Bạn đang truy cập nguồn tài liệu chất lượng cao do <u>www.mientayvn.com</u> phát hành. Đây là bản xem trước của tài liệu, một số thông tin và hình ảnh đã bị ẩn đi. Bạn chỉ xem được toàn bộ tài liệu với nội dung đầy đủ và định dạng gốc khi đã thanh toán. Rất có thể thông tin mà bạn đang tìm bị khuất trong phần nội dung bị ẩn.

.....

Liên hệ với chúng tôi: thanhlam1910_2006@yahoo.com hoặc frbwrthes@gmail.com

.....

Thông tin về tài liệu

Số thứ tự tài liệu này là (số thứ tự tài liệu dùng để tra cứu thông tin về giá của nó): 1816

Định dạng gốc: .doc

.....

Xem giá cả và hình thức thanh toán tại đây: www.mientayvn.com/bg_thanh_toan.html

Tập tin có cài pass (bạn sẽ nhận được pass sau khi đã thanh toán):

www.mientayvn.com/DICH_THUAT/Face_selective_electrostatic_control_of_hydrothermal_zin c_oxide_nanowire_synthesis_1816.rar

.....

Các tài liệu được tặng miễn phí kèm theo: www.mientayvn.com/Tai_lieu_cung_chu_de/1816.doc

.....

CHÚNG TÔI RẤT MUỐN CUNG CẤP TÀI LIỆU NÀY MIỄN PHÍ CHO CÁC HỌC SINH, SINH VIÊN NGHÈO, HOẶC CÓ HOÀN CẢNH ĐẶC BIỆT KHÓ KHĂN. ĐỂ NHẬN ĐƯỢC TÀI LIỆU NÀY MIỄN PHÍ, HÃY THỰC HIỆN THEO CÁC YÊU CẦU Ở MỤC 1, 3, 5, 8, 9, 10 TRONG LIÊN KẾT SAU ĐÂY: <u>http://mientayvn.com/Trao_doi_tai_nguyen.html</u> Theo yêu cầu của khách hàng, trong một năm qua, chúng tôi đã dịch qua 16 môn học, 34 cuốn sách, 43 bài báo, 5 sổ tay (chưa tính các tài liệu từ năm 2010 trở về trước) Xem ở đây

DỊCH VỤ DỊCH TIẾNG ANH	Chỉ sau một lần liên lạc, việc dịch được tiến hành
CHUYÊN NGHÀNH	Giá cả: có thể giảm đến 10 nghìn/1 trang
NHANH NHÁT VÀ	Chất lượng: <u>Tạo dựng niềm tin cho</u>
CHÍNH XÁC NHÁT	khách hànhg bằng công nghệ 1.Bạn thấy được toàn bộ bản dịch; 2.Bạn đánh giá chất lượng. 3.Bạn quyết đinh thanh toán.

Tài liệu này được dịch sang tiếng việt bởi:

Từ bản gốc: <u>https://docs.google.com/document/d/1Q1t7lz2Mq112sGR753n72JUA4kdqXSh4k7_kdHsKwHs/edit</u>

Liên hệ:

<u>thanhlam1910_2006@yahoo.com</u> hoặc <u>frbwrthes@gmail.com</u> **Dịch tài liệu của bạn:**

http://www.mientayvn.com/dich_tieng_anh_chuyen_nghanh.html

Điều khiển tĩnh điện chọn lọc bề mặt trong quá trình tổng hợp thủy <mark>nhiệt dây nano kẽm oxit</mark> (Face-selective electrostatic control of hydrothermal zinc oxide nanowire synthesis) Kiểm soát hợp lý hình thái học và tính chất của các cấu trúc nano vô cơ đã từng là mục tiêu lâu dài trong sự phát triển phương pháp chế **tạo thiết bị từ dưới** lên.

Chúng tôi đã từng tổng hợp được các dây nano kẽm oxit bằng phương pháp thủy nhiệt ¹⁻⁴ với nhiều hình dạng khác nhau từ tấm mỏng đến kim, với tỉ số hướng thay đổi từ 0.1 đến 100 (xấp xỉ). Chúng tôi đưa ra mô hình nhiệt động lực học cổ điển để giải thích cơ chế ức chế sự tăng trưởng. Cơ chế đó là hấp thụ tĩnh điện cạnh tranh và chọn lọc bề mặt của các ion phức không chứa kẽm trong môi trường kiềm. Đặc tính của các dây nano này có thể sánh với đặc tính của các cấu trúc nano (nuôi từ pha hơi) ^{5,6,}, và hơn thế nữa, tổng hợp nhiệt độ thấp (<60 ⁰C) thuận lợi để tích hợp và chế tạo tại chỗ của các thiết bị phức tạp và có khung polyme ⁷⁻⁹ (được nâng đỡ bằng polyme). *Chúng tôi chứng minh khả năng này bằng cách chế tạo một diode phát quang toàn chất vô cơ trong một ống vi lỏng polyme.Nghiên cứu này của chúng tôi cho thấy rằng các tương tác tĩnh điện có thể được điều khiển có tính hệ thống để chế tạo cấu trúc và các thiết bị nano.*

hiện vị lực nguyên từ (hình bộ sung S6) và Phộ quang điện từ lịa X

?	,	,	
và B thúc đây sự tăng tr	rưởng tỉ số hướng t	hập và cao tương	ứng, phù hợp cho
tất cá các sunfat được kiể	m tra (Hình 1c và h	inh bổ sung. 88), đ	lây là bằng chứng
khẳng định tinh đúng đấ	n của mô hình ức (chế tăng trưởng ti	nh thế theo kiếu
			, , , , , , , , , , , , , , , , , , ,
tĩnh điện chọn lọc bê mặ	it (sự hiện diện của (cả hai ion kim loại c	lược tính trong tất
2	```	~ ~ /	2
ca các đổ thị tiên triên t	oàn phần, nhưng th	ướng dân đến thay	dõi phân bố nhó
non1% p. Dieu quan tro	ng can phai iru yi		io co ti so nuong
2			
cao kiêu kim hoặc tháp	được vót nhọn đượ	yc hình thành qua	nhiêu bước tăng
trương của các lớp lục g	giac voi sự giam di	en tich be mat 🔤	dieu nay phù hợp
		2	
voi co che tang trương ti	rng lop như dự kier	I (Hinh bo sur	ig 59). Dang thap
2 ~			
nhọn không biêu diên các	c bê mặt (10 <mark>11) n</mark> êu	không tạo góc 60	độ với mặt phăng
			2
(0002). ^E Cũng cân chủ ý	răng các yêu tô khá	c ngoài tĩnh điện có	thê đóng một vai
tro nao do, dạc biệt trong	aleu kiện pH trung	tinn, nhiệt độ tăng	cao va / hoạc thơi
	?		
gian phan ung cực kỳ dâi	(xem Thông tin bô	sung và hình. S13). Tuy nhiên, trong
	2 2		<u> </u>
cac dieu kiện được bao ca	io o day, co che kier	n soat hat chieu ti s	o hương day nano
bị chi phối bới tĩnh điện.			

Valaskistals			
có tốc đô tích hơp x	vào tinh thể ZnO	đano tăno trurcino f	hân sự hiện diện chúnd kế
dẫn đến trợ chế sự tả	ing trường tinh th	2. Ouan trong hol	Leác dây nano ZnO tăng
trường thủy nhiệt tr	ong sự hiện diện c	tua các ion kẽm (2	mM, tương đương 20% sp
với kẽm) đường như	r không thay đổi đ	áng kể cấu trúc ho	ặc các tính chất quang học
ban đầu của nó, điều	ı này được khẳng (định qua các phép	đo nhiễu xạ tia X (Hình bổ
sung S10) và các p	hép đo quang-phá	it quang (phát xa	với độ rộng vùng cấm λ =
378 nm) (hình bố sư	ing S11). Các đồ 1	thị quang phố tia 2	(EDS) (EDS)
của các đây nano Z	InO tăng trưởng c	dưới sự hiện diện	của cadmium hoặc nhôm
thieu một đình đặc t	rung cua Cd 3.13	kev hay dinh h	iom 1,49 kev các múi tên
tất cá các ion khác đ	nore kiểm tra	ninin ray.tviitung p	naumon o tren phù nop von

2.10⁸ Pa). Vì vậy, khá năng sử dụng các ion vô cơ hhư các phức chất dạng phối tử liên kết bề mặt cho thấy ầm quan trọng của việc duy trì nhiệt độ thấp để liều khiển hình thái học.

ĐÃ SỬA LÀN H

Ban chất tương thịch vật liệu và chi phi san xuất thấp pủa tổng hợp các cấu trực năng ZhO trong một trường pước ở nhiệt độ thấp là những động lực chính để kãy dựng các cơ chế điều khiển có hệ thống phẩm hướng đến việc pai tiến các tính Chất gắn với các cấu trừc năng khặc nhau ra san xuất các linh có chữa hợt mẹ Libeo đó, chúng tội đã chứng minh được sự phát xã trường được cái thiện tất nhiệt l từ các da viang tối đã chứng minh được sự phát xã trường được cái thiện tất nhiệt l từ các da viang tối đã chứng minh được sự phát xã trường được cái thiện tất nhiệt l từ các da viang tối đã chứng minh được sự phát quang xoay chiều chứa polyme với hiệu suất phát quang được cái thiện, và xây dựng một thết bị quang điện tự đã tộp hoàn trán tại chỗ trong một ki buồng nhan trip ngược nhập trip

Sự kết hợp xử lý nhiệt độ thấp trong một môi trường có nước và trường phát xạ tăng cường là li tướng để chế tạo các thiết bị điện phát quang xoay chiều được

Ngoài văn chuyển khối lương được cải thiên tổng hợp thủy nhiệt trong mội trường vì long cho phép kết đồng thời các tham số tổng hợp với mức tiêu thủ kháu năm trug lối thiểu thình bổ sung. ST70.80 tổng hợp đựa trên vì long, kết định bề nat cùng dựa ra một lộ trình hướ ng tới tạo hình không gian đồng thời của vật liệu thực năng ^{trug}. Vi dụ, chủng tội đa cho ra mất một thiết bị phát quang hưu cơ được chế tạo tại chổ toàn chất voi cơ lị bằng phương pháp cho chay qua các chất phan trug thế tạo tại chổ toàn chất voi cơ lị bằng phương pháp cho chay qua các chất phản trug có thể xư trug được thến tán tổi đây lống lợi long không chủ động vật một là tâu tuồng phản ứng nhằm các tiến việc điều khiển các hàm số tổng hợp để giảm tiệu ta lớp, và cuối cùng, như là một thiết bị được động gọi ở khẩu cuốu bử củng hợp tự dình hưởng và tích hợp vào các thiết bị chức năng dà giúp loại bộ bước in hoạc trưởng như đổi thưởng có liên quản đến điện từ học mềm det

Các diode phát quang kim loai-dien moi-ban dẫn (MIS LED) được chế tao au chỗ bàng cách tổng hợp luần tự các day nano trong một ống vi long ở mặt trên na thuy tiph dược phụ bản tự các day nano trong một ống vi long ở mặt trên thượ phụ quay nhanh cách dien qua kênh thếp theo là bản hông chay qua màng thức phụ quay nhanh cách dien qua kênh thếp theo là bản hông chay như tưới thếp thế làm dày phần cón lài của kênh tế Hình 4a, bù Thiết bị có một điện áp mở 4 v dễ thấy khu dong nghịch đạo là tế thếp thốt cảng 5 × 10⁻⁶A. cm⁻² như thể

gói hoàn toàn có tính chất là trong suốt về mặt quang hod, như th	oc biểu diễn
frong hình nhà nhia trận gia hình đa và ay nhất và ánh cáng từ đ	
tiếng biệt ở trạng thái ON và OFF được biêu diên trong hình nhỏ th	ip hơn (Hình
4c).Khá năng chế tạo hoàn toàn tại chỗ một thiết bị toàn vô cơ đa lớp	với mức tiêu
thự chất nhận (mọi tối thiểu nêu bật tầm quan trong qua tổng hơn thủy	hiệt nhiệt độ
nap va co che cal thiện kiếm soat nế thông.	

hập và cơ chế cái thiện kiếm soát hệ thống.
Hệ thống hóa học được trình bày ở đây cụng cấp một nền tàng để hiểu các tượng
tác bề mặt nhụ thuộc bH của hỗn hợp phán ứng nhực tạp, mà hoư ởi tạ có thể xây
linng thêm các kiến thức trên đó. Thị nghiêm dựa trên mô hình của chúng tôi đã
hiết lập tính điện như là một cơ chế kiểm soát phiếm ưu thế trong tổng hợp thủy
nhiệt kiểm ở nhiệt đó thấp, và hơn nữa đã chứng minh sự chế tao có hiệu quá các
hiết bị dựa trên dây nano ZnO với các lính chất được làng cường và các tính chất
quan trọng dẻ chế tạo thiết bị dựa trên cấu trúc nano, đối với giá thành, tính tương
hích tích hợp vật liệu và tiêu thụ tài nguyên. Tổng hợp phải trải qua xứ lý trong lõ
phản ứng vị lòng, mang lại các mô hình tổng hợp tại chỗ đa lớp cho các thiết bị
chức năng không gian phức tạp Vĩ vậy, sự phát triển của có chế tĩnh diện để kiểm
soát có hệ thống tỉ số hướng của dây nano cũng có thể tiếp tục ap dụng cho hóa
ổng hợp vật liêu nano hướng tới mục tiêu kiểm soát hợp lý hơn hình thái cấu trúc

nano.

bhán ứng đã được sử dụng như nhận được từ Sigma Aldrich, trừ khi có lưu ý khác.
nước khữ Ion là nước 18.2 M Millipore. Các thiết bị điện phát quang dòng xoay
chiều đầu tiên được chế tạo bằng phún xạ RF các lớp mầm dây 30 nm lên trên các
diện cực được tạo khuôn trước (bàng cách khắc ướt các đế phủ indium tin oxide
Với FeCig HCI có nước hoặc bốc hơi nhiệt màng mòng vàng), tổng hợp các dày
hano do day 1.2 μm (với sự hiện điện của 2 mM nhóm sunfat), phún xa KH
phosphor ZnS: Mn (KJ Lesker), phul quay bột nhão titanate bart m dày 13 μm
như điện môi (Dupont LuxPrint 8153), và sự lắng tụ của một điện cực dẫn điện.
thiết bị vị lòng được chế tạo bằng quy trình tiêu chuẩn, sử dụng
polydimethylsiloxane (PDMS, Sylgard 184) dúc các khuôn bao gồm chất cản
quang SU 8 (Microchem) lên các tấm silic, được tạo hình bằng kỹ thuật quang
thắc tiêu chuẩn. Nhiệt độ trong ống vì long dã được kiểm soát bằng giai đoạn
Peltier.LED MIS dước chế tạo tại chỗ bằng cách tổng hợp tuần tự các dây nano
rong một ống vì lóng trên thủy tính được phủ ITO hoặc PET (50, C cho 30 phút ở
ốc độ dòng chây =0.6 mlh 🔥 chây qua một thủy tinh phủ màng kiểu quay nhanh
qua kênh đến chiều đây màng 240 nm (2001 C trong 10 giây với tốc độ cháy= 1
milh), tiếp theo là hàn nóng cháy nhiệt đó thấp lấp đầy phần còn lại của kénh
In52/Sn48 từ san phẩm đặc biệt AIM) tại 200 °C với chân không thấp được đặt
vào đầu ra của chất lóng. Tính toán nhiệt động lực học đã được thực hiện bằng
MATLAB. Quang phổ học và các phép đo được thực hiện như sau: kính hiển vì
diện từ quét FEI XL30), kinh hiển vì lực nguyên từ (Digital Instruments
Dimension 3000), kinh hiển vi điện từ truyền qua (JEOL 2010 với bộ phận EDS).
náy nhiễu xa tia X (PANalytical X'Pert PRO), quang phát quang (Hitachi F7000).
Phổ quang điện từ tia 🗙 (PHI, 5701 LSci), Phổ điện phát quang (Ocean Optics
HR2000). quang phổ quang phát quang (máy quang phổ huỳnh quang Nanolog.
HORIBA Jovin Yvon), do độ sáng (Konica Minolta CS-200), và kiểm tra thiết bị
rang thái rắn (máy vì thao tác tự thiết kế với bộ phân tích điện áp cao Keithley

Liong quá trình phân tích kính hiển vì điện từ quét, đường kinh được tio tại trung điểm c dọc theo trục b của dây nano. Theo yêu cầu của khách hàng, trong một năm qua, chúng tôi đã dịch qua 16 môn học, 34 cuốn sách, 43 bài báo, 5 sổ tay (chưa tính các tài liệu từ năm 2010 trở về trước) Xem ở đây

DÎCH AÔ	Chỉ sau một lần liên lạc, việc
DÎCH	dịch được tiến hành
TIENG	
ANH	
CHUYÊN	Giá cả: có thể giảm đến 10
NGHÀNH	nghìn/1 trang
NHANH	
NHIÁT VÀ	Chất lượng: <u>Tạo dựng niềm tin cho</u>
Снімн	<u>khách hànhg bằng công nghệ</u> 1.Bạn
	thấy được toàn bộ bản dịch; 2.Ban
	đánh giá chất lượng. 3 Ban quyết
NHAT	định thanh toán

Tài liệu này được dịch sang tiếng việt bởi:

Từ bản gốc: <u>https://docs.google.com/file/d/0B2JJJMzJbJcwcXkzM2ZIZUNqS3M/edit</u>

Liên hệ:

<u>thanhlam1910_2006@yahoo.com</u> hoặc <u>frbwrthes@gmail.com</u> **Dịch tài liệu của bạn:** http://www.mientayvn.com/dich tieng anh chuyen nghanh.html

Thông tin bổ sung

Chế tạo dây nano oxit kẽm bằng phương pháp điều khiển tĩnh điện chọn lọc bề mặt Liên hệ với tác giả: jbjoo@alum.mit.edu

I. Vật liệu và phương pháp

Tất cả các chất phản ứng sử dụng trong thí nghiệm được mua từ Sigma-Aldrich, nếu không có chú thích gì khác. Nước là nước Millipore 18.2 M Ω .Các tính toán được thực hiện trong MATLAB.

Một đế được làm	sạch trước (để này có	thể là sillic,	thủy tinh h	oặc polye	thylene
therephthalate dec), PET) được	e phủ một	lớp mầm ox	tit kẽm (ZnC), dày 2 -	30nm)
bằng phương phá	o phún xạ Ri to dibydrate	H](150W, 2	20mTorr, 12s	scem Ar) he	pặc phủ qu ming tr	ay sol-
Methoxyethanol	3000 vòng tr	ên phút tro	ng khoáng 4	10 giây, tiến	theo là gi	uá trình
àm rấn khoảng l	0 phút trên č	fĩa hâm 25	0°C). Đế đ	ược đặt lộn	ngược tro	ong 100
mL dung dich tro	ng một bình	kín có ch	ứa sulfat kẽi	n và amoni	clorua, p.	H được
fièu chính bằng	Natri hidrox	it (nông đá	cuối cùng	của natri là	~ 125ml	4). Nếu
không có chú thíc	h gì khác, qu	iá trình tôn	g hợp được	thực hiện ở	60 °C băi	ng cách
dật đinh ương mộ 800 mM amoni	clorua á nH :		phan dung d bydrat sulfat	te kim loai	v kem s	$nM \Delta$
Ga, Ca, Mg, Cu,	Cd) đã được	thêm vào	dung dich r	như vây trươ	or khi điề	u chinh
pH. Nồng độ của	các chất điề	u chính bị	nạn chế để t	tránh sự kết	tủa oxit c	ủa chất
dièu chinh.						
tiều chính I.B. Chế tạo thiết I						
		1				
điều chính I.B. Chế tạo thiết I.B.I. Thiết bị điện	on phát quange	dong xoay	chièu sự dụn	ig dây nano	(NW-ACI	
điều chính I.BI Chế tạo thiết I I.BI Chế tạo thiết I I.BI Chiết bị điện Chủy tinh phủ in	51 phát quango dium tin ox	dòng xoay ide durge l	chiều sử dụ àm sạch tru	ie dây nano rớc (rứa bằi	(NW-AC)	serie Age môte
diều chính I.B. Chế tạo thiết I.BI. Thiết bị điện Thủy tinh phủ in Acetone, isopropan	on phát quango dium tin ox noi, <mark>nước khu</mark>	dòng xoay ide dược l r lon hóa, y	chiều sử dụn âm sạch trư và sấy khô b	ig dây nano oc (rưa bài àng khi nito	(NW-ACI 19 Các du) (còn gọi	BL) ng môi ia thuy
 I Bu Ché tao thiết Bu Chế tao thiết B1. Thiết bị điện Thuy tinh phu in acetone, isopropar inh TO, Công ty 	oi phát quang dium tin ox toi hước khi công nghệ T hình thành c	dòng xoay ide dược l r lon hóa, y Je ta) được	chiều sử dụn ảm sạch trư và sấy khô b khắc vân bằ	ig day nano oc rua bài àng kin nito ìng quy trini	(NW-ACI ng các du) (con goi h quang ki ab dia chi	ED) ng môi ia thuy nắc tiếp độc lận
dièu chính I BI Ché tạo thiết I BI. Thiết bì điện Thủy tinh phủ in Acetone, isopropar Inh TO, Công tự Xức tiêu chuẩn để Independently ad	phát quang c dium tin ox tol. hước kin công nghệ l hình thành c dressable); (đ	dòng xoay ide dược l r Ion hóa, v Je ta) được ác diện cực j lớp câm	chiều sử dụn am sạch tru và sấy khô bị khắc văn bằ strong suốt quang <u>A//</u> 44	ng day nano oc rura bàn àng khí nito ìng quy trin va porthể du 620 phủ qua	(NW-ACI ng các du) (còn gọi h quang ki nh dịa chi y với tốc đ	EL) ng môi là thuy nác tiếp dộc làp lộ 1500
 I.B. Ché tạo thiết I.B. Chế tạo thiết I.B. Thiết bị điện I.huy tình phù in acetone, isopropai inh TO, Công tự kức tiêu chuẩn để líndependently ad vòng trên phùt tra 	phát quang a dium tin ox ol, hước khu công nghệ t hình thành c dressable): (li ng khoảng	dòng xoay ide dược l r lon hòa, v le ta) dước ác điện cực ác điện cực l) lớp cảm	chiều sử dụn am sạch tru và sấy khỏ bị khắc văn bằ trong suốt quang AZ 40 furọc kết đ	ig dây nano ioci rua bài àng khi nito ìng quy trini và pó thể du 520 phu qua mhi 5 90 ° 0	(NW-ACI ng Các du) (côn gọi h quang ki nh địa chi y với tốc đ Trong l	EL) ng mối là thuy nác tiếp độc lập lộ 1500 gio (3)
 Inèu chính I.B. Ché tao thiết I.B. Thiết bị điện I.buy tinh phủ th acetone, isopropai Inh IIO, Công tự kúc tiêu chuẩn để Tindependently ad Yong trên phủ thư Jược phô ra bức 	phát quang dium tin ox ioi, hước khu công nghệ l hình thành c dressable): (i ing khoảng xạ Vạch cười	dòng xoay ide duọc l r Ion hoa, v le ra) được ác điện cươ ác điện cươ l) lớp cảm l0 giây! (2) ng độ 50m	chiều sử dụn am sạch tru và sấy khỏ bị khác văn bằ trong suốt quang AZ 40 flược kết đ W/cm khoa	ig dây nano ioci (rua bài àng khi) nito ìng quy min và có thể đu 520 phủ qua mhi 5 90 ° 0 ing 20 giây ((NW-ACI ng các du) (con gọi h quang ki nh địa chi y với tốc đ Trong li Intelli-RA	EL) 1g môl 1a thuy nác tiếp độc lập 1ộ 1500 giờ. (3) 19 400,
thểu chính Bị Chế tạo thiết Bị Chế tạo thiết Bị Chế tạo thiết Bị Chế tạo thiết I bụ điện Chủy tình phủ thi acetone, isopropai inh TO Công tự kúc tiêu chuẩn để lindependently ad vông trên phút trư được phố ra bức Uvitron), (4) Các	phát quang dium tin ox iol, hước khu công nghệ l hình thành c dressable): (i ing khoảng xạ Vạch cưới vận khắc dự	dòng xoay Ide duọc I I Ion hoa, v Ie Ia) được ác điên cực I lớp cảm IO giây. (2) ng độ 50m Io cho hiện	chiều sử dụn ăm sạch tru và sấy khỏ bị khác văn bà trong suốt quang AZ 4 lược kết đ W/cm khoa lên bàng th	ig dây nano oc (rua bài àng khi pito ìng quy min va có thể đu 520 phủ qua inh 5 90 ° (ing 20giay (uốc rua anh	(NW-AC) ng các du) (con gọi h quang ki nh địa chi y với tốc đ C trong l Intelli-RA AZ 440K	ng môl la thuy nác tiếp độc lập lộ 1500 giờ, (3) lý 400, và sau
thểu chính I.B. Chế tạo thiết I.B. Thiết bị điện Thủy tinh phủ m acetone, isopropar tinh TO Cong tự kúc tiêu chuẩn để Independently ad vòng trên phút trư dước phò ra bức Uvitron), (4) Các do (5) ăn mòn hóa	phát quang dium tin ox ioi, hước khu công nghệ l hình thành c dressable): (ing khoảng l xạ vạch cười vận khác dượ i ướt vơi sắt	dòng xoay ide dược l r lon hòa, v le la) được ác điện cực àc điện cực lo giây, (2) ng độ 50m rc cho hiện clorua (Fel	chièu sư dun àm sạch tru và sáy khỏ b khác văn bà trong suốt quang AZ: 4 luroc kết đ W/cm khoa lên bằng th Cl ₂ , 25 ~ 30	ig dây nano tớc (rúa bằn àng khi hito ìng quy trình và pô thể đị 520 phủ qua inh ố 90 ° (ing 20 giảy (uốc rứa ảnh %) trộn với	(NW-AC) ng các du) (còn gọi n quang ki nh dịa chi y với tốc đ) trong l Intelli-RA AZ 440K axit hydro	ng môi la thuy lác tiếp độc lập lộ 1500 giờ. (3) y 400 y 400 y 200 y 200 y 200 y 200 y 200 y 200 y 200 y 200 y 20

I.A. Chế tạo dây nano

	· · · ·			
băng nước DI.	Các lớp mâm ZnO d	ày 30 nm đã được	lăng tụ băng ph	ương pháp
	, , , , , , , , , , , , , , , , , , , ,		,	
phún xạ R F. Đ		, lớp vàng dày 30 r	ım được bốc bay	v nhiệt trên
		,		2
PET (McMaste	r Carr) thông qua một	tự chê v	với <mark>một Omax</mark> W	/aterjet) để
rao ra các điện	cực bán trong suốt			

Các cấu trúc nano	được tổng hợp	đến đô dày mài	ng 1.2 um (thờ	i gian để đạt
durge dô dày qua SEVU	thông thêm các	ion 4 già 2r		2 m M C c
	mong them cae	- 1011 - F <u></u> <u>§</u> 10, 21		
ZU pio), sau do duoc lay	ra khoi dung	dich, dược rưa	voi nước và đ	uoc say kho
bằng khi nito. Các lớp p	hosphor ZnS: I	VIn dày 300 nm	được lằng tụ	trên các câu
trúc nano bằng phương p	pháp phún xạ H	RF (110W, 3mT	forr, 12secm A	r; Bia 0,8%
nguyên tử Mn, Kurt J. L	esker) ó 250 (C trên thủy tinh	hoặc 60 °C tr	ên PET. Bột
parium titanate (Dupont,	LuxPrint 8153) đã được sử dụ	ng để lắng tụ c	ác chất điện
môi dày 13 micromet bài	ng cách phủ qu	ay 4000 vòng t	rên phút trong	50 giây, sau
đó ů ở 150 °C trong 20 _ľ	phút.Các điện c	cực trên (điện ci	rc đỉnh) hoặc	được lắng tụ
với Al bằng phương ph	áp phún xạ R	F hoặc được sơ	rn bằng bột gi	raphite (Ted
Pella).				

9			 ~	
I B2 Tông ho				
	p any many			
2	1			
cho (1n-s1f11)	1			

Polydimethylsiloxane (PDMS, Dow Corning Sylgard 184) microfluidics were
cast on molds composed of SU8 photoresist (Microchem) on silicon wafers, based
on previously reported lithographic techniques 1-2. For general synthesis and
creening of reaction conditions in microfluidic devices, molded fluidic channels
were attached to zinc oxide seed layer-coated substrates by compression
sealing. Nanostructures were synthesized with this device placed on top of a
Peltier stage (FerroTec) to modulate temperature.
Các vi lông Polydimethylsiloxane (PDMS, Dow Corning Sylgard 184) được làm:
chảy ra trên khuôn gồm chất cản quang SU8 (Microchem) trên các tấm Sillic, dựa
rên kỹ thuật quang khắc trong. ¹¹² Để tổng hợp và kiểm tra các diệu kiện phản
rng trong các thiết bị vị lóng, các kệnh lóng đức được gắn vào các để phủ lớp mầm
Nyit kem bang cách compression leging (ban nén) [Các cáu trúc nano durge tông
top vor thet of nay duoc dat tren dinn cua mot be remer (remotec) de dieu chinh
aniet do.

Dối với Liode phát quang kim loại-diện môi-ban dẫn (MUS LED), một tênh 9,1 mm x 0.08 x 15 mm (chiều rộng x chiều cao x chiều dài) được gắn vào một đế

thuy tinh ITO	patterned (du				với một lớp
mam ZnO tho		; phap [~] stamp	and stick (d	lân và dính).	l'ien polymer
(pre-polymer)	PDMS chưa h	oa rán (GE, I	KTV 615) voi	ty lệ hợp ph	an A va B la
	2 2 1 2				
IU: I aușc pr					en phut trong
			2 2		
khoáng 4 phút			m để chuyên		inh móng, và
4/ / 4	4×1.1.0				
sau do no duç	de chief de c	dược phủ Znu	J, roi hoa ran	trong lo doi	lưu ở 80 °C
trong 3 gio. S	ự tang trương	cua day nano	trong cac ker	nh vi long du	ợc thực hiện
		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1			
voi cung một	aung aich nnu	mo ta o tren,	0 DU 1 C (0 p	nia tren cua	Petter) trong
					2
oo piiut va toc	ao aong chay	0,0 III / <u>8</u> 10.	riong phuong	рпар рпи ша	ng kieu quay
nhanh (SOC)	này tốc độ chả	v ang kônh là	1 ml / h trot		000° C $113n$
	nay, luc uự cha	y qua kenn ia		ig itt glay ti 2	
cục nen (alện	cục unin) bao	glac (contorn	iar) duộc nhì	i thann bang (cach cho kim
looi nóng ahả	di ana (InS)		Spooldty Inc.	noi một mội	trivono ohôn
ioai nong chay	y ur yud (III)2 /	SII40, AIM	specially Inc.		i uuong chan
không thông th	ton to to to	n kônh ở 200			

IIC Xác định tính chất

		,		9
Thành phân của các d	ây nano được xá	c định tính châ	t dùng kính hi	iên vi điện tử
truyền qua phát xạ trư	ờng (FE-TEM) J	EOL 2010F du	ge trang bi m	áy quang phổ
tia X tán xạ năng lượi	ng (EDS). Hình t	hái học và tỷ s	ố hướng của	các dây nano
được đo bằng cách sử d	lung kính hiển vi	điện từ quét mà	i trường (SEN	/I) FEI XL30,
hoạt động trong chế độ	chân không cac	vừa phải. Cấu	trúc tinh thể v	à định hướng
của các dây nano được	: xác định bằng n	hiểu xạ kế tia	X (XRD, Pana	lytical X'pert
Pro) sử dụng bức xạ (CuK (1.5406Å).	Phổ quang phát	: quang của d	ây nano ZnO
được đo với một quan	g phổ kế tại nhiệ	t độ phòng(F70)00, Hitachi, 7	. = 325nm từ
nguồn Xe đơn sắc)				

Các phé	o do luc-khoâng	cách được sử c	ung dẻ dánh g	giá thể năng	bề mặt của
các bề mặt đo	n tinh thể ZnO.	Cần quét AF	M phủ Au ho	ạt động ở c	chế độ tiếp
xúc(Câm biến	Budget, 0.2N / t	m) đã được điể	ều chính về ma	ăt hóa học v	rói các đơn
lóp alkanethiol	có một dầu cai	boxyl để đảm	bảo cần quét	tích điện âr	n khi kiêm
tra. ZnU dơn t được sử dụng	inh the (tap doa		c mạt phang (0002), (100), va (110) v khô bằng
khí nito. Để đ	o thế năng bề m	iăt của các mã	t phẳng ZnO đ	pHIL Na	tri hidroxit
được sử dụng c	lẻ diều chinh độ	pH của 1 mM	KCI có chứa n	ước. Tinh t	hể được để
cho cân bằng k	choang 5 phút tr	ong dung dịch	trước khi thực	: hiện các pl	tép đo lực-
khoảng cách vo	ới tốc đô quét 11	Hz (Digital Inst	truments Dime	nsion 3000)	

Phép do qua	ıng điện tử ti	a X (XPS)	được sử di	ụng để xác đị	nh tính axit	trong
đối của bề mặt của	các tinh thể	ZnO định	hướng khá	c nhau. Các t	inh thể ZnO	được
phú palladium (Po	l) dày 5A ⁰	bằng phươ	ng pháp ph	nún xạ RF (7	0W, 30mTo	rr, 12
SCCM Ar). Tât cả	các phép đo	NPS được	thực hiện	bằng cách sử	r dụng bức x	ạ đơn
sāc AIK trong châ	n không siêi	u cao (1,2	~ 5 x 10-1	0 Torr) o goo	c hứng 80° h	u mặt
phang. Cac peak q	uang diện ư	i pa cua r		eak auger M	MIV Cua Pa	dipb
hướng tinh thể	am so augo					
				,		
Đặc tuyên l	-V phát xạ tr	uờng được		e câu trúc na	no hình thàn	h trên
thuy timin phu 110	Một điện c		gom voni	ram (diện từ	ch 1,98 mm), va
knoang cach da du	rợc co aịnh l số phân tính	a 30 µm p. điện án cí	ang cach si	r dụng một n vi D27 trong	nay vi thao t chôn không	
	jų phan tien	uiçii ap co		y zor uong	CHAIL KHUIIg	
2					2 1	
Phố quang _l	phát quang d	của ZnS: N	In được đo	với một qua	ang phố kế l	nuỳnh
quang (Nanolog, F	IORIBA Jov	vin Yvon)	được trang	bi laser ion	Ar bước són	g 488
nm 160 mw (Spec	tra physics)	nnt một n	guon kich	kâ soi quana	en phat quan	lg cua
Ontics) Các phén		ad voi một ôchđiện án	durge thure	hiện với mớ	f m a v f a o s c	óng 5
kHz (HP 33120A)	và một bộ k	huếch đai d	tiên áp cao	(Trek). Đô s	áng được đo	bằng
sắc kế đo độ sáng	Konica-Mi	nolta CS-2	200. Công	suất đầu và	o của các th	iết bị
ACEL được tính b	ằng cách đo	sự giảm đ	iện áp trên	các thiết bị v	à một điện ti	rớ nối
tiếp, và góc pha gi	ữa hai tín hi	ệu được đo	bằng một	dao động kí	điện tử Text	ronix
3054B.						
I. Sư siêu bão hòa	. và sự tăng t	ruong cua	ZnO trong	dung dich hó	ahoc	
				2		
Cac mire sié	eu bao hòa c	ho chúng t	a biệt lực c	neu khiên tro	ong quá trinh	i täng
trường thủy nhiệt		neu khien	uu se tang	g cương sự	tạo mam va	tang
	va cac cau					s uiun

STE cho thấy tính chất này trong fliều kiện tối tru hóa kém (90 ° C), tạo thành lung tích đực chứa các sản phẩm tâng trường và các mầm tồng nhất hàm lượng cao

Hình SI. Aliquot 4m	L của các dung	dịch nuôi dây l	nano ZnO sau :	30 phút ở	(a) 60 ° C và
(h) 90 ° C với cùng	o thành phần đ	ung dich (7nSt	04 IOmM NH	CIO3m	đô nH [])
Dung aich auc ninn	thanh o nhiệt a	lọ cao do sự h	inn thann mam	dong nha	t trong dung
dịch trái ngược với	sự tiêu hao đái	ng kể chất phả	in ứng trong sự	r tạo mầm	không đồng
nhất dẫn đến sự tăno	trưởng đây nar	no trên để			

Hình S	2 biểu diễn ca	ic đồ thị hòa t	an được tính tơ	bán từ các ph	ản ứng hóa	i học
có thể xảy ra	trong dung d	ich chứa ZnS	O ₄ , NH ₄ CI, Na	OH. Các trự	ic x, y, và	zlần
lượt biểu diễ	n độ pH (phụ	thuộc NaOH), hòng độ NH	_r Cl, và nồng	độ cực đạ	icúa
các ion kẽm	khi không có	sự hình thành	n ZnO. 🛛 Đối v	ới các dung	dich với t	hành
phần bên dư	ới mặt phẳng	contour 3D	trong hình S1	b, sự kết tủ	a hoặc sự	tăng
trưởng dây n	ano sẽ không	xảy ra, các dấ	ìy nano sẽ tăng	trưởng nếu	các thành	phần
dung dich ö	trên mặt phẳn	g của đồ thi c	ontour ba chiề	u bởi vì dun	g dịch siêi	ıbão
nòa						

Tương tự, bác đồ thị hóa tan đối với các oxit kim loại / kim loại không chứa kêm (Cid. Al. Mg. và những nguyên tố khác) có thể được tạo ra bằng các hàng số phán ứng hóa học thích hợp. Hình S2C biểu diễn một ví dụ như vậy đối với [Cd.

(a)	Chemical Reaction	Log K
-	$Zn^{2+} + OH^- \leftrightarrow Zn(OH)^+$	5.0
	$Zn^{2+} + 2OH^- \leftrightarrow Zn(OH)_2$ (aq)	11.1
	$Zn^{2+} + 3OH^- \leftrightarrow Zn(OH)_3^-$	13.7
	$Zn^{2+} + 4OH^- \leftrightarrow Zn(OH)_4^{2-}$	18
	$Zn^{2+} + NH_3 \leftrightarrow Zn(NH_3)^{2+}$	2.21
	$Zn^{2+} + 2NH_3 \leftrightarrow Zn(NH_3)_2^{2+}$	4.5
	$Zn^{2+} + 3NH_3 \leftrightarrow Zn(NH_3)_3^{2+}$	6.86
	$Zn^{2+} + 4NH_3 \leftrightarrow Zn(NH_3)_4^{2+}$	8.89
	$Zn^{2+} + Cl^- \leftrightarrow Zn(Cl)^+$	0.46
	$NH_4^+ + OH^- \leftrightarrow NH_3 + H_2O$	4.39
	$Zn^{2+} + 20H^- \leftrightarrow ZnO(s) + H_2O$	15.52

Hình S2. (a) phản ứng hóa h	iọc có thê xảy ra trong dun	g dịch ngâm dây nano ZnO	và
cac nang so pnan ung cua ch	lung, va (b) ao ini noa ian ai	ược linn rư các năng số theo j	חי
(truc x) và nông độ NH CI (tr	mic x) (a) Cac to thi hoa tan	rên chông của In (màu đạn)	320
		rep chong cuu zh (muu uen)	VU
Cd (màu đó) được tính toán	từ các hàng số phản ứng. (l)) Đổ thị hòa tạn của Zn và (Cd
với hai nông đô NH-Cl khác r	nhau (0 M. 0.3 M)		

Hình S3, Đồ thị hòa tan lý thuyết (trên) và lượng siêu bão hòa () và (dưới) chiếu cao đây nano được đo bằng SEM mặt cắt ngang, đối với (a) pH, (b) nồng độ ZnSO₂, và (c) nồng độ NH₂CL. Các tham số khác được giữ cố định với điều kiện tham khảo: [ZnSO₂] = 0.01 M NH₂CL = 0.3 m pH = 11.60° C thể tịch dựng dịch 100 m = 6 giữ

I

dựa trên các tín	ıh toán nhiệt đ	tộng lực học v	và điện tích t	e mặt đo đư	cc qua AFM
(âm và dương đ	ối với các mặ	t phẳng (0002)) và (100), ớ	pH = 11; hin	h bổ sung S6
và S7). Các điềi	ı kiện làm tăng	g nồng độ cục	bộ của các lo	n kẽm mang c	điện dương ở
bề mặt âm (00 0)	2) (chẳng hạn	như độ pH thế	ấp) dẫn đến c	ác cấu trúc có	o tý số hướng
cao hơn, và ng	gược lại đối	với các phức	chất mang	điện âm ở	các mặt bên
(100).Điều quan	n trong cần lư	u ý là trong tr	ường hợp ch	í có kẽm, có	rất ít rào cản
để tích hợp vào	tinh thể. Nhữ	ng phát hiện n	ày phù hợp v	ới các tài liệu	4-5.

III. Thế năng bề mặt ZnO đối với các bề mặt tinh thể khác nhau

Để đánh giá xem	sự cạnh tranh	î tînh điện	có phải là 1	nột lời giải	thích hợp lý
cho các kết quả thực ng	hiệm hay khô	ng, thế năn	g bề mặt ci	ia các mặt j	phẳng (0002)
và (100) được phân tích	i bằng các ph	iép đo lực-	khoảng các	h bằng kín	h hiển vi lực
nguyên từ. Mũi AFM c	tược phủ Au	được chức	hóa với a	xit mercapt	toundecanoic
(ethanol) 6 đê đảm bảo	mũi mang điệ	n âm trên j	oH = 6.5 tù	một carbo	xylate bi mât

Hunh Sö biéu diễn bac phep do tươ-khoang cách với các bề mặt lớn lịnh thế của mặt phẳng kết thúc bằng Zn (0002) và mặt phẳng 1000 khi đến gần bề mặt. Mạt phẳng 10002) cho thấy một trợ đẩy tính điện tương tác khoang dài Dhimg to bề mặt tích điện âm bên đười pH H L tượ đẩy và thế âm của mặt phẳng 10002) ph pH> 11 phù hợp với các khám phá trước đáy T Mặt phẳng (100) phụ thể hiện tực nư p pH trưởc táy năt tích điện am bên dưới pH H L tước đáy huyết nat phẳng (0002) tích điện am và (100) lịch điện đương, sẽ có các lượng

Hình S6. (a) Các phép đo .	lực-khoảng cách	(trong khoảng	gần mũi đến	bề mặt) của các
mặt phẳng ZnO dơn tinh th	iể (0002) và (10	0) tại pH = 11,	được thực hi	ên với mũi AFM
chức hóa carboxylate. (b) S	Sơ đồ lệch mũi Al	FM bởi hai mặt	phẳng khác	nhau $\sigma pH = 11,$
gây ra bởi các tương tác tì	nh điện giữa các	bê mặt tĩnh điệ	ên. (c) Sự phá	ìn cực bể mặt dự
kiến của ZnO NWS trong cơ	ác điều kiện thực	nghiệm.		

Các thí ngl	niệm AFM k	hông được t	hực hiện với các	dung dịch có cùng thàn	h
	?				
phân hoa học như	r lúc tổng họ	p vi sự kết t	ua cua cac chat ti	r dung dịch siêu bao hồ	а
se gay kno knan					C
. ~		·	. 2	2	
hố trợ sự chenh l	ệch thể năng	; be mật giữ	a các mặt pháng,	phep do quang pho die	n
fir tia X (XPS) đu	roc thực hiệr				

Phổ XPS của các đính	quang điện tử 3d và	à các đỉnh Auger M	IMV của Pd
được lắng tụ đơn lớp được	biểu diễn trong hình	S7. Đĩnh Auger tù	tín hiệu Pd
trên cả ba bề mặt tinh thể giá	ống hệt nhau. Tuy nh	iên, các đỉnh quang d	điện tử năng
lượng liên kết cho thấy một	sự chênh lệch giữa c	các bề mặt tinh thể k	chác nhau là
0,25 eV. Peak quang điện từ	của Pd trên bề mặt (100) có năng lượng	lên kết thấp
nhất, trong khi peak trên các	bề mặt (11 0) và (00	02) có năng lượng t	ương ứng là
0.125 và 0.25 eV. Cả hai th ạ	am số auger điều chi	nh (MAP) và mật đ	o cation tính
durge durge biểu diễn trong t	pảng SI. Bề mặt có r	nật độ cation cao ho	on có giá trị
MAP thấp hơn. Mối tương	quan giữa MAP và c	liên tích bề mặt có t	hể được giải

Orientation	M.A.P.	Cation density (per nm ²)
(0002) Zn terminated	824.375	10.9
(1120)	824.500	6.8
(1010)	824.625	5.9
Bang SI. Cac thông số Auger	điều chính(MAP,	sự khác biệt giữa các peak Auger
uang điện tư, ở đây peak Auge ZnO, MAP thấp tương ứng với nư	r có giá trị cao h ĩng hương liên kết	ơn) và mặt độ cation của các tính cao hơn
	GOT VOT CAC TOẠT (
Đế kiếm tra xem cạnh l	tranh tĩnh điện c	họn lọc bề mặt từ các cation ph
chất không kêm có tính khái q	uat hoa hơn so và	ou việc bộ sung các tôn cadmium
cho nhiều sunfat kim loại khác	nhaul (Hinh S8)	Tru ý rằng trong mọi trường h
sư hiện diện của các ion phu h	lầu như không th	ay đổi sự phân bố của các ion ph
chất kẽm (<± 2%), thường kho	năng~ 80% điện	tich dương trong các điều kiện tả
nướng.		
Giống như nhôm, các ch	nất indium và gal	lium chủ yếu mang điện tích âm
lo đó ức chế sự tăng trưởng tro	ong mặt phẳng m	ang điện tích dương (10-0), dẫn c
ý số hương cao hơn. Giống nh	ıu cadmium, dòn	g, magiê và canxi mang điện dực
sẽ ngăn chặn sự tăng trưởng tr	ong mặt phẳng (0002) mang điện tích âm, tạo thà
các tám có tý số hướng thập,	dieu này dã đượ	c xác nhận từ các thi nghiệm. L
quan den sự phân bộ tôn phức	zh, trường hợp	mem vao ca se khac(Hinn S8e)
7 (and have much surged a surge ca	tion knac (Hinh)	~ 12 (b) h S(a) h And h ~ 12
	able vung pir o	

Mô hình tiên doàn xu hướng tăng trường bủa dây nano trong quá trình lổng hợp thuỳ nhiệt phức tạp do việc sử dụng các chất tích điện phức tạp với các hằng số liên kết chưa biết và thiếu các phép do điện tích bề mặt trên mặt tăng trường. Ví

dụ, khả năng liên kết p	olydentate và cô	lập ion kim loại hi	êm khi được xem xét
trong việc bổ sung các c	ác polyme cacbox	ylat, sulfonates, và	amin. Trong các điều
kiên nồng đô ở đây (IN	$H_{\pi}CII >> IZnSO_{\pi}$), vai trò của lon đ	ối sulfate đã bị piám
hiểu do đó để lại các	phírc chất hydroxi	de kẽm và kẽm am	in như các chất phản
ring trung gian han dàu	có hồng đô tương	dói có thể được tin	h toán từ các hằng số
đã hiết Rằng cách hại	chế sự bất định t	rong các tượng tác	nhối từ kim loại hua
sự đơn gián hóa các nh		dói sulfate và am	ni) kết họn với việc
váo định thực nghiêm đ	iôn tích bố mặt c		
die liêu wei môt mô hin	h nhiết đông lực l		ràng hình thái học có
			rang mini tilar nye ev
the dupper kiem soat qua			

Một điều qua	an trọng cần lưu	ý là nhiệt độ ph	năn ứng có thể ã	nh hướng đến sự
phân bố của các ch	iất mang điện tíc	ch và độ hòa tai	n của chúng. Đà	bhòa tan hiện tại
và đồ thị ghi nhận	sự tiến triển đượ	rc tính toán với	các hằng số ph	ản ứng có sẵn tại
điều kiên tiêu chu	ån (25 ° C). Mä	ic dù, ô nhiệt đ	ô cao, các hầng	g số phản ứng sẽ
thay đổi và ánh hu	rờng đến phân b	ố phức tạp của	ion ^o . Thât ki	iông may, không
nhải tất cả các dữ	liêu nhiệt động l	rc hoc (nhiêt d	ung phụ thuộc :	nhiệt độ entropy
và enthainy) có sã	n cho mõi loai	eation de tinh	toán các hàng s	số phản ứng phụ
thuộc hhiệt độ. Ch	uing tôi tin rằng	công trình tược		ng số nhiệt động
tire hoc của các nh	ure chất ion cu	thể sẽ hổ sung	cho nhân tích	của chúng tối về
diâu khiến tĩnh điệ	in trong quá trìn	h tổng hơn đây	nano trên một	zhoáng phiết độ
	an uon <u>ș qua um</u>	ni nakanèh nak	nano aon myt	minot do
rộng.				

V. Đặc tính của sự tăng trường của các cấu trúc nano ZnO khi có mặt các cat không kêm

TIONS HUONS HOP	uc che lang liuon	ig o cac mại den the	co nuong (100) bol Al
hoặc Ga, chúng ta sẽ th	ây được các hình	tháp hoặc kim hì	nh thành trên các dây
nano. Cấu trúc kim này	khác với các cất	ı trúc lăng trụ hoặc	kim tự tháp của ZnO
với các mặt (10-1) được	hình thành ở mộ	t góc 60 ° so với n	iặt phẳng (0002) <mark>1145</mark> .
Trong trường hợp của ch	túng tôi, nhiều bư	rớc đã được quan s	at (thay vì mặt phẳng
nghiêng sẽ là mặt phẳng	(101)), bao gồm c	cấu trúc lục giác xế	o chồng lên nhau hình
thành nên một tháp với	các góc 87 ± 0,9	độ. Điều đó cho th	ấy rằng các mũi hình
kim hình thành từ nhiều .	lớp cấu trúc tinh t	hể lục giác với diệr	i tích bề mặt giám dần
và xếp chồng lên nhau th	ieo hướng trục c (Hình S9e) 16-18	tức chế tăng trưởng ở
các mặt bên dẫn đến sự l	ninh thành các cấ	u trúc từng bậc như	thể vì các lí do đông

hình thành từng bước. Hình ánh lây từ Laudise và các cộng sự.

Dừ liệu XRD chuẩn hóa của các mẫu được tăng trường khi có mặt các cation khác nhau Eho thấy không có sự thay đổi sự třinh thường tình thể của các đây nano ZnO (Hình S10). Tất cả các cấu trúc nano cho thấy một peak ZnO (0002) mạnh. Cho thấy cùng một sự định hưởng theo chiều dọc của các bấu trúc nano ZnO. Không có các peak khác của pha kim loại không kem hoặc bắu kim loại xuất hiện.

ai hỏng có thể được loại trừ qua quá trình 🏼 nhiệt.

	?			,
ZnO có câu	trúc tinh thê wur	trong khi đó	CdO, CaO, Mg	O có câu trúc
7 2	,			,
muôi mỏ. Đê thay	thê Zn với các c	ation A (như Mg,	Cd, Ca, hoặc c	ác nguyên tô
khác), hệ đòi hỏi	một entanpy hìn		vì sẽ tạo ra sức	căng cục bộ
9	,	2		
lớn để tích hợp và	o trong câu trúc	wurtzitecó thê	được tính từ mô	
		,		
học mạng tinh thê	nguyên lý l ²¹⁺²⁵ .	Lây ví dụ như tror	ng trường hợp c	ua MgO, cân
~ ``		~		
phải có sẵn các hải	ng số cân thiết (v	à được trích dẫn ở (đây), năng lượn	g cân thiết để
	7			
thay đổi từ cấu trú	c muối mó sang	wurtzite ~ 0,29 eV	/ đơn vị công th	níre ²¹ , với các
giá tri tương tư cha	CdO và CaO.			

Liên quan đến entropy, có bà thuật ngữ khác nhà liệ entropy diện từ entropy dao dòng, và entropy cấu hình. Đông góp entropy diện từ nhỏ dơ độ rộng vùng cấm lớn, và entropy dao dộng không có đóng góp lớn Entropy cấu hình của sự pha trộn dơn giản 4 (mol%) có thể được biểu diễn là

Giá trị trên sẽ nằm trong khoảng từ $0 \sim 1.39$ k. Với một độ tan nhiệt động lực học gực đại cho trước của Mg trong ZnO là $\sim 3.\%$ chúng ta có thể giá sử rằng (~ 2 là một giá trị gần đúng, mặc dù giá trị có thể thay đổi trong một khoảng rộng.

hủy nhiệt⁻

Căn cừ vào phương trình s1, độ tan phụ thuộc nhiệt độ	dược tính toán <mark>của A</mark>
với các giá trị, được xác định ở trên (0.29eV/atom; exp (= 2) được biểu diễn trong
hình S12. Do enthaipy hình thành cao, việc tích hợp của A-k	hông thuận lợi về mặt
hãng lượng ở nhiệt độ thấp. Độ hòa tan cực dại dược tính	coán của A trong ZnO
rong các điều kiên thực nghiêm của chúng tội (60 ° C, 333K) là 8.24x10-5. Bởi vì
tộ hòa tạn thấp này, các phức chất không kẽm được hấp phụ	i tĩnh điện sẽ chăn các
mặt phẳng tình thể có sẵn để ức chế liện kết phức chất Zn	nhưng sẽ không tích
	dô cao entrony virot
qua entanny hình thành cao và đô hòa tan của A rong Zn	O tăng Ví dụ đô tạn
rong que triph tong hon ZnQ thuy phiét o phiét do du de	$\frac{1}{25}$
	lớn co với đô bào tan
rong sáo điều kiếp phiết để thếp được báo sáo ở đầu (Hinh	S12b) Wéi tự cách là
phep gan dung bac maa min toan cua chung toi phu nop rat	tot voi cao bao cao ve
mann phan phan tram do duge của tập chất được tích hợp	vao ZnO tang truong

Hình S12. (A) Đồ thị độ hòa tan phụ thuộc nhiệt độ của oxit kìm loại lạ cấ	u trúc muối mớ
trong CnO cau trúc wurtzite, voi nang lượng hình thành 0.29eV và (b) Đồ thị độ tan trong khoảng từ 800K đến 650K, tương ứng với hộp mài	u đó trong hình
S12a. (c) Đồ thị độ hòa tam phụ thuộc nhiệt độ của ZnO cấu trúc wurtzi cấu trúc nuối mô, với năng lượng hình thành 0.21eV và	e trong AO với . (d) Đồ thị độ
an trong khoảng - hr 300K đến 650K. trong ứng với hộp màu đó trong hìn	h 812d.
VII. Các yếu tố điều khiển hình thái học ngoài hiện tượng tĩnh điện	
Nhiều yếu tố khác ngoài hiện tượng tĩnh điện có thể ánh hướng	g đến tổng hợp
cho tháy ràng sự tương tác tính điện giữa ion phức và bề mặt tăng tri	rờng là cơ chế
chiếm ưu thế điều khiến hình thái học lợ pH kiềm.	
VII A. Các hiệu ứng phụ thuộc thời gian tác động đến sự tăng trường sự thiếu hụt chất phân ứng	g ZnO − pH và
Chiều cao, đường kính, và tỷ số hướng ZnO theo thời gian được b	iểu diễn trong
hình S13. Khi không có chất điều chính (Hình S13a), sự tăng trưởng	diễn ra nhanh
rong ~ 4 giờ dau tiên (giải đoạn bản dâu), và sau do tốc độ tăng tr Tến 20 giờ (giải đoạn tăng trường). Sự tiệm cận tăng trường không xu	ương ôn định lất hiện. Tý số
bướng của các dây nano không thay đổi khi thời gian thị nghiệm dao	$d\hat{q}ng \pm 1,5\%$
thếng khoảng thời giản 20 giới, kết quả này đuộc do sau hiệt 4 giới thấy rằng sự tăng trướng chủ yếu bị giới han bởi sự khuếch tán độn	ig học của các
ion vào các bề mặt ZnO. Trong khoảng thời gian 20 giờ hày, pH đ Tổi rất lị từ 11 đến 10,8 no không phải là một tác động chính ở đã	lung dich thay
dược giữ hài hòa trên khoảng thời gian phân ứng cực kỳ dài.	
Tuy nhiên, khi được tổng hợp với sự hiện diện của các ion Co	l (Hinh S13c),
I số hướng phụ thuộc vào thời gian ít nhất quán, liên tục giám tron giờ (mặc dù với giá trị tổng công khiêm tốn là 20%). Sự guy giám củ	g thời gian 20. a các ion phức
chất Zn có sẵn sẽ dẫn đến sự gia tăng nồng độ Cd tượng đốt, vếu tố s	au của các yếu
to nay knong duoc tich hop vaoi tu tang tiuòng và do do làm suy g	am it. Sự gia

như được quan sát trong thực nghiệm. Vì thế, sự sự được giữ hải hòa với các phân ứng xây ra trong kh chất điều chính (chất phụ gia). tiảm của chất ph

Hấp thụ hóa học của cá	e phối từ hữu cơ có thể đong	một vai trờ nào đó trong
sự ức chế sự tăng trường tinh	h thể (như được lõm tất trong	g Govender và các cộng
sự 28), đặc biệt với các ion	carboxylate tai bê mật phân	cách ZnO, Tian và các
công sự 31 đã tân dụng sự tự	rong tác nay để thay đổi hình	thái ZnO bằng cách flua
vào citrate ở pH trung tính .	và tương tự, bừ dụng polye	thylenimine để thay đổi
hình thái học cũng đã được g	ghi nhận ³⁷ l Tuy nhiên, việc l	têm các chất điều chính
như thế không có ảnh hưởng t	trong các điều kiện phân ứng l	kiểm ở đây.
Sự hấp thụ hóa học của	a các ion phức chất kim loại	có thể có các cơ chế tác
lộng tiềm ẩn khác chẳng hạt	n thay đổi điểm tiện tích zero	, nhưng fliều này không
tiêu tham khảo33); Tuy nhiêr	n người ta phải giữ cho hải h	ca với các thay đổi như
thế gigàn pH trung tính Các	c ion phức chất kim loại hấp	thu hóa học cũng có thể
đồng vai trò như các điểm tạ	io màm ^{aurs} nhưng bác hiệu t	rng như thế không xuất
biên có lẽ bởi vì một lớp n	nàm có sẫn được đưa vào độ	ẻ tạo mầm cho sự tăng
trưởng không đồng nhất Su	r phân cực của các ion phức	cũng thrọc dự doán là
chông đáng kểi trong số các l	nóa chất kẽm phản ứng chỉ có	ZnOH và ZnNH _a có thể
bhân cựci, nhưng nồng đô tươi	ng đối của chúng không đáng	kể (khoảng 10 ⁴).
VIII. Các tính chất điện và qu VIII.A. Tính chất phát xạ trư	ang của các thiết bị quang điệ ông của dây nano ZnO	n tu day nano
Phát xạ điện từ khi có sự tác phương trình Fowler-Nordhei	c động của một điện trường m (FN).	có thể dược mô tả theo
hàng số (A = 1,56 x 10-10 A công thoát của ZnO (5.3 eV)	$r = 6.83 \times 103 \text{ eV}$	-3 / 2 V / um), va
Diện trường cục bộ có thể đượ		
ơ đây là hệ số tăng cường. Tiện cực và đầu dây nano.	V là điện áp đặt vào, và d l	à khoảng cách giữa các

VIII.B. Thiết bị ACEL dây nano

Phả mạng nhất quang	∈nia 7nS· Mn đư	ge lắng tụ trên	để thạch anh và phổ
		ço nang ta tron	
điện phát quang của các thiê	t bi ACEL được r	lây nano	ZnO được biêu diên
trong hình 515. Phổ quang	phát quang vàng /	cam có nguồn	gốc từ sự giải phóng
năng lượng của các electroi	n mangan từ tran	g thái kích thío	ch quang về mức cơ
pán. Peak diện phát quang	cực dại gần như g	iống với cực đ	ai quang phát quang
dược khớp Gauss 592 nm,	cho thấy ràng điệ	èn phát quang	có nguồn gốc từ sự
chuyển năng lượng từ trạng	g thái kích thích	cho các trạng	thái cơ bản của các
electron mangan, trái ngược	với từ ZnO. Cần	lưu ý rằng cơ c	hế kích thích điện tử
chác với kích thích quang; tr	ong một thiết bị A	CEL, điện trườ	mg cao qua phosphor
tao ra các electron gia tốc tro	ng lớp hay các ele	ctron chuôi hầr	n từ lớp điện môi, tác
động đến các electron cơ b	ản của Mn. Khôn	g có khác biệt	trong phổ điện phát
quang khil có và không có ca	ác dây nano (hình	ảnh không đượ	rc hiển thị), cho thấy

(b) So sánh phố quang ph	nát quang và điện	i phát quang cũ	ia phosphor ZnS.	: Mn. Tùy thuộc
vào câu trúc nano 7n0 i	tuor nhúna trong	r thiết hị ACEI	hiện suất cực	đại đã thay đổi
			, nu puut cuc	un un prinț uor
dang ke (Bang S2). Cac t	thiết bị tỷ số hưới	ng cao (Al 0.00	J2M) cho thay sự	r tăng hiệu suất
cực đại 10 bậc (0,065 lm	ı / W) so với thiế	t bị ACEL khô	ng có các dây n	ano (0.006 lm /
W). Tiếp tục tối ru hóa th	hêm nữa, đặc biệi	t là đối với thài	nh phần phospho	r, theo dự kiến
sẽ nâng cao hiệu suất tuy	êt đổi.			

sample	Turn on voltage (V at 1cd/m2)	luminance (cd/m ²)	Max Luminous efficiency (Im/W)	Notes
AI 0.002 M	~ 160	131	0.065	High aspect ratio nanowires embedded
No addition	~170	54.7	0.009	Nanowires embedded
Cd 0.002M	~230	30.2	0.0064	Nanoplates embedded
Control (no NW)	~ 300	22.7	0.006	N/A
{(Y ₂ O ₃) _{1-x} -(GeO ₂) _x }:Mn / BaTiO ₃ ^a	< 100	7,700, 724	1.0, 9.5	New phosphor, anneal at 1020C
ZnS:Mn / Y ₂ O _{3^b}	~ 200	1,800	1.2	Anneal at E-field , oxygen glow discharge
ZnS:Mn / BaTiO3 sheet	~ 20	6,300	11	ZnS:Mn by MOCVD
Cold Cathode Fluorescent light ^d (LCD backlight)	N/A (120~1500 at run)	32,000	60~70	In production
CNT FED®	N/A (1kV at run)	10,000	31	Printed CNT for BLU
LED!	0~2	50~110	208	New record for white LED
OLED	2.5~3	1,000 ~ 10,000	90	Pattern surface for high extraction efficient

Bảng S2. So sánh hiệ	u suất của thiết bị .	ACEL, bao gom ca	i các công nghệ đ	lã được báo
cáo khác. aTham kh	áð 39. Btham khád	o 40. cTham khảo	41. dTham khả	042. eTham
khảo <mark>43. fTham khảo4</mark>	4. gTham khdo45.			
VIII.C. Thiết bị kim	loại –điện môi - b	án dẫn (MIS) vi le		
So dà dà làng horo	dâv nano vi lóno.	trochiển diễn tr	ong hình 816-8	au khi nhú
quavi hoặc phún xa	RFL môt lớp mà	m mong ZnO tr	ên môti dél dược	c làm sach
rước,các kênh poly	dimethylsiloxane (PDMS) thể long	durge dúc durge	gắn vào đế
hoặc bằng tiếp xúc	áp lực cơ học hoặc	liên kết plasma.	Các dung dịch si	êu bão hòa
được cho cháy qua	mỗi kênh, và các c	lây nano bi <mark>l</mark> giam	cầm bề mặt đượ	c tổng hợp
ở nhiệt độ từ 40-80)° C, với <mark>sự kiê</mark> m	n soát nhiệt độ đ	at được thông c	ua một bệ
Pelfier.				
Tổng hợp có	nước ở nhiệt độ	thấp có thể đượ	rc sử dụng tron	g một môi
trường vị lóng như	một công cụ sàng	loc song song để	nghiên cứu thê	m tham số
của hệ thông tăng tr	ưởng, <mark>cũng như c</mark> h	no sự hình thành c	các thiết bị được	chê tạo tại
énel cac day nano	co hình thai học k	thac nhau dược to	aburdu barb rebà	c kenn cua
như các dụng dịch c	furge sir dung trong	a tồng hơn dạng k		
của các dây nao ZnC	n káp xi nhau			
		,	~?	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
vet dong-ap (IFV) c	ua CEDIMIS VI IO	ng quợc che tạo tả		alen trong
	a cintin tuu giolig l	ming diffude.		

