These trends represent the last
source of non-stationaritv for the input random
process.

The performance of Abry-Veiteh estimator is
analyzed in [AV98], It is an unbiased estimator,
robust and efficient which requires less
computational resources than other H




estimators, because it uses the DWT which can
be computed very fast (multiple of O(N)), for
example Whittle estimator (which requires
more computational complexity due to its
recursive nature). Its efficiency comes from the
fact that it attains the Cramer-Rao bound. In the
design of the Abry-Veiteh estimator is assumed
that a continuous-time random process, X(t), is
available. There are numerous cases where only
discrete time observations of the input process
are available. In the following these
observations will be denoted as x[1],x[2],
...X[N]. For continuous-time random processes,
the wavelet coefficients are computed using the
equation:

The integral from the previous equation can not
be computed if only discrete observations x(t)
of the processx(t)are available. So, this integral
must be discretized:

With the change of variable | = nm(p + k), the
last equation becomes:

where am[p] is a collection of discrete filters
coefficients determined by the MW used
[1L87].

The wavelets coefficients dm[k] and the
coeffieients dx[m, k] have similar properties.
One can replace dm[k] with dx[m, k] and use
the Abry-Veiteh estimator, [AFTV03], The
resulting quantities:

.....................

are called generalized quadrature variations of
the process x[1} and their substitution in the
expression of the Abry-Veitch estimator give a
new Hestimator, which can b e cal led discrete
Abrv-Veiteh  estimator, or  generalized
quadrature variations Hurst parameter estimator




based on wavelets, because one of its
parameters is the mother wavelets selected for
its implementation, The performance of those
Hurst estimators is analyzed in [AFTVO03],
They are consistent and have asymptotic
normality. The complexity of the corresponding
algorithms is O(N), the same as the complexity
of the Abrv-Veitch estimator.

This class of estimators is robust against non-
stationaritv. They were tested for fBm and
linear fractional stable processes in [AFTVO03],
This is the class of Hurst parameter estimators
which are the most appropriate the solve the
problem of WiMAX traffic which represent the
subject of Chapter 4 of this thesis, WIMAX
traffic data, which represent the subject of this
thesis, are discrete observations of a
continuous-time random process, which is non-
stationarv, because it has overall trend as it will
be proved in Chapter 3, So, for LED analysis of
WIMAX traffic, the best class of Hurst
parameter estimators based on wavelets, seems
to be the generalized quadrature variations
estimators class,

2.9 Conclusions

In this chapter we aimed to present some
elementary statistics and we introduced some
basic ideas of time series analysis and
forecasting that will be used in the following
chapters. We introduced an important
parametric family of stationary time series,
AEMA processes which are frequently used in
the modeling of time series, due to their high
generality, A generalization of this class, which
incorporates a wide range of non-stationarv
series, is provided by the ARIMA processes,




AEIMA models are flexible and can be applied
to a wide spectrum of time series analysis.
They are used for: financial, meteorological or
derived from man made activities time series.
Finding an appropriate model implies the order
selection and parameters estimation.

The estimation methods presented in this
chapter enable us to find, for given values of p
and g, an AEMA(p,g) model to fit a given
series of data, A number of different procedures
can be employed to test whether the selected
model is really a statistically sufficient
description of the time series.

In the last few years measurements of various
types of network traffic proved that the traffic
exhibits LED and self-similarity, A key
parameter characterizing self-similar processes
IS the Hurst parame ter H. Thus, an overview of
the theory and methods developed to deal with
long-range dependent data were presented in
this chapter.

One of the theoretical contributions of this
thesis is the second order DWT statistical
analysis presented in section 2,6, in equations
(2,27) to (2,49), It permits to understand how
does the sequences of wavelet coefficients
obtained by computing the DWT of a wide
sense stationary random process look like. The
mean, variance and autocorrelation of those
sequences are computed in general and for the
particular case of input white Gaussian noise.
An asymptotic analysis, proving the




decorrelation effect of the DWT is also
reported, A further research direction is the
generalization of this statistical analysis for
non-stationarv random signals,

A very simple Hurst parameter’s estimation
method, based on the previously mentioned
second order DWT statistical analysis, is
proposed in equation (2,95), This estimation
method works for second order wide sense
stationary random processes. It was simply
generalized to the Abry-Veiteh Hurst
parameter’s estimator which works for non-
stationarv  continuous in time random
processes. Next this estimator was discretized
obtaining the generalized quadrature variations
Hurst parameter’s estimator based on wavelets.
This is another theoretical contribution of this
thesis.

The selection of the most appropriate mother
wavelets for the computation of the DWT
implied in the Hurst parameter estimation
method must be made based on equation (2,93),
The superiority of Hurst parameter’s estimation
method based on wavelets against other
methods will be proved by simulation in
Chapter 4.
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forecasting—where—the—historical—values are
collected and analyzed in order to develop a
model describing the behavior of the series.
There are examples of communication signals
which represent time-series, A typical example




Is the traffic developed in a communication
network. To support the growth of demands,
communication companies are investing in new
technologies to improve their services.
However, in the case of permanent growing of
the demands, in order to assure the users
supply, a network capacity planning tool should
be used. For capacity planning purposes, one
only needs to know the traffic baseline in the
future along with possible fluctuations of the
traffic around this particular baseline. The
communication services providers should
anticipate future demands and should know
where and when the upgrades must be done in
the network. This requirement is even more
important in wireless networks. There are three
modern technologies for the wireless networks:
Wi-Fi, WIMAX and LTE,

Worldwide interoperability for Microwave
Access (WIMAX) is a telecommunication tech-
nology based on IEEE 802,16 standard, capable
of delivering advanced IP applications, such as
voice, video, and data over the microwave
spectrum EF to stationary and moving users, A
fundamental question about this technology is:
How do the technologies compare in terms of
prioritizing traffic and controlling quality? A
partial response to the previous question can be
given by studying the traffic forecasting
methodology for the WIMAX technology. The
amount of traffic through a BS can not be
higher than the capacity of that BS, If the
amount of traffic approaches the capacity of the
BS, then the BS saturates and a lot 0 messages
are lost. So, it is necessary to know the capacity
of the BS.

By assuming a deployment scenario -e.g.,
available bandwidth in MHz per cell,




distribution of wvarious user types, and
application breakdown - it is then possible to
calculate the total traffic volume of a BS.

Actual data rates, namely the throughput
provided by the BSs throughout the cell and
experienced by users, depend on several factors
including user distribution and propagation
conditions and pilot distribution and will need
to be taken into account. More, different users
can use different modulation techniques in the
same interval of time.

In addition, the QoS is not constant with the
amount of the BS capacity used. Lately, there is
a significant increase in the need for delivering
multimedia-based services to home residences
and business premises.

One of the most important attributes of a
WIiMAX network is its ad-hoc nature. Any user
localized into a cell of the network must obtain
the access any time. So, the number of users is
not a priori known, neither the amount of traffic
ina cell,

3.1 Related Work

Time series forecasting has always been a
challenging issue for many researchers.
Recently, many approaches involving time
series models have been used for traffic
forecasting such as pure statistical or based on
neural networks [QEO08],

For more than two decades, Box Jenkins
ARIMA technique has been widely used for




time series forecasting. This class of models is
used to build the time series model in a
sequence of steps which are repeated until the
optimum model is achieved. The Box-Jenkins
models can be used to represent processes that
are stationary or non-stationarv.

As it was shown in Chapter 2, there are a lot of
classical linear predictive models: Auto
Regressive (AR), Moving Average (MA),
Autoregressive  Moving Average (ARMA)
which deal with stationary series or
Autoregressive Integrated Moving Average
(ARIMA) which deals with non-stationarv
series. All these models were already used for
communications  traffic  prediction.  For
example, in [PTZD03], [BM99], [CYOT98]
and [GP94] ARIMA models are used for traffic
prediction. In [SLOO] the authors propose a
prediction algorithm based on the Auto-
Regressive Moving Average (ARMA) model
and the Markov-Modulated Poisson Process
(MMPP), Fractional ARIMA models are used
to predict traffic in [ea99]. The communication
traffic forecasting could have different goals as
for example: the anticipation of the following
pick of traffic or the estimation of the moment
when one of the features of the traffic will
allow a given condition. If in the first case a
short range prediction is required, in the second
case a long range prediction seems to be more
appropriate. So, the selection of the linear
model must be made in accordance with the
application. Another solution for the traffic
forecasting is the use of neural networks.

The authors of [CRSRO7] propose a Neural
Network (NN) approach to predict TCP/IP




traffic for all links of a backbone network. The
data collected from the United Kingdom
Education and Research Network (UKERNA)
was recorded into two datasets (every 10
minutes and every hour), between 12 AM of
Mth June 2006 and 12 AM of 23th July 2006,
The data was analyzed using two forecasting
types (or scales): real-time (every 10 minutes)
and short-term (hourly values), The equipments
of the networks considered in the examples
already presented were connected through
cables. Some papers published recently, present
cases of wireless traffic forecasting. Neural
networks are also used in [GS09] where the
wireless network traffic is predicted for short
time scale. Methods based on the use of
Artificial Neural Networks (ANN) for traffic
forecasting are also presented in [RSML10],
[RLO7] and [Rut06],

According to the results presented in these
papers we can conclude that AXX performs
better then the other forecasting techniques for
small future time intervals, several weeks at
most. But if the goal of the forecasting method
IS to predict the moment when a feature of the
traffic (as for example its overall tendency) will
allow a specific condition (as for example the
saturation of a base station), meaning
prediction for several months, than pure
statistical models are the ones that should be
taken into  consideration, because the
performance of XXs deteriorates in the absence
of training. Both forecasting methods (based on
linear predictive models or based XXs) can be




accelerated if they are applied in the wavelet
domain, taking into consideration the sparsity
of the wavelet coefficients.

The wavelet transform has been frequently used
for time series analysis and forecasting in
recent years |PTZDO03|. Wavelets can localize
data in time-scale space. At high scales,
wavelets have a small time support and can
"catch™ discontinuities or singularities, while at
low scales the wavelets have a larger time
support and can identify periodicities. Wavelets
are able to characterize the physical properties
of the data. At low scales, the wavelets identify
the long-term trend of the data. By increasing
the scale, the wavelets begin to reveal the
details of data, zooming in on its behavior at a
moment of time.

A paper in which the authors proposed to
model the traffic evolution in a IP backbone
network at large time scales is |[PTZDO03|. The
authors combined the wavelet analysis and
statistical data processing and developed
models for long-term forecasting for capacity
planning purposes.

A combination between wavelet analysis and
traffic foresting is made also in [WS02)|.

Inspired by |PTZDO03| this chapter proposes a
methodology to build forecasting models for
WIMAX traffic. The goal of the forecasting
methodology proposed in |PTZDO03| was to
predict the moment when a part of a
communication network, in  which the
equipments are connected by cables, will
saturate.  The  forecasting  methodology
proposed in |[PTZDO03| supposes the utilization




of ARIMA models in the wavelet domain to
estimate two features (the overall tendency and
the variability) of the time-series belonging to a
network traffic data base. In Figure 3.1 are
shown the main steps followed in |PTZDO03|.

MRA ANOVA ARIMA

MODELING

SWT P BOX JENKINS
METHODOLOGY

Figure 3.1: The forecasting methodology
proposed in [PTZDO03|.

Our purpose is to adapt the forecasting
algorithm proposed in [PTZDO03]| to the case of
a WIMAX network. In Figure 3.2 are presented
the main steps followed in the case of WiMAX
traffic. A series of modification have been
made in order to adapt the methodology
proposed in |PTZDO03|. These modifications
will be highlighted in the following sections of
this chapter.

MRA
SWT ANOVA
P-® ARIMA  MODELING BOX
JENKINS METHODOLOGY
Figure 3,2: The forecasting methodology in the
case of WIMAX traffic.
A prediction of the moment when a BS will
saturate can be realized using both estimated
features for the traffic which corresponds to
that BS, So, the traffic forecasting
methodology, which will be applied in this
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chapter, analyzes the elements of the database
(for knowledge discovery purposes) and
extracts two features of those time-series. The
data features extraction represents a common
operation in the data mining field. This
methodology is based on statistical data
processing in the field of wavelets and follows
CRISP-DM |ea00| phases, as will be shown in
the following section.

3.2 Phases of a Data Mining Project

Knowledge Discovery is a domain that searches
new knowledge about an application domain.
One of its branches is Data mining which is an
analytic process designed to explore and to
extract useful information from large volume of
data.

According to CRISP-DM the process has
several steps, |ea00]:

Business understanding,
Data understanding,
Data preparation,
Modeling,

Evaluation,
Deployment,
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The succession of those phases and their
interdependence are represented in Figure 3,3,

Figure 3,3: Phases of a data mining project.

The first step of the data mining project is to




understand the application in which it is
involved (business understanding). This goal is
implemented iteratively, by collaboration with
other phases as data understanding or
evaluation. The second step of the data mining
project is data understanding. It is based on the
first step and has an iterative implementation as
well. The data understanding goal can be seen
as a feedback for the business understanding
goal. A first business understanding allows a
preliminary data understanding. With this
acquired knowledge, the process of business
understanding is improved and as a
consequence, the data understanding process is
improved as well. The third phase of the
process is data preparation. Generally, the raw
data are affected by inaccuracies of sensors and
acquisition systems, for example the traces
from data bases contain missing data. For this
reason, the phase of data preparation is required
In a data mining project. This phase consist in
putting the data in the most appropriate form
for the subsequent phase of the data mining
project, which is the modeling phase. As in the
case of the pair of phases composed by the
business understanding phase and the data
understanding phase, the data preparation and
the modeling phases are interdependent. The
modeling step is one of the most important for
the data mining project, because it allows the
representation of data in a form favorable for
the extraction of some features useful for the
application considered. The evaluation phase is
very important as well. It permits the
appreciation of the quality of the model
selected. It has also a regulatory function in the
data mining project, influencing its first phase,
the business understanding. The last step of the
CRISP-DM project consists in deployment. In
the following are presented details about these




phases and how are they implemented for
WIMAX traffic prediction based on the
forecasting algorithm proposed in [PTZDO03],
This algorithm was conceived for the prediction
of the moment when the amount of traffic will
produce the saturation of a router from a given
node of a wired network. We have adapted this
algorithm for the case of WiMAX traffic.

The phases of the new algorithm are: MRA of
traffic traces, selection of the most important
resolutions for the extraction of the overall
tendency and of the variability of the WiMAX
traffic, ARIMA modeling of those two features,
models validation using the Box-Jenkins
methodology and extraction of an estimation of
the moment when the corresponding BS will
saturate. In the following are presented details
about the correspondence between the phases
of the proposed algorithm and the phases of a
data-mining project, already mentioned.

3.2.1 Business Understanding

The first phase of a data mining project
involves: understanding the objectives and the
requirements of the project, the problem
definition and designing a preliminary plan to
achieve the objectives. The objective of the
proposed algorithm is to predict when upgrades
of a given BS have to take place. We compute
an aggregate demand for each BS and we look
at its evolution at time scales larger than one
hour. The requirement of the project is to do
this prediction fast and precise. We have
chosen the forecasting methodology proposed
in [PTZDO03] and our preliminary plan was to
adapt this methodology to the case of a
WIMAX network.




3.2.2 Data Understanding

Data understanding phase implies collecting
initial data, describing and exploring data. In
our case, the data was obtained by monitoring
the traffic from sixtv-seven BSs composing a
WIMAX network. The duration of collection is
of eight weeks, from March 17th till May 11th,
2008, Our database is formed by numerical
values representing the total number of
packets/bvtes from wuplink and downlink
channels, for each of the 67 BSs, The values
were recorded every 15 minutes, so it can be
easily deduced that for a given BS we have 96
samples/dav, 672 samples/week, and a total
number of 5376 samples. We observed that for
the 34th BS from the 7th week (April 28-Mav
5) there is a significant loss of data due to an
error at the BS’s level so we decided to remove
this BS from our analysis. Hence, we deal with
sixtv-six traces in uplink and sixtv-six traces in
downlink, eight weeks long.

The traces from the database are accessible in
two formats corresponding to two measures of
the traffic, in bytes and in packets. For our
simulations we will analyze the traffic
measured in packets (because it is simpler to
handle time-series with smaller values of
samples), corresponding to uplink and
downlink channel. For the application under
consideration, which consists in estimating the
moment when each BS’s traffic becomes
comparable with the BSs’ capacity, it is more
important the downlink channel (where the
traffic has a higher volume). Therefore, the
results presented in the following correspond to




downlink channel. The risk of saturation of the
BS in uplink is considerably smaller,

3.2.3 Data Preparation

This phase includes selecting data to be used
for analysis, data clearing, such as
identification of the potential errors in data sets,
handling missing values, and removal of noises
or other unexpected results that could appear
during the acquisition process.

The incomplete or missing data constitute a
problem. Despite the efforts made to reduce
their occurrence, in most cases missing values
cannot be avoided. If the number of missing
values is big, the results are nor relevant. It is
therefore essential to know how to minimize
the amount of missing values and which
strategy to select in order to handle missing
data. There are several strategies of handling
missing data, for example delete all instances
where there is at least one missing value,
replacing missing attribute values by the
attribute mean or to estimate each of the
missing values using the values that are present
in the dataset (interpolation) [EMO05], There are
many different interpolation methods such as
linear, polynomial, cubic or nearest neighbor
interpolation.  We  choose the  cubic
interpolation because for some BSs the missing
values are situated on the first/last position of
the vector and this fact forbids us to use, for
example, the linear interpolation.

At this stage, the input data is also analyzed in
order to find if it contains periodicities. The




simple plot of the traffic curves proved the
existence of periodicities in the traffic. In
Figure 3,4 is presented a signal representing the
traffic evolution during one week for a given
BS randomly selected.

Figure 3.4: A curve describing the weekly
traffic evolution for a BS arbitrarily selected.

In order to verify the existence of periodicities
we calculate the Fourier transform of the signal
and we analyze the power spectral density in
Figure 3.5.

Looking at Figure 3.5 we can remark the eight
harmonic. The sampling step used has a value
of 15 minutes. It corresponds to a sampling
frequency of 1.1 mHz. So, the maximal
frequency contained in the analyzed power
spectral densities equals half of the sampling
frequency, 0.55 mHz.

The representation contains 670 values. Hence
the fundamental frequency of the representation
equals 0.55 mHz/335 (the value 355 was
obtained by dividing the total number of
samples with 2). The frequency of the eighth
harmonic  equals 0.013 mHz.  The
corresponding period is equal with 76923.07 s,
or 1282.05 minutes or 21.36 hours (near 24
hours). The period corresponding to the ninth
harmonic equals 3,69 hours. Hence, we can
associate the eight harmonic with a period of 24
hours, because this value is closer of 21.36
hours than 3,69 hours. So, the results in
previous figure indicate that one of the most
dominant periods across all traces is the 24
hours one. The trace in Figure 3.5 was
arbitrarily chosen. There are other traces in the
data base for which the eight harmonic is




dominant, being several times bigger than the
other harmonics and proving the periodicity
with the period of 24 hours of the traffic.
However, depending on trace, the periodicity
with the period of 24 hours can be also hidden.
This is for example the case of the BS2 showed
in Figure 3.6. This periodicity has social
reasons reflecting a pattern of diurnal
comportment of the network. Such seasonal
behavior is commonly observed in practical
time-series.

Figure 3,5: The power spectral density of the
signal from Figure 4,4,

Figure 3,6: The power spectral density of the
traffic trace corresponding to BS2,

In the rest of this chapter we will explain the
phases of the forecasting algorithm using an
example of a particular trace (corresponding to
BS1).

Next, we consider a traffic curve recorded
during eight weeks represented in Figure 3.7
with blue. The long-term trend (red line) and
the deviations from the long-term trend (the
green and the black lines) are also shown in
Figure 3.7. A traffic curve recorded during 8
weeks, its long term trend (approximation 6)
and the deviations from sixth approximation.

The curve contain specific underlying overall
trends, represented in red. The curve in blue
describes the traffic evolution measured in
number of packets/s for a BS1, during eight
weeks. The other two curves show the
deviation, plus (in g re en)/minus (in black),
from the signal approximation. It can b e
observed that a large part of the traffic is




contained between the green and black lines.
The red line indicates an incre asing of the tra-c
in time suggesting the possibility of saturation
of the corresponding BSL1.

Next, we propose a multi-timescale analysis.
We used the SWT to decomp ose the original
signal into a range of frequency bands. The
level of decomposition (n), depends on the
length of the original signal. For a discrete
signal, in order to be able to apply the SWT, if
the decomposition at leveln is needed, 2n must
divide evenly the length of the signal. The nth
level of decomposition, gives us n+ 1 signals
for processing: one approximation signal
corresponding to the current level and n detail
sequences corresponding to each of then
decomposition  levels.  Thenapproximation
sequences comp ose a multiresolution analysis
(MRA), The value of n gives the maximal
number of resolutions which can be used in the
MRA, It corresponds to the poorer time
resolution.

There is shown that WIMAX traffic exhibits
some periodicities which are better noticed if
we modify the sampling interval from 15
minutes to 90 minutes. So, by temporal
decimation with a factor of six, these time
series can be transformed in signals at a
temporal resolution of 1,5 hours. This
represents the highest time resolution which is
used in the proposed MRA, Further on these
temporal series will be denoted by casd(t), The
derived temporal series casd(2pt) have a
temporal resolution of 2p * 1, 5 hours.

To extract the overall trends of the traffic time
series, the MRA of the temporal series casd(t)
using temporal resolutions between 1,5 and 96




hours is done.

We used Shensa’s algorithm (which
corresponds to the computation of the SWT
with six levels of decomposition). In this case
the utilization of decimators (required for the
computation of DWT) is avoided but at each
iteration different low-pass and high-pass filters
are used. The impulse responses of the filters
from the second iteration are obtained by sub-
sampling the impulse responses of the filters
from the first iteration and so on.

At each temporal resolution two categories of
coefficients are obtained: approximation
coefficients and detail coefficients. In Figure
3,8 are shown approximation coefficients for
six level of decomposition.

Figure 3,8: The approximation coefficients.

It can be observed that with the increasing of
the level of decomposition, the sequence of
approximation coefficients becomes more
smoothed. The first sequence of approximation
(approximation 1) contains very rapid and high
oscillations. The sequence corresponding to the
sixth approximation is much smoothed and
does not contain any rapid oscillation.
Preliminary simulations presented in a research
rapport afferent to a contract developed by our
department for Alcatel-Lucent Timisoara prove
that the overall trend of the traffic time series is
better highlighted by the approximation
coefficients obtained at the time resolution of
96 hours (corresponding to the sixth
decomposition level), c6. In the data-mining
context, the separation of the last sequence of
approximation coefficients obtained based on a
MRA can be regarded as a data preparation
operation, because the form of this sequence is




appropriate for modeling the overall tendency
of the traffic with the aid of linear predictive
models.

The goal of using the MRA in our work is to
extract the overall trend of the temporal series
that describes the traffic under analysis with the
aid of the approximation coefficients, and to
extract the variability around the overall trend
with the aid of some detail coefficients. The six
detail coefficients obtained after decomposition
are depicted in Figure 3.9.

Figure 3.9: The detail coefficients.

Another data preparation operation contained in
the forecasting algorithm proposed in |PTZDO03|
refers to detail coefficients illustrated in Figure
3.9. These sequences reflect the variability of
the traffic and have different energies. In the
following the detail sequences corresponding to
time resolutions between 1,5 hours and 96
hours will be denoted bv d1 — d6. The
equation describing the proposed multi-
timescale analysis is:

Computing the energies of the detail sequences
corresponding to our example the higher energy
corresponds to d3 (the time resolution of 12
hours). The next detail energy value in
decreasing order corresponds to a time
resolution of 24 hours (the detail d4), where the
energy contained in casd(t) is defined as:
Icasd(t)12dt = ||casd(t)|]2. (3.2)

Hence, we have decided to ignore the detail
sequences with small energies to reduce the

.................

The model in (3.3) represents the new statistical
model for the traffic time-series which we want




to forecast. It reduces the multiple linear
regression model in (3.1) at two components

In order to use the new statistical model, the
weights ~d 7 must be identified (see Figure
3.10 and 3.11). First, for the identification of
the weight ft, the contribution of the
coefficients d4 is neglected. So, the new
statistical model will be expressed by:

where e(t) represents the error of the new
statistical model.

The parametercan b e found by minimizi ng the
mean square ofe(t), (see Figure 3. 10),

The already mentioned search procedure can be
also used for the computation of 7. This d4 will
be expressed by:

The parameter 7 can be found by minimizing
the new mean square of e(t), (see Figure 3,11),

In Figure 3.12 is presented the reconstruction of
the original traffic (first plot) using (realized
using ftd3-second plot and fid3 + Y”-third
plot). The approximation errors are higher in
the second plot than in the third plot. This
remark justifies the utilization of both weights
~d y- The approximation in the second plot is
smoother than the approximation in the third
plot. So, the utilization of the weight
diminishes the high frequency components of
the errors.

For capacity planning purposes, one only needs
to know the traffic baseline in the future along
with possible fluctuations of the traffic around
this particular baseline. Since our goal is not to
forecast the exact amount of traffic on a




particular day in the future, we calculate the
weekly standard deviation as the average of the
seven values computed within each week. Such
a metric represents the fluctuations of the
traffic around the long term trend from day to
day within each particular week.

Given that the 6th approximation signal is a
very smooth approximation of the original
signal, we calculate its average across each
week, and create a new time series capturing
the long term trend from one week to the next.
The resulting signal is presented in Figure 3.13,
in red. It can be observed that this signal
represents a good approximation of the overall
tendencv of the traffic.

Figure 3.13: Approximation of the signal using
the average weekly long term trend and the
average daily standard deviation within a week.

Approximating the original signal using weekly
average values for the overall long term trend,
and the daily standard deviation results in a
model which accurately captures the desired
behavior. So, our data are prepared now for the
modeling of the overall tendency of the traffic
and of the variability around this tendency.

3.2.4 Modeling

Modeling phase involves the selection of
modeling technique and the estimation of
model’s parameters. Our goal is to model the
tendency and the variability of the traffic using
linear time series models.




Let us denote the terms describing the variance
with:

We used the Box-Jenkins methodology |[BJR94|
to fit linear time series models, separately for
the overall trend and for the variability, starting
with the estimations in Figure 3,12, The
estimations "mean approximation plus" and
"mean approximation minus” are used for
modeling the variability while the estimation
"approximation per week" is used for modeling
the overall trend. Such a procedure involves the
following steps: determine the number of
differencing operations needed to render the
time series stationary, determine the values of p
and ¢, estimate the polynomials 0, and 6.

In Figure 3,14 is presented the algorithm that
lies at the basis of our Matlab® implementation
of the Box-Jenkins methodology.

The goal of the Box-Jenkins methodology is to
find an appropriate model so that the residuals
are as small as possible and exhibit no pattern,
|IBJR94|. The residuals represent all the
influences on the time series which are not
explained by other of its components (trend,
seasonal component, trade cycle).

The steps involved to build the model are
repeated, in order to find a specific multiple
times formula that copies the patterns in the
series as closely as possible and produces
accurate forecasts. The input data must be
adjusted first to form a stationary series and
next, a basic model can be identified |BJR94.

ACF and PAC are used to analyze the
stationaritv of a time series and to estimate the




orders p and g. The ACF and PAC plots are
compared to the theoretical behavior of these
plots when the order is known. For AR(p)
processes the sample ACF should have an
exponentially decreasing appearance for AR(1),
while higher-order AR processes needs to be
supplemented with a PAC plot because they are
often a mixture of exponentially decreasing and
damped sinusoidal components. The PAC of an
AR(p) process becomes zero at lag p — 1 and
greater. In the case of MA(g) processes the
ACF becomes zero at lag g — 1 and greater,
while the sample PAC function is generally not
helpful for identifying the order of the MA(Q)
process.

In the following we will give an example to
show how is applied the Box-Jenkins
methodology for WiMAX traffic prediction. In
Figure 3.15 are presented the approximation
coefficients (the signal c6) and their first and
second differences.

Second difference of approximation

Figure 3.15: The approximation coefficients
(first line) and their first (second line) and
second (third line) differences.

The first step is to study which of these
sequences are stationary in order to establish
the value of the parameter d (the number of
differencing operations required to obtain a
stationary time-series) of the ARIMA model.
There are few tests for different type of
stationaritv: stationaritv in mean, stationaritv in
variance, or wide sense (second order)
stationaritv. The first test is to verify if the
variance is constant, so we must compute and
compare the partial variances (defined on two




disjoint intervals) of each of the three time
series (approximation, its first and its second
difference). When both partial variances
corresponding to the same time-series has the
same value, we can decide that the considered
series is stationary in variance.

The second test is to verify if the time-series is
stationary in mean. To test this type of
stationaritv we have to compute and to compare
the partial means (defined on two disjoint
intervals) of each of the three time-series.
When both partial means corresponding to the
same time-series has the same value we can
decide that the considered series is stationary in
mean. The third category of tests is dedicated to
the wide sense stationaritv. The first form of
this category of tests uses the ACFs of the three
sequences. These correlations are represented
in Figure 3,16.

x g 12Correlation of the sequence
approximation

Correlation of the first difference

Correlation of the second difference

Figure 3,16: The autocorrelations of the three
sequences approximaion (first line), their first
(second line) and second differences (third
line).

The correlation of a stationary sequence must
vanish after few samples. We can observe,
analyzing Figure 3,17, that the third sequence
(from up to bottom) has the higher decreasing
speed. It has a peak in its middle. The sample
values decreases rapidly at the left and the right
of this pick becoming close to zero. This
decreasing is most rapidly than the
corresponding decreasing observed in the




middle plot from Figure 3.16 or in the up plot.
The second form of this category of tests uses
the PACs of the three sequences. These
functions are represented in Figure 3.17. They
are also useful for the estimation of orders p
and q.

Figure 3.17: The partial correlations of the
three sequences approximation (first line), their
first (second line) and second differences (third
line).

Analyzing Figure 3.17, we obtain the same
conclusion as in the case of Figure 3.16,
namely that the sequence obtained by
computing the second difference of the
sequence of approximations is more stationary
than the sequence obtained by computing the
first difference of approximations or that the
sequence of approximations itself. Finally, we
propose a last functional test to appreciate
which of the three time series is stationary. The
idea of this test is to verify the repeatability of
the Box-Jenkins procedure. We will present in
the following the implementation of this test in
parallel with the presentation of the
implementation in Matlab® of the Box-Jenkins
methodology In fact, in [BJR94] is devised to
apply the Box-Jenkins methodology two times.
First is established an initial model that is
optimized in the second run. To initialize the
Matlab® Box-Jenkins methodology (the
function bj.m) some information is required:
the data to be modeled (one of the three
sequences: the approximation c6, its first
difference or its second difference in our case)
and the initialization of the model (the values p
and q and the initial coefficients 0 of order p
and 9 of order g). The results of the function
bj.m are: the optimal values of coefficients 9
and 0 (which permit the mathematical
description of the model), the degree in which




the model fits the data (it must be as small as
possible) and the value of FPE which must be
as small as possible. The orders p and q of the
polynomials 0 and 9 can be identified based on
of their coefficients but the value of the
parameter d from the ARIMA model can not be
identified using the function bj.m. For this
reason it is identified on the basis of stationarity
tests. We have applied five times the same
Box-Jenkins methodology to each of the three
sequences using the same initialization model
and we have appreciated the repeatability of
this procedure, comparing the individual results
obtained. The repeatability of the Box-Jenkins
methodology is very poor for the sequence of
approximation c6, so it can be concluded that
this time-series is not stationary and that the
stationaritv of its first derivative must be tested.
Applying the same test to the first difference of
the approximation, c6, we have obtained that
the  repeatability of the Box-Jenkins
methodology is very good for this sequence, so
it can be concluded that this time-series is
stationary. So, for the time-series considered in
this example, d = 1, as it was indicated by the
other stationaritv tests previously presented as
well. We have obtained the results presented in
Table 3,1,

Run index Initial model fit ~ Final model fit

Table 3,1: Results obtained running five times
the Box-Jenkins methodology for the first
difference of the approximation c6.

The results corresponding to the first line of the
Table 3,1 are represented in Figure 3,18 and
those corresponding to the last line are
represented in Figure 3,19,




In both Figure 3,18 and Figure 3,19 the original
signal is represented in black, the output of the
initial model is represented in green and the
output of the final model is represented in blue.
Applying the same test to the second difference
of the approximation c6 we have obtained
results (which are not presented here for seek of
concision) proving that the repeatability of
those results is inferior to the repeatability of
the results obtained for the previous time series.
So, in the following we will use the sequence
formed by the first difference of the
approximation c6

The initial model can be selected using
Matlab® function idpoly, and specifying the
polynomials B, C, D and F from the following
equation:

Applying once again the Box-Jenkins
methodology, the final model (represented in
Figure 3,20 for the current example) is
obtained. In Figure 3,20 is presented a
comparison of the first difference of the
approximation c6 with the simulation in Matlab
of its ARIMA model given by the Box-Jenkins
methodology.

Figure 3.18: Results obtained applying first
time the Box-Jenkins methodology on the first
difference of the approximation c6.
Figure 3.19: Results obtained applying fifth
time the Box-Jenkins methodology on the first
difference of the approximation c6.

Figure 3,20: First difference of traffic overall
tendency before and after ARIMA modeling.
model is presented in Figure 3,21,

In this figure we represented the original time
series with red, while the simulated model is
represented in blue. A good match of the




original time series with the model can be
observed analyzing this figure.

The models computed for the long term trend
of all downlink traces from the database are
used for the next phase of our data mining
project which consists in evaluation. These
models indicate that the first difference of those
time-series is consistent with a simple MA
model (p = 0) with one or two terms (g=1 and
d=1 or g=2 and d=1) plus a constant value pot,
This conclusion ends the modeling phase for
the feature long-range dependence.

A similar modeling phase is implemented for
the other feature of the WIMAX downlink
traffic, the variability. As the approximation
coefficients c6 are used for the modeling of
traffic long-range dependence, the detail
coefficients dt3 are used to appreciate the
variability of the traffic. They are treated
following a similar procedure based on the
Box-Jenkins methodology A comparison of the
original time series (represented in red) with
the data obtained simulating the model obtained
applying two times the Box-Jenkins
methodology (represented in blue) in the case
of the traffic’s variability is shown in Figure
3.22. A good match of the original time series
with the model is observed in this case as well.

Figure 3.22: Modeling the variability of the
traffic.

Applying the Box-Jenkins methodology on the
deviation measurements (that reflect the
variability of the traffic), we found that the




deviation dt3 can be expressed with simple MA
(p = 0) processes after one differencing
operation. This conclusion ends the modeling
part of our data mining project.

3.2.5 Evaluation

In this phase, both models (for overall tendency
and variability of the traffic) are evaluated and
all the precedent steps are reviewed. In order to
see if the new statistical model in (3,3) is
representative, we used AXOVA and we
computed the coefficient of determination
defined in Chapter 2, The model is considered
to be statistically significant if it can account
for a large fraction of the variability in the
response, i.e. Yyields large values for the
coefficient of determination.

We have applied the forecasting algorithm to
all the downlink traces, from the data base and
we have obtained statistically significant
ARIMA models for each traffic overall
tendency and variability. We have identified
the model parameters (p and q) using MLE,
The best model was chosen as the one that
provides the smallest AICC, BIC and FPE
measures, while offering the smallest mean
square prediction error for a number of weeks
ahead.
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3.2.6 Deployment

The final stage, deployment, involves the
application of the model to new data in order to
generate predictions. The moment when the
saturation of the BS takes place can be
predicted comparing the trajectory of the




overall traffic forecast with the BS’s saturation
threshold as shown in Figure 3,23.

The need for one differencing operation at lag
1, and the existence of term Mot across the
model indicate that the long-term trend of the
downlink  WIMAX traffic is a simple
exponential smoothing with growth. The
trajectory for the long-term forecasts will be a
sloping line, whose slope is equal to “ot.
Similar conclusion can be formulated for the
variability of the downlink WIMAX traffic.
The single difference between the long-term
trend and the variability is that the slope of the
variability is much smaller than the slope of the
long-term trend. The trajectory for the
variability forecast is a sloping line as well but
it has a much smaller slope. The sum of these
sloping lines is a third line, parallel with the
trajectory of the long term forecast, which
represents the trajectory of the overall forecast.
Hence, the risk of saturation of a BS is direct
proportional with the slope of its overall
tendency. Given the estimates of Mot across all
models, corresponding to all BSs, we can
conclude based on the positive values of those
slopes that all traces exhibit upward trends, but
grow at different rates.

In Table 3,2 is presented a classification of BSs
in terms of the saturation risk. For BS50 the
value of Mot was estimated as equal to
2.061016 which is much higher than all the
other slopes, so we decided to exclude it from
the classification.

Table 3,2: BSs risk of saturation.




BSs showed on the first column in Table 3,2
have high values of Mat- This means that these
BSs have a higher risk of saturation than the
other BSs, The BSs with higher risk of
saturation are the following: BS63, BS60, BS3,
BS49, BS61.

We cannot come up with a single WiMAX
network-wide forecasting model for the
aggregate demand. Different parts of the
network grow at different rates (long-term
trend), and experience different types of
variation (deviation from the long-term trend).

Our methodology extracts those trends from
historical measurements and can identify those
BSs in the network that exhibit higher growth
rates and thus may require additional capacity
in the future.

Our technique is capable, based on MRA and
ARIMA modeling, of isolating the overall long
term trend and identifying those components
that significantly contribute to its variability,
Predictions based on approximations of those
components provide accurate estimates with a
minimal computational overhead.

3.3  Selection of Mother Wavelets

Another important goal in our work is to
compare the influence of different wavelets
families on the prediction accuracy. We
propose a comparison between the following
wavelets families:

. Daubechies: dbi, db2, db3, db4, db5.




. Coiflets: colli, coi/2, coifs, coif4, coifb.

. Svmlets: sym2, sym3, sym4.

. Biorthogonal: biori.i; bior2.2, bior3.i;
bior*A, bior5.5.

. Reverse Biorthogonal: rbioi.i; rbio2.2,
rbio3.3, rbio4.4, rbio5.5.

These families of mother wavelets were already
introduced in Chapter 1 and their particularities
as: length of support, number of vanishing
moments, time, frequency and time- frequency
localizations. There are some features of the
forecasting algorithm which can be optimized
by the mother wavelets selection such as: the
results of the MRA, the values of the weights ft
and 7 given bv the ANOVA procedure or the
accuracy of the traffic prediction.

We have applied the forecasting algorithm
choosing each mother wavelets already
mentioned and for each trace corresponding to
each BS from the database. In Figure 3,24 are
shown the main steps followed in our work.

We have divided each data sequence into two
parts, each corresponding to a specific interval
of time. Data from the first interval (of seven
weeks) were considered as historical and were
used for prediction, while data from the second
interval (the last week) were used to evaluate
the quality of prediction. The results obtained
are presented in Table 3.3.

Table 3.3: Comparison between wavelets,
WIMAX traffic.

These results consist in values of the three
quality measurements, SMAPE, MAPE and

I




MAE. These measurements were computed for
all BSs, using each of MWs mentioned. In
Table 3.3 are shown the mean values obtained
for all the BSs.

SMAPE, MAPE and MAE, are calculated
between the actual and the predicted tendency,
because for linear models the trajectory of the
forecasts is represented through sloping line
which represents the weekly increase.
According to the results presented in Table 3.3.,
the 1st order Daubechies wavelet, dbl, which is
the simplest of the Daubechies family, gives the
best prediction performance. So, in the case of
communication traffic time series, the time
localization is more important than the
frequency localization. Good forecasting
accuracy was obtained using mother wavelets
with good time-frequency localization as well,
which have a reduced number of vanishing
moments, like rbiol.1.

3.4  Extension to Financial Domain

The prediction method already described can be
applied not only in communications domain but
also in finance.

The financial time-series analyzed in this
section is composed by numerical values
representing the total number of EUR-USD
currency exchanges realized in a time interval
of fifteen weeks. The values are recorded every
15 minutes. The overall tendency of this time-
series was estimated on the basis of a MRA,
followed by an ARIMA modeling of the
sequence of approximation coefficients. We
have divided the data sequence into two parts:
training part of fourteen weeks and a testing
part of one week. We followed the same steps




shown in Figure 3,24 as in the ease of WIMAX
traffic. The results we obtained are presented in
Table 3,4,

Table 3,4: Comparison between wavelets on
financial data.

The best forecasting performance is obtained
using the mother wavelets d”*(Haar) and
bior3,1, which have good time localization.

The financial data (the EUE-USD currency
exchanges) exhibit an almost constant
tendency, while WIMAX traffic presents a
strong variability and its tendency (long term
trend) represents a sloping line. However, our
algorithm is applicable to both types of data
and the obtained predictions are accurate.

3.5 Conclusions

In this chapter, we have proved by extensive
simulations that the traffic forecasting
methodology proposed in [PTZDO03] can be
adapted in the case of WIMAX traffic. We have
adapted the methodology proposed in
[PTZDO03] to our case, by taking into
consideration the particularities of wireless
networks as their ad-hoe nature or the non-
stationarv behavior of their traffic. To do this
adaptation we have modified the number of
detail sequences retained after the ANOVA
analysis, performed using the MEA and
required for the estimation of the variability of
the trafficc, from one (number wused in




[PTZDO3]) to two. We have proposed a
methodology to select the two weights
required, ft and 7 and we have added to the
methodology proposed in [PTZDO03] a new test
of stationaritv (original in our knowledge)
based on the reiteration of the Box-Jenkins
methodology.

Our technique is capable of isolating the overall
long term trend and identifying those
components that significantly contribute to its
variability.

The statistical models for the overall tendency
and for the variability of the traffic can be
found neglecting some resolutions from the
corresponding MEA, Selecting only
approximation coefficients at the sixth
decomposition level of the SWT, c6, we can
predict the overall tendency of WiMAX traffic.
Hence, the overall tendency of the traffic is a
very low frequency signal, requiring mother
wavelets with good frequency localization
(which have a big number of vanishing
moments). The traffic variability can be
predicted by selecting only detail coefficients at
the third and fourth decomposition levels, d3
and d4. Hence, the traffic’s variability is a
relative high frequency signal, requiring mother
wavelets with good time localization (as dbi ox
rbioi.1, which have a reduced number of
vanishing moments).

In consequence, the proposed forecasting
methodology requires mother wavelets with
both time and frequency good localization. So,




we consider that the best results will be
obtained using mother wavelets with a good
time-frequencv localization, which corresponds
to a reduced number of vanishing moments.

Considering that the prediction accuracy of the
traffic variability is more important than the
prediction accuracy of the traffic overall
tendency, it results that time localization is
more important than the frequency localization.
So, the best mother wavelet seems to be the
Haar wavelet (dbi) in our case. With the
increase of the number of vanishing moments,
the performance of the traffic’s prediction
deteriorates. In [SMLI10], [RMBS10] and
[RSML10] we proposed an approach for
predicting traffic time series based on the
association of the SWT with Artificial Neural
Networks (ANN). According to the results, we
can conclude that ANN performs better then
the other forecasting techniques for small future
time intervals, several weeks at most. The
superiority of short-term forecasting methods
based on ANNs can be explained by the higher
computational complexity of these methods.
They require a supplementary training phase
and are applied to all wavelet coefficients (di
— d6), without computing weekly averages.
But, if we are interested in the tendency of the
traffic, meaning prediction for several months,
than pure statistical models are the ones that
should be taken into consideration.

The non-stationaritv of the traces from the
database was highlighted. It is explained by the
non-constant overall tendency extracted from
each trace. This behavior makes more difficult
the estimation of the Hurst parameter presented




in the following chapter.

Chapter 4

Knowledge Discovery in WiIMAX Traffic.
Long-range Dependence Analysis
Communication equipment generates and stores
large amounts of data. In the last years the
topics of self-similaritv and LED in
communication networks has become a very
popular research domain [CB97], [UP02],
[AV98], The analysis of real data challenged
the engineers as well as the researchers, so
LED has become more and more used in data
analysis [OSOIl], [KMF04], Eecent analysis of
traffic measurements from various
communication networks has revealed that the
traffic is long-range dependent or fractal (self-
similar). These findings revolutionized the
understanding of network traffic, giving an
explanation of the difference which appears
between the theoretical estimated efficiency
and the efficiency measured in practice, so
time-series analysis and modeling in terms of
LED have become more and more used in data
analysis.

In this chapter, we propose to analyze the
uplink and downlink traffic in a WiIMAX
network in terms of LED, The aim is to obtain
the estimated values of H parameter, for each
uplink and downlink trace corresponding to all
the BSs that compose the considered network.
We prove that some particularities of the
network can be established analyzing these
values, Eules for the optimization of the
network’s  exploitation can be derived
analyzing these particularities,




4.1 Related Work

Previous work, [KFE02], [KP99], [UP02],
[AV98], [OSOI], [GS09], [KMF04], proved the
utility of H for the analysis of the Internet
traffic. In [KFEO2] is detected self-similaritv in
world wide web (www) traffic and are
presented some possible causes for this
comportment. In [KP99] is observed that the
self similarity of the traffic influences the
performance of the corresponding network.
Some network performance evaluation methods
which take into account the self-similaritv of
the traffic are proposed. In [GS09] is observed
that the prediction of wireless network traffic is
influenced by its LED, In 1993 was identified
the presence of LRD in data sets captured on
Ethernet Local Area Network (LAN) traffic,
[Cle04], In the case of Ethernet LAN traffic,
LRD is manifested in the absence of a natural
length of a "burst"; at every time scale ranging
from a few milliseconds to minutes and hours,
bursts consist of bursty sub-periods separated
by less bursty sub-periods. So, a cause of LRD
is the hidden periodicities which are present in
the time series analyzed. It is also shown that
the value of the Hurst parameter typically
depends on the utilization level of the Ethernet
and can be used to measure "burstiness" of
LAN traffic. In [LTWW93] it is shown that the
H parameter is a function of the usage of
Ethernet (higher usage meaning a higher value
of H). The reason for the considerable interest
in this subject is the fact that the engineering
implications of LRD on queuing performance
can be considerable. If Internet traffic is not
well modeled using independent or short-range
dependent (SRD) models, then traditional
queuing theory based on the assumption of




Poisson processes is no longer appropriate.
Traffic which is long-range dependent by
nature can have a queuing performance which
is significantly worse than Poisson traffic
[AV98], It has been found [AV98] that a H

and affects a number of measures of
engineering importance. The majority of the
papers already mentioned refer to networks on
wires. The exception is the reference [GS09]
which refers to wireless networks.

4.2  Sources of LRD

In the literature, [Cle04], [Mis03], [GLMTO5],
[VBOOQ], [CB97] several possible origins for
LRD in networks as: the hidden periodicities in
traffic, its variable rate, the existence of heavy
tail data streams, the feedback mechanisms in
the TCP protocol or the bad positioning of BSs,
are commonly cited.

One of them is the hidden periodicities which
are present in the time series [Cle04], These
hidden periodicities are revealed by analyzing
the power spectral densities of the time series.

In [Cle04] it is proved that the existence of
video traffic coded with Variable-bit rate
(VBR) induces the LRD. In this case, the LRD




arises from the encoding mechanism whereby
video is encoded as a series of differences
between frames with occasional full updates.

Aggregate traffic is made up of many
connections which arrive randomly. Each
connection is characterized by its "size"
representing the number of packets and by the
"rate” of transmitted packets. As showed in
[CB97], the distributions of connections have
very long tails.

A random variable X is heavy tailed if for all a
> 0 it satisfies:

P(X > x)eax —— TO, x ——to. (4.2)

In [Mis03] the authors show that LRD results
by the aggregation of heavy-tailed data streams.
Another potential cause of LRD is given by the
feedback mechanisms in the Transmission
Control Protocol (TCP). Let’s consider the
transmission of a packet between a sender-
receiver pair on a network. The data is sent
usually according to a reliable transport
protocol like TCP, The release of packets to the
network is decided by the flow and congestion
control mechanism. Using a Markov model to
simulate the behavior of TCP traffic, the
authors of [GLMTO5] concluded that the
multiple timescale nature of traffic generation,
coupled with transport protocol issues, make
the appearance of LED-like behavior
inevitable, while in [VBOO] it is said that
"TCP congestion control creates self similar
traffic (...) showing both short-range and long-
range dependence depending on system
parameters",




LRD arises from network topology or routing
algorithms as well [Cle04], If a BS is bad
positioned into a wireless network, its traffic is
more difficult than the traffic of the other BSs,
which are well positioned, and it can behave
LRD.

Determining the origin of LRD remains an
Important research area and it is essential to
find out which is the real origin of LRD, The
presence of LRD can be controlled only its
origins are known, A possibility remains that it
iIs a mixture of some or all of the sources
already mentioned.

The goal of this chapter is to analyze the
WIMAX traffic recorded in the data base,
which was already used and described in
previous chapter, in order to establish if the
corresponding traces exhibit LED or not. As it
was already mentioned, one of the sources of
LED for a BS is its bad positioning. The goal of
LED analysis reported in this chapter is to
identify the BSs which could be bad positioned
in the architecture of the WiMAX network
which corresponds to the data base. To do this,
we intend to separate the different sources of
LED and to eliminate the effects of all LED
sources with the exception of the bad
positioning. To attain this goal we have
identified some software products which can be
used to estimate the Hurst parameter for each
uplink or downlink trace in the database, such
as SELFIS which will be presented in the next
sub-section or some Matlab® functions as HE
ST, which will be used in a subsequent sub-




section.

SELFIS (SELF-similarity analysis) is a java-
based software tool for self-similaritv and LED
analysis, developed by T, Karagiannis and M,
Faloutsos, [KMF04] at University of
California. It implements the following
estimators of H: Aggregate Variance,
Periodogram, Variance of Eesiduals, Whittle
Estimator, E/S, Absolute Moments and the
Abry-Veiteh Estimator which were already
presented in Chapter 2.

Using the H parameters estimated using the R/S
estimator from SELFIS, we will identify in the
following some hidden periodicities in the
WIMAX traffic and we will find as solution to
reduce the effects of this first source of LED,
the segmentation of the time-series. As it was
already said, the other sources of LED in data
communication traffic are: its variable rate, the
existence of heavy tail data streams, the
feedback mechanisms in the TCP protocol and
the bad positioning of the BSs, These sources
of LED have different effects in downlink and
in uplink. The principal difference between
these two phases of wireless communications is
given by the access to Internet, The majority of
users make more frequently downloads that
uploads on different Internet sites. Generally,
the messages transmitted in uplink are shorter
than the messages transmitted in downlink. The
variability of the traffic rate is produced by
mechanisms such as data streaming (required
by multimedia applications) which are more
specific for the downlink than for the uplink.




Same mechanism, the data streaming, produces
time-series with heavy tail distributions, so this
kind of distributions appear more frequently in
downlink than in uplink. The feedback
mechanism in TCP protocol depends on the
length of the message which is currently
transmitted. This mechanism works heavy in
the case of long messages. So, the feedback
mechanism  produces stronger LRD in
downlink than in uplink. For these reasons, we
can consider as principal sources of LRD in
uplink traffic the hidden periodicities and the
bad positioning of BSs, In consequence, after
the reduction of LRD produced by hidden
periodicities, we can consider that the single
LRD source remained in the uplink traffic is the
bad positioning of BSs, After the reduction of
the effect of the hidden periodicities we will
compare the LRD comportment in uplink and
downlink of each BS, we will identify the
normal behavior of a BS from the LRD point of
view and we will isolate the BSs which deviate
from this normal behavior. These BSs could be
considered as bad positioned,

4.3  Evaluation of H Using R/S Method

By initial tests performed using the WIMAX
data base (which are not presented here to keep
a decent length of the thesis), we have observed
that SELFIS makes an acceptable estimation of
H for time series which have a long enough
length, when the R/S estimator is used. As we
have stated in Chapter 2, the quality of the R/S
estimation decrease with the decreasing of the
analyzed sequence length, due to the increasing
of the polarization of that estimator. For this




reason, we will use the R/S estimator to prove
that the traffic from our database contains some
hidden periodicities. We have already observed
a periodicity of 24 hours in the previous
chapter. To make simpler the analysis of hidden
periodicities, we have separated the uplink and
the downlink traffic.

4.3.1 Downlink Traffic

of WIMAX downlink traffic. Its goal is to
highlight the particularities of WiMAX traffic
from a LRD perspective. As it was already said,
one of the sources of LRD in time-series is
represented by the hidden periodicities. To
identify the possible periodicities, few LRD
analysis, for different lengths of the time-series
are helpful. First, theHparameter of the entire
time-series must be estimated. Second, the
time-series must be segmented and the H
parameter of each segment must be estimated.
If the Hvalues of all segments are smaller than
theHvalue of the entire time-series, it can be
deduced that the time-series contains a hidden
periodicity with a period belonging to a time
interval having as inferior limit the length of
the segments and as superior limit the length of
the entire time-series. To identify other hidden
periodicities, with shorter periods, the method
already described can be repeated, using shorter
segments.

The length of the entire time-series in our
database is of eight weeks. As a first
experiment we calculated the value of H using




the R/S estimator for the sixty-six time series,
corresponding to all BSs, The results are
presented in Table 1 in Appendix, We can
observe that the values of H are between 0.57
and 0.756, so H belongs to the theoretical
interval that proves the presence of LED (H e
[0.5, I]). So, the downlink WiIMAX traffic
exhibits LED, observation which can explain
why the real performance of a real wireless
network is inferior to its value estimated
theoretically.

Next, we searched the hidden periodicities. We
have split the time series into weeks. We have
obtained eight new time series for each BSs and
for each of these series we have calculated the
new values of H. The results are presented in
Table 2 in Appendix. The majority of the
values of H are smaller than the H value of the
entire series (composed by the eight weeks).
Hence, the downlink WIMAX series contain
hidden periodicities with values between a
week and eight weeks. This source of LED can
be eliminated by performing the LED analysis
on segments having the length of one day.

In the following we will present a similar LED
analysis for the uplink traffic. Contrary to the
method presented in Chapter 3, where was
considered only the downlink traffic, we are
interested now in the uplink traffic as well. The
problem discussed in Chapter 3 was connected
with the estimation of the moment when a
given BS will saturate. The saturation appears
only in the presence of a wide traffic, and we
have observed that the traffic in downlink is
more intense than the traffic in uplink. For this
reason we have considered only the downlink




traffic in Chapter 3, The problem proposed in
this section is different. We try to separate the
normal and the exceptional behaviors of the
traffic. To identify these behaviors we must
know the comportment of a BS in both
downlink and uplink. For the moment we are
interested if the uplink traffic contains hidden
periodicities as well,

4.3.2 Uplink Traffic

A simplified LED analysis can be done for the
uplink traffic, when some sources of LED are
not present. Indeed video traffic does not exist
in uplink and the feedback mechanisms in the
TCP protocol do not manifest in uplink. So, the
only two sources of LED in uplink are the
hidden periodicities and the bad topology of the
network. For this analysis we use the same
method for the estimation of H as in downlink,
namely the R/S method.

First we use the R/S method to estimate the H
parameter corresponding to the sixty-six time
series (66 BSs), The results are presented in
Table 3 in Appendix, As in downlink, the Hurst
parameter belongs to the theoretical interval
that proves the presence of LED (H e [0.5, I]).
The values of H are between 0,56 and 0,754,

Next, we have split the time series into weeks.
We have obtained eight new time series, for
each BS and for each of these series we have
calculated the new values of H. The results are
presented in Table 4 in Appendix, The
conclusion is that the entire series (of eight
weeks) exhibits stronger LED than each weekly




series. Hence, the uplink WIMAX traffic
contains hidden periodicities with periods
between one week and eight weeks as well. So,
the normal comportment of the WiMAX traffic
supposes the presence of hidden periodicities. It
iIs plausible that one of those hidden
periodicities to correspond to a period of four
weeks, taking into account social reasons
connected with the organization of the work in
enterprises which supposes more deliveries at
the end of the month and more production at
the beginning of the month. Another hidden
periodicity could correspond to a period of a
week, taking into account the reduction of
activity on the duration of weekends. The effect
of those hidden periodicities can be reduced by
the segmentation of the time series. To continue
the identification of hidden periodicities in
WIMAX traffic we must make another
segmentation of the time-series. The segments
will have shorter lengths, of one day. To make
the LRD analysis of those segments we need a
better estimator for H than the R/S estimator.
As it was specified in Chapter 2, based on the
theoretical  arguments, the  generalized
quadrature variations estimator based on
wavelets is the best estimator for the Hurst
parameter in the case of discrete observations,
as the traces in our database are. To verify
experimentally this assertion, we will compare
in the following sub-section some SELFIS
estimators with the generalized quadrature
variations Hurst parameter estimator based on
wavelets.




4.4 A Comparison of Some Estimators of the
Hurst Parameter Based on Simulation

The following estimators of the Hurst
parameter are considered in the next
simulations: ~ Aggregate  variance, R/S,
Periodogram, and  Absolute = moments
(implemented in SELFIS) and generalized
quadrature variations estimator (also called
discrete Abry-Veiteh) (implemented in Matlab-
function HEST). AIll these estimators were
already defined and analyzed in Chapter 2. We
will use in the following simulations two types
of random processes with known values of H
and we will check the estimated values given
by different estimation methods.

For the first simulations we considered a White
Gaussian Noise (WGN) as input process.

Table 4.1: WGN input process.

Analyzing the results in Table 4.1, it can be
observed the increasing of the bias of R/S
estimations with the decreasing of the length of
the input sequences. The superiority of the
wavelet based estimator (HEST) is obvious.

Next, we considered a fBm input process
containing 10.000 samples, with the following
values of H: 0.5, 0.6, 0.7, 0.8, and 0.9. The
results are shown in Table 4.2.

Table 4,2: fBm input process.

The results presented in Table 4,2 prove that
the precision of Hurst parameter estimators
from SELFIS depends on its values. For small
values of H, the R/S estimator seams to be the
best. For intermediate values of H, the Absolute




moments estimator is the best one. For high
value s of H, the best estimator used by SELFIS
Is the Aggregate variance. Once again, the
results obtained by applying the generalized
quadrature variations estimator based on
wavelets are better than the results obtained by
using estimators implemented in SELFIS, The
two types of simulations already analyzed
recommend the use of the wavelet based
generalized quadrature variations estimator for
Hurst parameter estimation. These results are in
agreement with the theoretical analysis made in
sections 2,8,1 and 2,8,2, showing that the
generalized quadrature variations estimator
based on wavelets is not polarized, robust and
efficient and recommends the use of the
generalized quadrature variations estimator
based on wavelets are better than the results
obtained by using estimators implemented in
SELFIS.

The two types of simulations already analyzed
recomme nd the use of the wavelet based
generalized quadrature variati ons estimator for
Hurst parameter estimation. These results are in
agreement with the the oretical analysis made
in sections 2 .8.1 and 2.8.2, showing that the
generalized quadrature variations estimator
based on wavelets is not p olarized, robust and

efficient and recommends the use of the
generalized quadrature variations estimator
based on wavelets for the estimation of daily
WIMAX  traffics H  parameter. The
appropriateness of this estimator for the LRD
analysis of traces from our database can be
explained adding two supplementary reasons.
The first reason is the discrete nature of the




traces from our data base (the number of
packets of data is acquired every 15 minutes)
because the generalized quadrature variations
estimator based on wavelets was specially
conceived for discrete events (see Chapter 2),
The second reason is the non-stationarv nature
of the traces from our database (already
observed in Chapter 3 as a consequence of the
evolution in time of the overall tendency of the
traffic) which does not affect the precision of
the estimation made by the generalized
quadrature variations estimator based on
wavelets as it was shown in Chapter 2. The
traces in the data base are discrete in time non-
stationarv random processes. The source of
non-stationaritv is the traffic’s overall
tendency.

4.5 Estimation of Hurst Parameter Using a
Wavelet Based Method

In the following we will continue the LRD
analysis of WiIMAX traffic by segmenting the
time-series having the length equal with a
week, into segments with the length equal with
a day. In this section, we will apply the
generalized quadrature variations  Hurst
parameter estimator based on wavelets to the
daily WIMAX traffic. The wavelet transform
with its natural scale invariance and low
computational cost is suitable for analyzing of
LRD process.

4.5.1 Downlink Traffic
This section presents the evaluation of H in the
case of WIMAX daily downlink traffic. We




have already identified in Chapter 3 a hidden
periodicity of the downlink WiMAX traffic,
with the period of a day (24 hours), which can
be also explained by social reasons, taking into
account the cycle dav-night. We believe that it
Is the hidden periodicity in the WIMAX traffic
with the shorter period. The goal of this sub-
section is to identify the normal behavior of the
downlink traffic. The idea is to separate the
BSs with normal behavior from the LRD
perspective. In the following, we will not be
interested in the intrinsic values of the Hurst
parameter. The goal will be to identify the days
with long-range dependent traffic. We will
consider that a day has LRD if the
corresponding value of H is bigger than 0,5,
The results are shown in Figure 1 in Appendix,
The days with long-range dependent traffic are
represented in black. For the majority of BSs,
the number of black rectangles is bigger than
the number of white rectangles. Indeed,
downlink daily traffic exhibits LRD, Based on
these results we realized the BSs classification
in terms of the number of days for which the
downlink traffic exhibits LRD (number of
values H greater than 0.5). The results are
shown in Table 4,3.

Number of values H>0.5 BS

Table 4,3: BSs classification in downlink.

We can observe the extreme cases: BS63 with
only 14 days with LRD traffic (the best case)
and BS32 with 42 days with LRD traffic (the
worse case).

4.5.2 Uplink Traffic
In the following we will analyze the H




parameter for WiMAX uplink daily traffic.
Taking into account the fact that the bad
positioning of the BS, as source of LED, affects
both uplink and downlink traffic and the fact
that there are more sources of LED in downlink
than in uplink, it is preferable to analyze the
uplink traffic to identify the bad positioned
BSs, We have analyzed all the sixtv-six traces
of uplink traffic using the generalized
quadrature variations estimator based on
wavelets, for each of the days of the eight
weeks, and we have obtained the results
presented in Figure 2 in Appendix, The uplink
daily traffic exhibits LED as well. For the
uplink traffic some sources of LED can be
eliminated, but the bad BSs positioning is a
common source of LED for both uplink and
downlink traffic.

In Table 4,4 we realized the classification of
the sixtv-six BSs in terms of the number of
days for which the uplink traffic exhibits LED
(number of values H greater than 0,5),

Number of values H>0.5 BS

Table 4,4: BSs classification in uplink.

The worse case is given by BS32 for which the
number of days with LED traffic is greater than
the number of days without LED traffic (42
days with LED traffic). The BSs with the
smallest number of days for which the traffic
manifest LED are BS49 and BS62 (17 days
with LED traffic).

4.5.3 BSs localization analysis in uplink and
downlink

The goal of this section is the comparison
between the daily uplink and downlink traffic




for each BS. If the value estimated for Hurst
parameter, corresponding to a given day, was
greater than 0.5 we decided that the traffic of
that day exhibits LRD.

The existence of LRD in the downlink channel
iIs marked in Figure 3, in Appendix, with red
and the existence of LRD in the uplink channel
Is marked with green. If in a day both channels
are characterized by LRD then we have a black
rectangle in Figure 3 in Appendix.

The number of days without LRD is greater
than the number of days with LRD for a
number of twenty-two BSs. These BSs are:
BS7, BS49, BS61, BS3, BS4, BS8, BS9, BS16,
BS17, BS46, BS48, BS51, BS53, BS55, BS58,
BS59, BS60, BS62, BS63, BS64, BS65 and
BS67. The normal behavior of those BSs is
without LRD. Hence, they are well positioned.
The downlink traffic contains more days with
LRD than the uplink traffic for fifty-three BSs.
So, the normal behavior of one BS supposes
more LRD in downlink than in uplink. Taking
into account the fact that the bad positioning of
the BS affects both uplink and downlink traffic,
it is preferable to analyze the uplink traffic to
identify the bad positioned BSs. So, we can use
the classification in Table 4.4.

For other twenty-five BSs, the number of days
with LRD is smaller than the number of days
without LRD "in uplink. These BSs are: BS19,
BS52, BS2, BS5, BS10, BS11, BS12, BS14,
BS18, BS20, BS21, BS22, BS27, BS28, BS30,
BS39, BS40, BS42, BS43, BS45, BS47, BS54,
BS56, BS57 and BS66. Because the normal
behavior of those BSs is without LRD in




uplink, we can consider that they are well
positioned as well.

The traffic of other six BSs has an atvpieally
behavior, the number of days with LRD in
uplink being greater than the number of days
with LRD in downlink. These BSs are: BS23,
BS26, BS32, BS35, BS41 and especially BS1.
We consider that these BSs could be
repositioned at the next network release.

Finally, for thirteen BSs the LRD analysis
proposed in this paper is not relevant because
there are more days with LRD in uplink than
days without LRD. We will come back to these
BSs in the following sub-section. These BSs
are: BS6, BS13, BS15, BS24, BS25, BS29,
BS31, BS33, BS36, BS37, BS38, BS44 and
BS50.

4.6 Conclusions

The aim of this section was to identify the BSs
bad positioned in a WiMAX network, by traffic
analysis. The identification of the BSs bad
positioned is very important for the planning of
a wireless network. The LRD traffic analysis
can be developed further by the investigation of
different kinds of traffic which are separated at
the input of each BS as for example, best effort
traffic or multimedia traffic or voice traffic. We
preferred to analyze the traffic in its most
general form. We have proved that WiMAX
traffic exhibits LRD. This LRD is influenced
by the presence of some hidden periodicities in
the time series. We have identified the hidden
periodicities with the following periods: one
month, one week and one day. All of them are
produced by social mechanisms. They can be
removed by the segmentation of traces. We
consider that the analysis of daily traffic could
solve the considered problem. The bad position




of the BS is a common LED source for both
downlink and uplink channels.

There are more LED sources for the downlink
channel than for the uplink channel. So, for the
identification of the BSs bad positioned it is
simpler to analyze the uplink daily traffic.

We have presented and compared some Hurst
parameter  estimators  highlighting  the
superiority of the generalized quadrature
variations estimator based on wavelets for the
problem of the identification of the BSs which
are bad positioned. This estimator is unbiased,
effective and robust, if the mother wavelets
used for its implementation has a number of
vanishing moments equal or greater than two,
as it was proved in Chapter 2, It was conceived
for discrete random processes, as are the traces
in the considered database are. Its performance
is not affected by the non stationaritv of the
input random processes, as the traces in the
considered database are, whose non-stationaritv
is given by their overall tendencies. These
overall tendencies were identified in Chapter 3,
The superiority of generalized quadrature
variations estimator based on wavelets against
the other estimators of Hurst parameter pre-
sented in section 2,8 was proved through
simulations in Table 4,1 and Table 4,2 and
justifies once again the opportunity of using
wavelets in communications, giving an unitary




character to this thesis.

We were interested only in the presence of
LRD, considering that a value of H greater or
equal with 0.5 proves the presence of LRD and
that a value ofHsmaller than 0.5 proves the
absence of LED, Based on this assumption we
have introduced a new type of network’s
representation in Figures 1, 2 and 3 showed in
Appendix, This is a very simple and suggestive
representation of a network, enabling its
analysis in uplink and downlink
simultaneously. It does not allow to appreciate
the LED degree, but this information seems to
be redundant for the BSs positioning analysis.

We realized the classification of the positioning
of BSs for the daily traffic in terms of the
number of days for which the uplink traffic
shows LED, This classification is presented in
Table 4,4, It is very interesting to compare this
table with the Table 3,2 which presents the
BSs’ risk of saturation. The BSs with the bigger
number of days with LED in Table 4,4 are:
BS32, BS15, BS23, BS1, BS13, BS24, BS25,
BS33, BS35 and BS38. All these BSs have a
reduced risk of saturation in accordance with
Table 3,2, The BS32 can be found on the last
position of Table 3,2, the BS15 is on the 60th
position, the BS23 on the 43th position, the
BS1 on the 49th position and so on. So, the
presence of LED proves that the corresponding
traffic is heavy, which reduces the efficiency of
the considered BS, A good network must have
an uniform risk of saturation and an uniform




efficiency for all its BSs, The last observation
permits the reciprocal validation of the results
obtained in Chapter 3 (Table 3,2) and Chapter 4
(Table 4,3) despite the fact that both are
estimation results.

Applying two estimation techniques, one for
the risk of saturation and the second one for the
Hurst parameter, we have obtained results
which are in agreement. Indeed, a BS with
heavy traffic (appreciated with the high
frequency of apparition of daily LRD) will
have a reduced risk of saturation. This remark
can be verified analyzing comparatively Table
3.2 and Table 4.3. The first BSs in Table 4.3
could be found on the last column of Table 3.2
and vice versa. Taking into consideration this
new rule, we can refine now the list of BSs for
which only the LRD analysis is not relevant.
This list is composed by the following BSs:
BS6, BS13, BS15, BS24, BS25, BS29, BS31,
BS33, BS36, BS37, BS38, BS44 and BS50.
Some of them can be found on the last column
of Table 3.2. These BSs are: BS6, BS15, BS24,
BS25, BS31, BS33, BS36, BS37 and BS38.
Taking into consideration their reduced risk of
saturation we believe that those BSs must be
also repositioned. BS13, BS29 and BS44 are
well positioned because they have a high risk of
saturation too. Finally, for BS50 we can not
come with a conclusion because for this BS the
value of ~ot in Table 3.2 has an aberrant value.




Chapter 5 Conclusions and Perspectives

The aim of this thesis is finding an answer to
the following question: "It is possible to
identify the BSs which are bad positioned in a
WIMAX network using traffic analysis? Taking
into consideration the big volume of
information contained in the database which
represented the object of investigation for this
thesis, data mining was preferred as working
tool. Generally, data mining techniques require
high computational complexity. One of the
phases of a data mining project is data
preparation, A modality to reduce the
computational complexity is to use an
alternative representation of data in this phase
of data mining project. For this reason the
association of data mining techniques with the
wavelet theory was assumed in this thesis. The
pretext of this thesis is a database containing
uplink and downlink traffic traces for 66 BSs
composing a WIMAX network. Two data
mining techniques, forecasting and LED
analysis, were applied in the wavelet domain.
The SWT was used in the first case and the
DWT was used in the second one. The well
time-frequency behavior of the WTs permitted
the fast and appropriate treatment of these non
stationary signals. Both data mining techniques
were applied in statistical form.




The most general form of traffic was chosen for
the experimental part of this thesis, considering
all types of packets collected at the input of a
BS, This choice was made to obtain the results
in their most general form. This is a non-
parametric strategy and provides very robust
results,

5.1 Contributions

In Chapter 3, we tested an algorithm for time
series prediction proposed in [PTZDO03] for
wired networks, in the case of wireless
networks. This method is based on the SWT
and statistical time series analysis techniques,
but can be viewed as an implementation of the
CEISP-DM  methodology. We analyzed
historical information, continuously collected
during a period of eight weeks, at the level of
each BS composing the WIMAX network. The
main contributions of the thesis contained in
Chapter 3 can be summarized as follows:

The utility of the algorithm proposed in
[PTZDO03] was validated in the case of wireless
networks. The genuine algorithm was adapted
for wireless traffic. In the phase of data
preparation were considered two sequences of
detail wavelet coefficients as result of the
MRA, and the ANOVA procedure was
modified to find the weights of those
sequences, which minimize the mean square
error of the approximation of traffic variability.
In the phase of modeling, the application of the
Box-Jenkins methodology was modified also,
applying a new test of stationarity.




Predictions provided accurate estimates with a
minimal computational cost (all the forecasts
were obtained in seconds). The BSs with higher
risk of saturation were identified.

A strategy for the selection of MWs, based on
their time-frequencv localization was proposed.
It was verified by simulations that in the case of
traffic forecasting, the time localization is the
most important feature of the MW used to
compute the SWT, The best forecasting results
are obtained using the Haar MW, The SWT
represents the best choice of wavelet transform
for wireless traffic forecasting. This is due to its
translation invariance. The new forecasting
algorithm proposed in this thesis is flexible
enough to work with many different datasets
such as network traffic, financial data or
transportation data, without requiring important
modifications.

We have compared the proposed prediction
algorithm with other algorithms, developed in
our research team and published in companion
papers, based on neural networks, and we
proved its utility for long term predictions. The
proposed forecasting algorithm is faster than
other forecasting algorithms due to the use of
wavelets (the wavelet transforms are fast), due
to the use of MRA (we used only three
sequences of data: c6, d3 and d4) and due to the
use of weekly averages. It does not require any
training phase.




In Chapter 4 we analyzed the traffic data in a
WIMAX network, in order to identify its
particularities. The strategy chosen for this
purpose is based on the LRD of traffic. The
presence of LRD in network traffic has
significant impact on the network performance.
The performance of wireless communication
networks depends on an efficient architecture
(good positioning of base stations). The thesis
contributions in Chapter 4 can be summarized
as follows:

The uplink and downlink traffic of a wireless
network was analyzed in terms of LRD, It was
observed that WiMAX network traffic exhibits
LRD, A cause for LRD appearance, which is
typical for wireless networks, was highlighted:
the periodicities of one month, one week and
one day.

Some Hurst parameter’s estimators were
compared and the superiority of the estimator
based on wavelets was proved by simulations.
Using the second order DWT statistical
analysis presented in section 2,6, in equations
(2,27) to (2,49), we have proposed a new very
simple estimation method of the Hurst
parameter in equation (2,95), which works for
second order wide sense stationary random
processes. It was simply generalized to the
Abry-Veiteh Hurst parameter’s estimator which
works for non-stationarv continuous in time
random processes. Next, this estimator was




discretized obtaining the generalized quadrature
variations Hurst parameter’s estimator based on
wavelets, which was applied to the traffic traces
from the data base.

Using the E/S estimator of the Hurst parameter,
it was observed that LED can be reduced by
splitting the time series corresponding to each
BS into daily series. We observed that
normally, the daily traffic through a BS should
not manifest LED, During the days with LED
traffic, some traffic anomalies appeared.

The positioning of BSs in the topology of the
WIMAX network was analyzed. The BSs for
which the number of days with LED traffic
both in uplink and downlink is high, are
incorrect positioned. This time the generalized
quadrature  variations Hurst parameter’s
estimator based on wavelets was used due to its
better performance in comparison with the E/S
estimator. This fact was proved in Table 4,1
and Table 4,2, The results show which BSs
have a good localization in the topology of the
network and which have not. The BSs which
have a bad localization in the topology of the
network must be repositioned in the future.




The BSs with bad localization have a reduced
risk of saturation as well due to their heavy
traffic. This remark permits to make a
reciprocal validation of the results of estimation
from Chapter 3 with the aid of the estimation
results presented in Chapter 4, From a total
number of sixtv-six BSs the results of the
positioning analysis made are not conclusive
only for one BS,

5.2  Perspectives

The appearance of LED could be the result of
some anomalies that occur during some days.
Anomaly detection refers to the problem of
finding patterns in data that do not conform to
the expected behavior, A PhD thesis recently
presented in the Communications Department
of Electronics and Telecommunications Faculty
of "Politehnica” University of Timisoara [Salll]
treated the problem of anomaly detection in
wired networks and proposed an anomaly
detector based on the association of the
hyperanalvtie SWT with the forth order
cumulant of the traffic trace, A method to
identify anomalies in the wireless traffic would
be very interesting in further research.

Another future continuation of this research
work consists in the statistical analysis of DWT
coefficients of a non-stationarv random
process. This research could lead to find new
and better Hurst estimators among other results.

5.2 Trién vong

Su xuét hién cua BB c6 thé 1a két qua cua
mot sé bat thuong xuat hién trong mot sb
ngay. Phat hién bat thudng co nghia I tim
thiay cac mé hinh trong dix liéu khéng phu
hop vai cac dac tinh mong doi. Mét luan an
tién si gin day duoc trinh bay trong Bd mon
dién tir vién thong Khoa "Politehnica" Pai
hoc Timisoara [Salll] nghién ct:u cac van dé
phat hién bat thuong trong mang day va dé
Xuit mét may phat hién bat thuong dya trén
su két hop cua SWT véi
BORICHENEIIE [uong tin. Mot phuong phap
dé xac dinh nhitng bat thuong trong luu
lurong tin cia mang khong day sé 1a hudng
nghién cau rat tha vi trong tuong lai.

Hudng phét trién trong twong lai cua cdng
trinh nay bao gdm phan tich thong ké cac hé
s6 DWT cia mot qua trinh ngau nhién
khéng ding. Nghién cau nay cé thé dan dén
tim ra cac chuong trinh udc luong Hurst
m&i va tét hon so Véi cic phuong phap
Khéac.









